decimal128.js 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
'use strict';

var Long = require('./long');

var PARSE_STRING_REGEXP = /^(\+|-)?(\d+|(\d*\.\d*))?(E|e)?([-+])?(\d+)?$/;
var PARSE_INF_REGEXP = /^(\+|-)?(Infinity|inf)$/i;
var PARSE_NAN_REGEXP = /^(\+|-)?NaN$/i;

var EXPONENT_MAX = 6111;
var EXPONENT_MIN = -6176;
var EXPONENT_BIAS = 6176;
var MAX_DIGITS = 34;

// Nan value bits as 32 bit values (due to lack of longs)
var NAN_BUFFER = [
  0x7c,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00
].reverse();
// Infinity value bits 32 bit values (due to lack of longs)
var INF_NEGATIVE_BUFFER = [
  0xf8,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00
].reverse();
var INF_POSITIVE_BUFFER = [
  0x78,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00,
  0x00
].reverse();

var EXPONENT_REGEX = /^([-+])?(\d+)?$/;

// Detect if the value is a digit
var isDigit = function(value) {
  return !isNaN(parseInt(value, 10));
};

// Divide two uint128 values
var divideu128 = function(value) {
  var DIVISOR = Long.fromNumber(1000 * 1000 * 1000);
  var _rem = Long.fromNumber(0);
  var i = 0;

  if (!value.parts[0] && !value.parts[1] && !value.parts[2] && !value.parts[3]) {
    return { quotient: value, rem: _rem };
  }

  for (i = 0; i <= 3; i++) {
    // Adjust remainder to match value of next dividend
    _rem = _rem.shiftLeft(32);
    // Add the divided to _rem
    _rem = _rem.add(new Long(value.parts[i], 0));
    value.parts[i] = _rem.div(DIVISOR).low_;
    _rem = _rem.modulo(DIVISOR);
  }

  return { quotient: value, rem: _rem };
};

// Multiply two Long values and return the 128 bit value
var multiply64x2 = function(left, right) {
  if (!left && !right) {
    return { high: Long.fromNumber(0), low: Long.fromNumber(0) };
  }

  var leftHigh = left.shiftRightUnsigned(32);
  var leftLow = new Long(left.getLowBits(), 0);
  var rightHigh = right.shiftRightUnsigned(32);
  var rightLow = new Long(right.getLowBits(), 0);

  var productHigh = leftHigh.multiply(rightHigh);
  var productMid = leftHigh.multiply(rightLow);
  var productMid2 = leftLow.multiply(rightHigh);
  var productLow = leftLow.multiply(rightLow);

  productHigh = productHigh.add(productMid.shiftRightUnsigned(32));
  productMid = new Long(productMid.getLowBits(), 0)
    .add(productMid2)
    .add(productLow.shiftRightUnsigned(32));

  productHigh = productHigh.add(productMid.shiftRightUnsigned(32));
  productLow = productMid.shiftLeft(32).add(new Long(productLow.getLowBits(), 0));

  // Return the 128 bit result
  return { high: productHigh, low: productLow };
};

var lessThan = function(left, right) {
  // Make values unsigned
  var uhleft = left.high_ >>> 0;
  var uhright = right.high_ >>> 0;

  // Compare high bits first
  if (uhleft < uhright) {
    return true;
  } else if (uhleft === uhright) {
    var ulleft = left.low_ >>> 0;
    var ulright = right.low_ >>> 0;
    if (ulleft < ulright) return true;
  }

  return false;
};

// var longtoHex = function(value) {
//   var buffer = new Buffer(8);
//   var index = 0;
//   // Encode the low 64 bits of the decimal
//   // Encode low bits
//   buffer[index++] = value.low_ & 0xff;
//   buffer[index++] = (value.low_ >> 8) & 0xff;
//   buffer[index++] = (value.low_ >> 16) & 0xff;
//   buffer[index++] = (value.low_ >> 24) & 0xff;
//   // Encode high bits
//   buffer[index++] = value.high_ & 0xff;
//   buffer[index++] = (value.high_ >> 8) & 0xff;
//   buffer[index++] = (value.high_ >> 16) & 0xff;
//   buffer[index++] = (value.high_ >> 24) & 0xff;
//   return buffer.reverse().toString('hex');
// };

// var int32toHex = function(value) {
//   var buffer = new Buffer(4);
//   var index = 0;
//   // Encode the low 64 bits of the decimal
//   // Encode low bits
//   buffer[index++] = value & 0xff;
//   buffer[index++] = (value >> 8) & 0xff;
//   buffer[index++] = (value >> 16) & 0xff;
//   buffer[index++] = (value >> 24) & 0xff;
//   return buffer.reverse().toString('hex');
// };

/**
 * A class representation of the BSON Decimal128 type.
 *
 * @class
 * @param {Buffer} bytes a buffer containing the raw Decimal128 bytes.
 * @return {Double}
 */
var Decimal128 = function(bytes) {
  this._bsontype = 'Decimal128';
  this.bytes = bytes;
};

/**
 * Create a Decimal128 instance from a string representation
 *
 * @method
 * @param {string} string a numeric string representation.
 * @return {Decimal128} returns a Decimal128 instance.
 */
Decimal128.fromString = function(string) {
  // Parse state tracking
  var isNegative = false;
  var sawRadix = false;
  var foundNonZero = false;

  // Total number of significant digits (no leading or trailing zero)
  var significantDigits = 0;
  // Total number of significand digits read
  var nDigitsRead = 0;
  // Total number of digits (no leading zeros)
  var nDigits = 0;
  // The number of the digits after radix
  var radixPosition = 0;
  // The index of the first non-zero in *str*
  var firstNonZero = 0;

  // Digits Array
  var digits = [0];
  // The number of digits in digits
  var nDigitsStored = 0;
  // Insertion pointer for digits
  var digitsInsert = 0;
  // The index of the first non-zero digit
  var firstDigit = 0;
  // The index of the last digit
  var lastDigit = 0;

  // Exponent
  var exponent = 0;
  // loop index over array
  var i = 0;
  // The high 17 digits of the significand
  var significandHigh = [0, 0];
  // The low 17 digits of the significand
  var significandLow = [0, 0];
  // The biased exponent
  var biasedExponent = 0;

  // Read index
  var index = 0;

  // Trim the string
  string = string.trim();

  // Naively prevent against REDOS attacks.
  // TODO: implementing a custom parsing for this, or refactoring the regex would yield
  //       further gains.
  if (string.length >= 7000) {
    throw new Error('' + string + ' not a valid Decimal128 string');
  }

  // Results
  var stringMatch = string.match(PARSE_STRING_REGEXP);
  var infMatch = string.match(PARSE_INF_REGEXP);
  var nanMatch = string.match(PARSE_NAN_REGEXP);

  // Validate the string
  if ((!stringMatch && !infMatch && !nanMatch) || string.length === 0) {
    throw new Error('' + string + ' not a valid Decimal128 string');
  }

  // Check if we have an illegal exponent format
  if (stringMatch && stringMatch[4] && stringMatch[2] === undefined) {
    throw new Error('' + string + ' not a valid Decimal128 string');
  }

  // Get the negative or positive sign
  if (string[index] === '+' || string[index] === '-') {
    isNegative = string[index++] === '-';
  }

  // Check if user passed Infinity or NaN
  if (!isDigit(string[index]) && string[index] !== '.') {
    if (string[index] === 'i' || string[index] === 'I') {
      return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER));
    } else if (string[index] === 'N') {
      return new Decimal128(new Buffer(NAN_BUFFER));
    }
  }

  // Read all the digits
  while (isDigit(string[index]) || string[index] === '.') {
    if (string[index] === '.') {
      if (sawRadix) {
        return new Decimal128(new Buffer(NAN_BUFFER));
      }

      sawRadix = true;
      index = index + 1;
      continue;
    }

    if (nDigitsStored < 34) {
      if (string[index] !== '0' || foundNonZero) {
        if (!foundNonZero) {
          firstNonZero = nDigitsRead;
        }

        foundNonZero = true;

        // Only store 34 digits
        digits[digitsInsert++] = parseInt(string[index], 10);
        nDigitsStored = nDigitsStored + 1;
      }
    }

    if (foundNonZero) {
      nDigits = nDigits + 1;
    }

    if (sawRadix) {
      radixPosition = radixPosition + 1;
    }

    nDigitsRead = nDigitsRead + 1;
    index = index + 1;
  }

  if (sawRadix && !nDigitsRead) {
    throw new Error('' + string + ' not a valid Decimal128 string');
  }

  // Read exponent if exists
  if (string[index] === 'e' || string[index] === 'E') {
    // Read exponent digits
    var match = string.substr(++index).match(EXPONENT_REGEX);

    // No digits read
    if (!match || !match[2]) {
      return new Decimal128(new Buffer(NAN_BUFFER));
    }

    // Get exponent
    exponent = parseInt(match[0], 10);

    // Adjust the index
    index = index + match[0].length;
  }

  // Return not a number
  if (string[index]) {
    return new Decimal128(new Buffer(NAN_BUFFER));
  }

  // Done reading input
  // Find first non-zero digit in digits
  firstDigit = 0;

  if (!nDigitsStored) {
    firstDigit = 0;
    lastDigit = 0;
    digits[0] = 0;
    nDigits = 1;
    nDigitsStored = 1;
    significantDigits = 0;
  } else {
    lastDigit = nDigitsStored - 1;
    significantDigits = nDigits;

    if (exponent !== 0 && significantDigits !== 1) {
      while (string[firstNonZero + significantDigits - 1] === '0') {
        significantDigits = significantDigits - 1;
      }
    }
  }

  // Normalization of exponent
  // Correct exponent based on radix position, and shift significand as needed
  // to represent user input

  // Overflow prevention
  if (exponent <= radixPosition && radixPosition - exponent > 1 << 14) {
    exponent = EXPONENT_MIN;
  } else {
    exponent = exponent - radixPosition;
  }

  // Attempt to normalize the exponent
  while (exponent > EXPONENT_MAX) {
    // Shift exponent to significand and decrease
    lastDigit = lastDigit + 1;

    if (lastDigit - firstDigit > MAX_DIGITS) {
      // Check if we have a zero then just hard clamp, otherwise fail
      var digitsString = digits.join('');
      if (digitsString.match(/^0+$/)) {
        exponent = EXPONENT_MAX;
        break;
      } else {
        return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER));
      }
    }

    exponent = exponent - 1;
  }

  while (exponent < EXPONENT_MIN || nDigitsStored < nDigits) {
    // Shift last digit
    if (lastDigit === 0) {
      exponent = EXPONENT_MIN;
      significantDigits = 0;
      break;
    }

    if (nDigitsStored < nDigits) {
      // adjust to match digits not stored
      nDigits = nDigits - 1;
    } else {
      // adjust to round
      lastDigit = lastDigit - 1;
    }

    if (exponent < EXPONENT_MAX) {
      exponent = exponent + 1;
    } else {
      // Check if we have a zero then just hard clamp, otherwise fail
      digitsString = digits.join('');
      if (digitsString.match(/^0+$/)) {
        exponent = EXPONENT_MAX;
        break;
      } else {
        return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER));
      }
    }
  }

  // Round
  // We've normalized the exponent, but might still need to round.
  if (lastDigit - firstDigit + 1 < significantDigits && string[significantDigits] !== '0') {
    var endOfString = nDigitsRead;

    // If we have seen a radix point, 'string' is 1 longer than we have
    // documented with ndigits_read, so inc the position of the first nonzero
    // digit and the position that digits are read to.
    if (sawRadix && exponent === EXPONENT_MIN) {
      firstNonZero = firstNonZero + 1;
      endOfString = endOfString + 1;
    }

    var roundDigit = parseInt(string[firstNonZero + lastDigit + 1], 10);
    var roundBit = 0;

    if (roundDigit >= 5) {
      roundBit = 1;

      if (roundDigit === 5) {
        roundBit = digits[lastDigit] % 2 === 1;

        for (i = firstNonZero + lastDigit + 2; i < endOfString; i++) {
          if (parseInt(string[i], 10)) {
            roundBit = 1;
            break;
          }
        }
      }
    }

    if (roundBit) {
      var dIdx = lastDigit;

      for (; dIdx >= 0; dIdx--) {
        if (++digits[dIdx] > 9) {
          digits[dIdx] = 0;

          // overflowed most significant digit
          if (dIdx === 0) {
            if (exponent < EXPONENT_MAX) {
              exponent = exponent + 1;
              digits[dIdx] = 1;
            } else {
              return new Decimal128(
                new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER)
              );
            }
          }
        } else {
          break;
        }
      }
    }
  }

  // Encode significand
  // The high 17 digits of the significand
  significandHigh = Long.fromNumber(0);
  // The low 17 digits of the significand
  significandLow = Long.fromNumber(0);

  // read a zero
  if (significantDigits === 0) {
    significandHigh = Long.fromNumber(0);
    significandLow = Long.fromNumber(0);
  } else if (lastDigit - firstDigit < 17) {
    dIdx = firstDigit;
    significandLow = Long.fromNumber(digits[dIdx++]);
    significandHigh = new Long(0, 0);

    for (; dIdx <= lastDigit; dIdx++) {
      significandLow = significandLow.multiply(Long.fromNumber(10));
      significandLow = significandLow.add(Long.fromNumber(digits[dIdx]));
    }
  } else {
    dIdx = firstDigit;
    significandHigh = Long.fromNumber(digits[dIdx++]);

    for (; dIdx <= lastDigit - 17; dIdx++) {
      significandHigh = significandHigh.multiply(Long.fromNumber(10));
      significandHigh = significandHigh.add(Long.fromNumber(digits[dIdx]));
    }

    significandLow = Long.fromNumber(digits[dIdx++]);

    for (; dIdx <= lastDigit; dIdx++) {
      significandLow = significandLow.multiply(Long.fromNumber(10));
      significandLow = significandLow.add(Long.fromNumber(digits[dIdx]));
    }
  }

  var significand = multiply64x2(significandHigh, Long.fromString('100000000000000000'));

  significand.low = significand.low.add(significandLow);

  if (lessThan(significand.low, significandLow)) {
    significand.high = significand.high.add(Long.fromNumber(1));
  }

  // Biased exponent
  biasedExponent = exponent + EXPONENT_BIAS;
  var dec = { low: Long.fromNumber(0), high: Long.fromNumber(0) };

  // Encode combination, exponent, and significand.
  if (
    significand.high
      .shiftRightUnsigned(49)
      .and(Long.fromNumber(1))
      .equals(Long.fromNumber)
  ) {
    // Encode '11' into bits 1 to 3
    dec.high = dec.high.or(Long.fromNumber(0x3).shiftLeft(61));
    dec.high = dec.high.or(
      Long.fromNumber(biasedExponent).and(Long.fromNumber(0x3fff).shiftLeft(47))
    );
    dec.high = dec.high.or(significand.high.and(Long.fromNumber(0x7fffffffffff)));
  } else {
    dec.high = dec.high.or(Long.fromNumber(biasedExponent & 0x3fff).shiftLeft(49));
    dec.high = dec.high.or(significand.high.and(Long.fromNumber(0x1ffffffffffff)));
  }

  dec.low = significand.low;

  // Encode sign
  if (isNegative) {
    dec.high = dec.high.or(Long.fromString('9223372036854775808'));
  }

  // Encode into a buffer
  var buffer = new Buffer(16);
  index = 0;

  // Encode the low 64 bits of the decimal
  // Encode low bits
  buffer[index++] = dec.low.low_ & 0xff;
  buffer[index++] = (dec.low.low_ >> 8) & 0xff;
  buffer[index++] = (dec.low.low_ >> 16) & 0xff;
  buffer[index++] = (dec.low.low_ >> 24) & 0xff;
  // Encode high bits
  buffer[index++] = dec.low.high_ & 0xff;
  buffer[index++] = (dec.low.high_ >> 8) & 0xff;
  buffer[index++] = (dec.low.high_ >> 16) & 0xff;
  buffer[index++] = (dec.low.high_ >> 24) & 0xff;

  // Encode the high 64 bits of the decimal
  // Encode low bits
  buffer[index++] = dec.high.low_ & 0xff;
  buffer[index++] = (dec.high.low_ >> 8) & 0xff;
  buffer[index++] = (dec.high.low_ >> 16) & 0xff;
  buffer[index++] = (dec.high.low_ >> 24) & 0xff;
  // Encode high bits
  buffer[index++] = dec.high.high_ & 0xff;
  buffer[index++] = (dec.high.high_ >> 8) & 0xff;
  buffer[index++] = (dec.high.high_ >> 16) & 0xff;
  buffer[index++] = (dec.high.high_ >> 24) & 0xff;

  // Return the new Decimal128
  return new Decimal128(buffer);
};

// Extract least significant 5 bits
var COMBINATION_MASK = 0x1f;
// Extract least significant 14 bits
var EXPONENT_MASK = 0x3fff;
// Value of combination field for Inf
var COMBINATION_INFINITY = 30;
// Value of combination field for NaN
var COMBINATION_NAN = 31;
// Value of combination field for NaN
// var COMBINATION_SNAN = 32;
// decimal128 exponent bias
EXPONENT_BIAS = 6176;

/**
 * Create a string representation of the raw Decimal128 value
 *
 * @method
 * @return {string} returns a Decimal128 string representation.
 */
Decimal128.prototype.toString = function() {
  // Note: bits in this routine are referred to starting at 0,
  // from the sign bit, towards the coefficient.

  // bits 0 - 31
  var high;
  // bits 32 - 63
  var midh;
  // bits 64 - 95
  var midl;
  // bits 96 - 127
  var low;
  // bits 1 - 5
  var combination;
  // decoded biased exponent (14 bits)
  var biased_exponent;
  // the number of significand digits
  var significand_digits = 0;
  // the base-10 digits in the significand
  var significand = new Array(36);
  for (var i = 0; i < significand.length; i++) significand[i] = 0;
  // read pointer into significand
  var index = 0;

  // unbiased exponent
  var exponent;
  // the exponent if scientific notation is used
  var scientific_exponent;

  // true if the number is zero
  var is_zero = false;

  // the most signifcant significand bits (50-46)
  var significand_msb;
  // temporary storage for significand decoding
  var significand128 = { parts: new Array(4) };
  // indexing variables
  i;
  var j, k;

  // Output string
  var string = [];

  // Unpack index
  index = 0;

  // Buffer reference
  var buffer = this.bytes;

  // Unpack the low 64bits into a long
  low =
    buffer[index++] | (buffer[index++] << 8) | (buffer[index++] << 16) | (buffer[index++] << 24);
  midl =
    buffer[index++] | (buffer[index++] << 8) | (buffer[index++] << 16) | (buffer[index++] << 24);

  // Unpack the high 64bits into a long
  midh =
    buffer[index++] | (buffer[index++] << 8) | (buffer[index++] << 16) | (buffer[index++] << 24);
  high =
    buffer[index++] | (buffer[index++] << 8) | (buffer[index++] << 16) | (buffer[index++] << 24);

  // Unpack index
  index = 0;

  // Create the state of the decimal
  var dec = {
    low: new Long(low, midl),
    high: new Long(midh, high)
  };

  if (dec.high.lessThan(Long.ZERO)) {
    string.push('-');
  }

  // Decode combination field and exponent
  combination = (high >> 26) & COMBINATION_MASK;

  if (combination >> 3 === 3) {
    // Check for 'special' values
    if (combination === COMBINATION_INFINITY) {
      return string.join('') + 'Infinity';
    } else if (combination === COMBINATION_NAN) {
      return 'NaN';
    } else {
      biased_exponent = (high >> 15) & EXPONENT_MASK;
      significand_msb = 0x08 + ((high >> 14) & 0x01);
    }
  } else {
    significand_msb = (high >> 14) & 0x07;
    biased_exponent = (high >> 17) & EXPONENT_MASK;
  }

  exponent = biased_exponent - EXPONENT_BIAS;

  // Create string of significand digits

  // Convert the 114-bit binary number represented by
  // (significand_high, significand_low) to at most 34 decimal
  // digits through modulo and division.
  significand128.parts[0] = (high & 0x3fff) + ((significand_msb & 0xf) << 14);
  significand128.parts[1] = midh;
  significand128.parts[2] = midl;
  significand128.parts[3] = low;

  if (
    significand128.parts[0] === 0 &&
    significand128.parts[1] === 0 &&
    significand128.parts[2] === 0 &&
    significand128.parts[3] === 0
  ) {
    is_zero = true;
  } else {
    for (k = 3; k >= 0; k--) {
      var least_digits = 0;
      // Peform the divide
      var result = divideu128(significand128);
      significand128 = result.quotient;
      least_digits = result.rem.low_;

      // We now have the 9 least significant digits (in base 2).
      // Convert and output to string.
      if (!least_digits) continue;

      for (j = 8; j >= 0; j--) {
        // significand[k * 9 + j] = Math.round(least_digits % 10);
        significand[k * 9 + j] = least_digits % 10;
        // least_digits = Math.round(least_digits / 10);
        least_digits = Math.floor(least_digits / 10);
      }
    }
  }

  // Output format options:
  // Scientific - [-]d.dddE(+/-)dd or [-]dE(+/-)dd
  // Regular    - ddd.ddd

  if (is_zero) {
    significand_digits = 1;
    significand[index] = 0;
  } else {
    significand_digits = 36;
    i = 0;

    while (!significand[index]) {
      i++;
      significand_digits = significand_digits - 1;
      index = index + 1;
    }
  }

  scientific_exponent = significand_digits - 1 + exponent;

  // The scientific exponent checks are dictated by the string conversion
  // specification and are somewhat arbitrary cutoffs.
  //
  // We must check exponent > 0, because if this is the case, the number
  // has trailing zeros.  However, we *cannot* output these trailing zeros,
  // because doing so would change the precision of the value, and would
  // change stored data if the string converted number is round tripped.

  if (scientific_exponent >= 34 || scientific_exponent <= -7 || exponent > 0) {
    // Scientific format
    string.push(significand[index++]);
    significand_digits = significand_digits - 1;

    if (significand_digits) {
      string.push('.');
    }

    for (i = 0; i < significand_digits; i++) {
      string.push(significand[index++]);
    }

    // Exponent
    string.push('E');
    if (scientific_exponent > 0) {
      string.push('+' + scientific_exponent);
    } else {
      string.push(scientific_exponent);
    }
  } else {
    // Regular format with no decimal place
    if (exponent >= 0) {
      for (i = 0; i < significand_digits; i++) {
        string.push(significand[index++]);
      }
    } else {
      var radix_position = significand_digits + exponent;

      // non-zero digits before radix
      if (radix_position > 0) {
        for (i = 0; i < radix_position; i++) {
          string.push(significand[index++]);
        }
      } else {
        string.push('0');
      }

      string.push('.');
      // add leading zeros after radix
      while (radix_position++ < 0) {
        string.push('0');
      }

      for (i = 0; i < significand_digits - Math.max(radix_position - 1, 0); i++) {
        string.push(significand[index++]);
      }
    }
  }

  return string.join('');
};

Decimal128.prototype.toJSON = function() {
  return { $numberDecimal: this.toString() };
};

module.exports = Decimal128;
module.exports.Decimal128 = Decimal128;