data augmentated and size/rotate experiment : because output looks folded
Showing
20 changed files
with
1414 additions
and
572 deletions
... | @@ -33,12 +33,27 @@ | ... | @@ -33,12 +33,27 @@ |
33 | " image_channels = 3\n", | 33 | " image_channels = 3\n", |
34 | " self.data_files = data_files\n", | 34 | " self.data_files = data_files\n", |
35 | " self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n", | 35 | " self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n", |
36 | + " \n", | ||
37 | + " def get_image(iself,image_path, width, height, mode):\n", | ||
38 | + " image = Image.open(image_path)\n", | ||
39 | + " image = image.resize((width,height))\n", | ||
40 | + " return np.array(image)\n", | ||
41 | + "\n", | ||
42 | + "\n", | ||
43 | + " def get_batch(self,image_files, width, height, mode):\n", | ||
44 | + " data_batch = np.array(\n", | ||
45 | + " [self.get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)\n", | ||
46 | + " \n", | ||
47 | + " # Make sure the images are in 4 dimensions\n", | ||
48 | + " if len(data_batch.shape) < 4:\n", | ||
49 | + " data_batch = data_batch.reshape(data_batch.shape + (1,))\n", | ||
50 | + " return data_batch\n", | ||
36 | "\n", | 51 | "\n", |
37 | " def get_batches(self, batch_size):\n", | 52 | " def get_batches(self, batch_size):\n", |
38 | " IMAGE_MAX_VALUE = 255\n", | 53 | " IMAGE_MAX_VALUE = 255\n", |
39 | " current_index = 0\n", | 54 | " current_index = 0\n", |
40 | " while current_index + batch_size <= self.shape[0]:\n", | 55 | " while current_index + batch_size <= self.shape[0]:\n", |
41 | - " data_batch = get_batch(\n", | 56 | + " data_batch = self.get_batch(\n", |
42 | " self.data_files[current_index:current_index + batch_size],\n", | 57 | " self.data_files[current_index:current_index + batch_size],\n", |
43 | " self.shape[1],self.shape[2],\n", | 58 | " self.shape[1],self.shape[2],\n", |
44 | " self.image_mode)\n", | 59 | " self.image_mode)\n", |
... | @@ -219,10 +234,14 @@ | ... | @@ -219,10 +234,14 @@ |
219 | " saver = tf.train.Saver()\n", | 234 | " saver = tf.train.Saver()\n", |
220 | " sess.run(tf.global_variables_initializer())\n", | 235 | " sess.run(tf.global_variables_initializer())\n", |
221 | " \n", | 236 | " \n", |
222 | - " # continue training\n", | 237 | + " # continue training\n", |
223 | " save_path = saver.save(sess, \"/tmp/model.ckpt\")\n", | 238 | " save_path = saver.save(sess, \"/tmp/model.ckpt\")\n", |
224 | " ckpt = tf.train.latest_checkpoint('./model/')\n", | 239 | " ckpt = tf.train.latest_checkpoint('./model/')\n", |
225 | " saver.restore(sess, save_path)\n", | 240 | " saver.restore(sess, save_path)\n", |
241 | + " \n", | ||
242 | + " #newsaver = tf.train.import_meta_graph('./model/70.meta')\n", | ||
243 | + " #newsaver.restore(sess, tf.train.latest_checkpoint('./model/'))\n", | ||
244 | + " \n", | ||
226 | " coord = tf.train.Coordinator()\n", | 245 | " coord = tf.train.Coordinator()\n", |
227 | " threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n", | 246 | " threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n", |
228 | "\n", | 247 | "\n", |
... | @@ -280,36 +299,388 @@ | ... | @@ -280,36 +299,388 @@ |
280 | "name": "stdout", | 299 | "name": "stdout", |
281 | "output_type": "stream", | 300 | "output_type": "stream", |
282 | "text": [ | 301 | "text": [ |
283 | - "140\n", | 302 | + "5004\n", |
303 | + "(?, 4, 4, 1024)\n", | ||
304 | + "(?, 6, 6, 512)\n", | ||
305 | + "(?, 12, 12, 256)\n", | ||
306 | + "(?, 25, 25, 3)\n", | ||
307 | + "INFO:tensorflow:Restoring parameters from /tmp/model.ckpt\n", | ||
308 | + "Epoch 1/200 Step 10... Discriminator Loss: 0.7986... Generator Loss: 2.7782\n", | ||
309 | + "(?, 4, 4, 1024)\n", | ||
310 | + "(?, 6, 6, 512)\n", | ||
311 | + "(?, 12, 12, 256)\n", | ||
312 | + "(?, 25, 25, 3)\n", | ||
313 | + "Epoch 2/200 Step 20... Discriminator Loss: 0.7019... Generator Loss: 1.2096\n", | ||
314 | + "(?, 4, 4, 1024)\n", | ||
315 | + "(?, 6, 6, 512)\n", | ||
316 | + "(?, 12, 12, 256)\n", | ||
317 | + "(?, 25, 25, 3)\n", | ||
318 | + "Epoch 2/200 Step 30... Discriminator Loss: 0.6407... Generator Loss: 1.7675\n", | ||
319 | + "(?, 4, 4, 1024)\n", | ||
320 | + "(?, 6, 6, 512)\n", | ||
321 | + "(?, 12, 12, 256)\n", | ||
322 | + "(?, 25, 25, 3)\n", | ||
323 | + "Epoch 3/200 Step 40... Discriminator Loss: 0.9732... Generator Loss: 0.9018\n", | ||
324 | + "(?, 4, 4, 1024)\n", | ||
325 | + "(?, 6, 6, 512)\n", | ||
326 | + "(?, 12, 12, 256)\n", | ||
327 | + "(?, 25, 25, 3)\n", | ||
328 | + "Epoch 3/200 Step 50... Discriminator Loss: 1.2455... Generator Loss: 2.2003\n", | ||
329 | + "(?, 4, 4, 1024)\n", | ||
330 | + "(?, 6, 6, 512)\n", | ||
331 | + "(?, 12, 12, 256)\n", | ||
332 | + "(?, 25, 25, 3)\n", | ||
333 | + "Epoch 4/200 Step 60... Discriminator Loss: 0.9650... Generator Loss: 1.1981\n", | ||
334 | + "(?, 4, 4, 1024)\n", | ||
335 | + "(?, 6, 6, 512)\n", | ||
336 | + "(?, 12, 12, 256)\n", | ||
337 | + "(?, 25, 25, 3)\n", | ||
338 | + "Epoch 4/200 Step 70... Discriminator Loss: 0.9376... Generator Loss: 1.6022\n", | ||
339 | + "(?, 4, 4, 1024)\n", | ||
340 | + "(?, 6, 6, 512)\n", | ||
341 | + "(?, 12, 12, 256)\n", | ||
342 | + "(?, 25, 25, 3)\n", | ||
343 | + "Epoch 5/200 Step 80... Discriminator Loss: 0.9873... Generator Loss: 0.9408\n", | ||
344 | + "(?, 4, 4, 1024)\n", | ||
345 | + "(?, 6, 6, 512)\n", | ||
346 | + "(?, 12, 12, 256)\n", | ||
347 | + "(?, 25, 25, 3)\n", | ||
348 | + "Epoch 5/200 Step 90... Discriminator Loss: 1.1370... Generator Loss: 2.2449\n", | ||
349 | + "(?, 4, 4, 1024)\n", | ||
350 | + "(?, 6, 6, 512)\n", | ||
351 | + "(?, 12, 12, 256)\n", | ||
352 | + "(?, 25, 25, 3)\n", | ||
353 | + "Epoch 6/200 Step 100... Discriminator Loss: 0.9307... Generator Loss: 1.1019\n", | ||
354 | + "(?, 4, 4, 1024)\n", | ||
355 | + "(?, 6, 6, 512)\n", | ||
356 | + "(?, 12, 12, 256)\n", | ||
357 | + "(?, 25, 25, 3)\n", | ||
358 | + "Epoch 6/200 Step 110... Discriminator Loss: 0.9045... Generator Loss: 1.3023\n", | ||
359 | + "(?, 4, 4, 1024)\n", | ||
360 | + "(?, 6, 6, 512)\n", | ||
361 | + "(?, 12, 12, 256)\n", | ||
362 | + "(?, 25, 25, 3)\n", | ||
363 | + "Epoch 7/200 Step 120... Discriminator Loss: 1.4306... Generator Loss: 3.0811\n", | ||
364 | + "(?, 4, 4, 1024)\n", | ||
365 | + "(?, 6, 6, 512)\n", | ||
366 | + "(?, 12, 12, 256)\n", | ||
367 | + "(?, 25, 25, 3)\n", | ||
368 | + "Epoch 7/200 Step 130... Discriminator Loss: 0.8306... Generator Loss: 1.4418\n", | ||
369 | + "(?, 4, 4, 1024)\n", | ||
370 | + "(?, 6, 6, 512)\n", | ||
371 | + "(?, 12, 12, 256)\n", | ||
372 | + "(?, 25, 25, 3)\n", | ||
373 | + "Epoch 8/200 Step 140... Discriminator Loss: 1.0130... Generator Loss: 0.9772\n", | ||
374 | + "(?, 4, 4, 1024)\n", | ||
375 | + "(?, 6, 6, 512)\n", | ||
376 | + "(?, 12, 12, 256)\n", | ||
377 | + "(?, 25, 25, 3)\n", | ||
378 | + "Epoch 8/200 Step 150... Discriminator Loss: 1.1253... Generator Loss: 2.7651\n", | ||
379 | + "(?, 4, 4, 1024)\n", | ||
380 | + "(?, 6, 6, 512)\n", | ||
381 | + "(?, 12, 12, 256)\n", | ||
382 | + "(?, 25, 25, 3)\n", | ||
383 | + "Epoch 9/200 Step 160... Discriminator Loss: 1.2028... Generator Loss: 0.5614\n", | ||
384 | + "(?, 4, 4, 1024)\n", | ||
385 | + "(?, 6, 6, 512)\n", | ||
386 | + "(?, 12, 12, 256)\n", | ||
387 | + "(?, 25, 25, 3)\n", | ||
388 | + "Epoch 9/200 Step 170... Discriminator Loss: 1.1864... Generator Loss: 0.6131\n", | ||
389 | + "(?, 4, 4, 1024)\n", | ||
390 | + "(?, 6, 6, 512)\n", | ||
391 | + "(?, 12, 12, 256)\n", | ||
392 | + "(?, 25, 25, 3)\n", | ||
393 | + "Epoch 10/200 Step 180... Discriminator Loss: 0.8613... Generator Loss: 1.1399\n", | ||
394 | + "(?, 4, 4, 1024)\n", | ||
395 | + "(?, 6, 6, 512)\n", | ||
396 | + "(?, 12, 12, 256)\n", | ||
397 | + "(?, 25, 25, 3)\n", | ||
398 | + "Epoch 10/200 Step 190... Discriminator Loss: 0.7570... Generator Loss: 1.9568\n", | ||
399 | + "(?, 4, 4, 1024)\n", | ||
400 | + "(?, 6, 6, 512)\n", | ||
401 | + "(?, 12, 12, 256)\n", | ||
402 | + "(?, 25, 25, 3)\n", | ||
403 | + "Epoch 11/200 Step 200... Discriminator Loss: 0.8872... Generator Loss: 1.3420\n", | ||
404 | + "(?, 4, 4, 1024)\n", | ||
405 | + "(?, 6, 6, 512)\n", | ||
406 | + "(?, 12, 12, 256)\n", | ||
407 | + "(?, 25, 25, 3)\n", | ||
408 | + "Epoch 12/200 Step 210... Discriminator Loss: 0.7758... Generator Loss: 1.3705\n", | ||
409 | + "(?, 4, 4, 1024)\n", | ||
410 | + "(?, 6, 6, 512)\n", | ||
411 | + "(?, 12, 12, 256)\n", | ||
412 | + "(?, 25, 25, 3)\n", | ||
413 | + "Epoch 12/200 Step 220... Discriminator Loss: 0.9375... Generator Loss: 2.3697\n", | ||
414 | + "(?, 4, 4, 1024)\n", | ||
415 | + "(?, 6, 6, 512)\n", | ||
416 | + "(?, 12, 12, 256)\n", | ||
417 | + "(?, 25, 25, 3)\n", | ||
418 | + "Epoch 13/200 Step 230... Discriminator Loss: 1.0274... Generator Loss: 2.6057\n", | ||
419 | + "(?, 4, 4, 1024)\n", | ||
420 | + "(?, 6, 6, 512)\n", | ||
421 | + "(?, 12, 12, 256)\n", | ||
422 | + "(?, 25, 25, 3)\n", | ||
423 | + "Epoch 13/200 Step 240... Discriminator Loss: 0.8219... Generator Loss: 1.2095\n", | ||
424 | + "(?, 4, 4, 1024)\n", | ||
425 | + "(?, 6, 6, 512)\n", | ||
426 | + "(?, 12, 12, 256)\n", | ||
427 | + "(?, 25, 25, 3)\n", | ||
428 | + "Epoch 14/200 Step 250... Discriminator Loss: 0.8607... Generator Loss: 1.8890\n", | ||
429 | + "(?, 4, 4, 1024)\n", | ||
430 | + "(?, 6, 6, 512)\n", | ||
431 | + "(?, 12, 12, 256)\n", | ||
432 | + "(?, 25, 25, 3)\n", | ||
433 | + "Epoch 14/200 Step 260... Discriminator Loss: 0.8661... Generator Loss: 1.4806\n", | ||
434 | + "(?, 4, 4, 1024)\n", | ||
435 | + "(?, 6, 6, 512)\n", | ||
436 | + "(?, 12, 12, 256)\n", | ||
437 | + "(?, 25, 25, 3)\n", | ||
438 | + "Epoch 15/200 Step 270... Discriminator Loss: 0.8005... Generator Loss: 1.6766\n", | ||
439 | + "(?, 4, 4, 1024)\n", | ||
440 | + "(?, 6, 6, 512)\n", | ||
441 | + "(?, 12, 12, 256)\n", | ||
442 | + "(?, 25, 25, 3)\n", | ||
443 | + "Epoch 15/200 Step 280... Discriminator Loss: 0.8658... Generator Loss: 1.6609\n", | ||
444 | + "(?, 4, 4, 1024)\n", | ||
445 | + "(?, 6, 6, 512)\n", | ||
446 | + "(?, 12, 12, 256)\n", | ||
447 | + "(?, 25, 25, 3)\n", | ||
448 | + "Epoch 16/200 Step 290... Discriminator Loss: 1.3357... Generator Loss: 0.5010\n", | ||
449 | + "(?, 4, 4, 1024)\n", | ||
450 | + "(?, 6, 6, 512)\n", | ||
451 | + "(?, 12, 12, 256)\n", | ||
452 | + "(?, 25, 25, 3)\n", | ||
453 | + "Epoch 16/200 Step 300... Discriminator Loss: 0.8518... Generator Loss: 1.4408\n", | ||
454 | + "(?, 4, 4, 1024)\n", | ||
455 | + "(?, 6, 6, 512)\n", | ||
456 | + "(?, 12, 12, 256)\n", | ||
457 | + "(?, 25, 25, 3)\n", | ||
458 | + "Epoch 17/200 Step 310... Discriminator Loss: 0.9052... Generator Loss: 1.2558\n", | ||
459 | + "(?, 4, 4, 1024)\n", | ||
460 | + "(?, 6, 6, 512)\n", | ||
461 | + "(?, 12, 12, 256)\n", | ||
462 | + "(?, 25, 25, 3)\n", | ||
463 | + "Epoch 17/200 Step 320... Discriminator Loss: 0.9011... Generator Loss: 1.2468\n", | ||
464 | + "(?, 4, 4, 1024)\n", | ||
465 | + "(?, 6, 6, 512)\n", | ||
466 | + "(?, 12, 12, 256)\n", | ||
467 | + "(?, 25, 25, 3)\n", | ||
468 | + "Epoch 18/200 Step 330... Discriminator Loss: 0.9880... Generator Loss: 0.8800\n", | ||
469 | + "(?, 4, 4, 1024)\n", | ||
470 | + "(?, 6, 6, 512)\n", | ||
471 | + "(?, 12, 12, 256)\n", | ||
472 | + "(?, 25, 25, 3)\n", | ||
473 | + "Epoch 18/200 Step 340... Discriminator Loss: 0.9066... Generator Loss: 2.0460\n", | ||
474 | + "(?, 4, 4, 1024)\n", | ||
475 | + "(?, 6, 6, 512)\n", | ||
476 | + "(?, 12, 12, 256)\n", | ||
477 | + "(?, 25, 25, 3)\n", | ||
478 | + "Epoch 19/200 Step 350... Discriminator Loss: 0.9169... Generator Loss: 1.7369\n", | ||
479 | + "(?, 4, 4, 1024)\n", | ||
480 | + "(?, 6, 6, 512)\n", | ||
481 | + "(?, 12, 12, 256)\n", | ||
482 | + "(?, 25, 25, 3)\n", | ||
483 | + "Epoch 19/200 Step 360... Discriminator Loss: 0.9111... Generator Loss: 1.5251\n", | ||
484 | + "(?, 4, 4, 1024)\n", | ||
485 | + "(?, 6, 6, 512)\n", | ||
486 | + "(?, 12, 12, 256)\n", | ||
487 | + "(?, 25, 25, 3)\n", | ||
488 | + "Epoch 20/200 Step 370... Discriminator Loss: 0.9466... Generator Loss: 1.0476\n", | ||
489 | + "(?, 4, 4, 1024)\n", | ||
490 | + "(?, 6, 6, 512)\n", | ||
491 | + "(?, 12, 12, 256)\n", | ||
492 | + "(?, 25, 25, 3)\n", | ||
493 | + "Epoch 20/200 Step 380... Discriminator Loss: 1.0600... Generator Loss: 1.6264\n", | ||
494 | + "(?, 4, 4, 1024)\n", | ||
495 | + "(?, 6, 6, 512)\n", | ||
496 | + "(?, 12, 12, 256)\n", | ||
497 | + "(?, 25, 25, 3)\n", | ||
498 | + "Epoch 21/200 Step 390... Discriminator Loss: 1.1503... Generator Loss: 0.9095\n", | ||
499 | + "(?, 4, 4, 1024)\n", | ||
500 | + "(?, 6, 6, 512)\n", | ||
501 | + "(?, 12, 12, 256)\n", | ||
502 | + "(?, 25, 25, 3)\n", | ||
503 | + "Epoch 22/200 Step 400... Discriminator Loss: 1.1989... Generator Loss: 1.2204\n", | ||
504 | + "(?, 4, 4, 1024)\n", | ||
505 | + "(?, 6, 6, 512)\n", | ||
506 | + "(?, 12, 12, 256)\n", | ||
507 | + "(?, 25, 25, 3)\n", | ||
508 | + "Epoch 22/200 Step 410... Discriminator Loss: 1.1530... Generator Loss: 0.8920\n", | ||
509 | + "(?, 4, 4, 1024)\n", | ||
510 | + "(?, 6, 6, 512)\n", | ||
511 | + "(?, 12, 12, 256)\n", | ||
512 | + "(?, 25, 25, 3)\n", | ||
513 | + "Epoch 23/200 Step 420... Discriminator Loss: 1.2206... Generator Loss: 0.8665\n", | ||
514 | + "(?, 4, 4, 1024)\n", | ||
515 | + "(?, 6, 6, 512)\n", | ||
516 | + "(?, 12, 12, 256)\n", | ||
517 | + "(?, 25, 25, 3)\n", | ||
518 | + "Epoch 23/200 Step 430... Discriminator Loss: 1.1357... Generator Loss: 1.0771\n", | ||
519 | + "(?, 4, 4, 1024)\n", | ||
520 | + "(?, 6, 6, 512)\n", | ||
521 | + "(?, 12, 12, 256)\n", | ||
522 | + "(?, 25, 25, 3)\n", | ||
523 | + "Epoch 24/200 Step 440... Discriminator Loss: 1.5018... Generator Loss: 0.4140\n", | ||
524 | + "(?, 4, 4, 1024)\n", | ||
525 | + "(?, 6, 6, 512)\n", | ||
526 | + "(?, 12, 12, 256)\n", | ||
527 | + "(?, 25, 25, 3)\n", | ||
528 | + "Epoch 24/200 Step 450... Discriminator Loss: 1.1407... Generator Loss: 0.9182\n", | ||
529 | + "(?, 4, 4, 1024)\n", | ||
530 | + "(?, 6, 6, 512)\n", | ||
531 | + "(?, 12, 12, 256)\n", | ||
532 | + "(?, 25, 25, 3)\n", | ||
533 | + "Epoch 25/200 Step 460... Discriminator Loss: 1.1208... Generator Loss: 1.0497\n", | ||
534 | + "(?, 4, 4, 1024)\n", | ||
535 | + "(?, 6, 6, 512)\n", | ||
536 | + "(?, 12, 12, 256)\n", | ||
537 | + "(?, 25, 25, 3)\n", | ||
538 | + "Epoch 25/200 Step 470... Discriminator Loss: 1.2283... Generator Loss: 1.3409\n", | ||
539 | + "(?, 4, 4, 1024)\n", | ||
540 | + "(?, 6, 6, 512)\n", | ||
541 | + "(?, 12, 12, 256)\n", | ||
542 | + "(?, 25, 25, 3)\n", | ||
543 | + "Epoch 26/200 Step 480... Discriminator Loss: 1.1401... Generator Loss: 0.8807\n", | ||
544 | + "(?, 4, 4, 1024)\n", | ||
545 | + "(?, 6, 6, 512)\n", | ||
546 | + "(?, 12, 12, 256)\n", | ||
547 | + "(?, 25, 25, 3)\n", | ||
548 | + "Epoch 26/200 Step 490... Discriminator Loss: 1.1839... Generator Loss: 0.7198\n", | ||
549 | + "(?, 4, 4, 1024)\n", | ||
550 | + "(?, 6, 6, 512)\n", | ||
551 | + "(?, 12, 12, 256)\n", | ||
552 | + "(?, 25, 25, 3)\n", | ||
553 | + "Epoch 27/200 Step 500... Discriminator Loss: 1.5919... Generator Loss: 0.3560\n", | ||
554 | + "(?, 4, 4, 1024)\n", | ||
555 | + "(?, 6, 6, 512)\n", | ||
556 | + "(?, 12, 12, 256)\n", | ||
557 | + "(?, 25, 25, 3)\n", | ||
558 | + "Epoch 27/200 Step 510... Discriminator Loss: 1.2166... Generator Loss: 1.4234\n", | ||
559 | + "(?, 4, 4, 1024)\n", | ||
560 | + "(?, 6, 6, 512)\n", | ||
561 | + "(?, 12, 12, 256)\n", | ||
562 | + "(?, 25, 25, 3)\n", | ||
563 | + "Epoch 28/200 Step 520... Discriminator Loss: 1.1838... Generator Loss: 1.2357\n", | ||
564 | + "(?, 4, 4, 1024)\n", | ||
565 | + "(?, 6, 6, 512)\n", | ||
566 | + "(?, 12, 12, 256)\n", | ||
567 | + "(?, 25, 25, 3)\n", | ||
568 | + "Epoch 28/200 Step 530... Discriminator Loss: 1.2062... Generator Loss: 1.4508\n", | ||
569 | + "(?, 4, 4, 1024)\n", | ||
570 | + "(?, 6, 6, 512)\n", | ||
571 | + "(?, 12, 12, 256)\n", | ||
572 | + "(?, 25, 25, 3)\n", | ||
573 | + "Epoch 29/200 Step 540... Discriminator Loss: 1.2600... Generator Loss: 1.5470\n", | ||
574 | + "(?, 4, 4, 1024)\n", | ||
575 | + "(?, 6, 6, 512)\n", | ||
576 | + "(?, 12, 12, 256)\n", | ||
577 | + "(?, 25, 25, 3)\n", | ||
578 | + "Epoch 29/200 Step 550... Discriminator Loss: 1.1592... Generator Loss: 0.9399\n", | ||
579 | + "(?, 4, 4, 1024)\n", | ||
580 | + "(?, 6, 6, 512)\n", | ||
581 | + "(?, 12, 12, 256)\n", | ||
582 | + "(?, 25, 25, 3)\n", | ||
583 | + "Epoch 30/200 Step 560... Discriminator Loss: 1.1941... Generator Loss: 1.0776\n", | ||
584 | + "(?, 4, 4, 1024)\n", | ||
585 | + "(?, 6, 6, 512)\n", | ||
586 | + "(?, 12, 12, 256)\n", | ||
587 | + "(?, 25, 25, 3)\n", | ||
588 | + "Epoch 30/200 Step 570... Discriminator Loss: 1.5479... Generator Loss: 2.1296\n", | ||
589 | + "(?, 4, 4, 1024)\n", | ||
590 | + "(?, 6, 6, 512)\n", | ||
591 | + "(?, 12, 12, 256)\n", | ||
592 | + "(?, 25, 25, 3)\n", | ||
593 | + "Epoch 31/200 Step 580... Discriminator Loss: 1.3233... Generator Loss: 0.8222\n", | ||
594 | + "(?, 4, 4, 1024)\n", | ||
595 | + "(?, 6, 6, 512)\n", | ||
596 | + "(?, 12, 12, 256)\n", | ||
597 | + "(?, 25, 25, 3)\n" | ||
598 | + ] | ||
599 | + }, | ||
600 | + { | ||
601 | + "name": "stdout", | ||
602 | + "output_type": "stream", | ||
603 | + "text": [ | ||
604 | + "Epoch 32/200 Step 590... Discriminator Loss: 1.1821... Generator Loss: 0.9809\n", | ||
284 | "(?, 4, 4, 1024)\n", | 605 | "(?, 4, 4, 1024)\n", |
285 | "(?, 6, 6, 512)\n", | 606 | "(?, 6, 6, 512)\n", |
286 | "(?, 12, 12, 256)\n", | 607 | "(?, 12, 12, 256)\n", |
287 | "(?, 25, 25, 3)\n", | 608 | "(?, 25, 25, 3)\n", |
288 | - "INFO:tensorflow:Restoring parameters from /tmp/model.ckpt\n" | 609 | + "Epoch 32/200 Step 600... Discriminator Loss: 1.1763... Generator Loss: 0.7344\n", |
610 | + "(?, 4, 4, 1024)\n", | ||
611 | + "(?, 6, 6, 512)\n", | ||
612 | + "(?, 12, 12, 256)\n", | ||
613 | + "(?, 25, 25, 3)\n", | ||
614 | + "Epoch 33/200 Step 610... Discriminator Loss: 1.1730... Generator Loss: 1.3747\n", | ||
615 | + "(?, 4, 4, 1024)\n", | ||
616 | + "(?, 6, 6, 512)\n", | ||
617 | + "(?, 12, 12, 256)\n", | ||
618 | + "(?, 25, 25, 3)\n", | ||
619 | + "Epoch 33/200 Step 620... Discriminator Loss: 1.5791... Generator Loss: 0.3566\n", | ||
620 | + "(?, 4, 4, 1024)\n", | ||
621 | + "(?, 6, 6, 512)\n", | ||
622 | + "(?, 12, 12, 256)\n", | ||
623 | + "(?, 25, 25, 3)\n", | ||
624 | + "Epoch 34/200 Step 630... Discriminator Loss: 1.4445... Generator Loss: 0.4481\n", | ||
625 | + "(?, 4, 4, 1024)\n", | ||
626 | + "(?, 6, 6, 512)\n", | ||
627 | + "(?, 12, 12, 256)\n", | ||
628 | + "(?, 25, 25, 3)\n", | ||
629 | + "Epoch 34/200 Step 640... Discriminator Loss: 1.1244... Generator Loss: 1.1338\n", | ||
630 | + "(?, 4, 4, 1024)\n", | ||
631 | + "(?, 6, 6, 512)\n", | ||
632 | + "(?, 12, 12, 256)\n", | ||
633 | + "(?, 25, 25, 3)\n", | ||
634 | + "Epoch 35/200 Step 650... Discriminator Loss: 1.1750... Generator Loss: 0.9281\n", | ||
635 | + "(?, 4, 4, 1024)\n", | ||
636 | + "(?, 6, 6, 512)\n", | ||
637 | + "(?, 12, 12, 256)\n", | ||
638 | + "(?, 25, 25, 3)\n", | ||
639 | + "Epoch 35/200 Step 660... Discriminator Loss: 1.2072... Generator Loss: 1.1870\n", | ||
640 | + "(?, 4, 4, 1024)\n", | ||
641 | + "(?, 6, 6, 512)\n", | ||
642 | + "(?, 12, 12, 256)\n", | ||
643 | + "(?, 25, 25, 3)\n", | ||
644 | + "Epoch 36/200 Step 670... Discriminator Loss: 1.2960... Generator Loss: 0.5793\n", | ||
645 | + "(?, 4, 4, 1024)\n", | ||
646 | + "(?, 6, 6, 512)\n", | ||
647 | + "(?, 12, 12, 256)\n", | ||
648 | + "(?, 25, 25, 3)\n", | ||
649 | + "Epoch 36/200 Step 680... Discriminator Loss: 1.1635... Generator Loss: 1.0436\n", | ||
650 | + "(?, 4, 4, 1024)\n", | ||
651 | + "(?, 6, 6, 512)\n", | ||
652 | + "(?, 12, 12, 256)\n", | ||
653 | + "(?, 25, 25, 3)\n" | ||
289 | ] | 654 | ] |
290 | }, | 655 | }, |
291 | { | 656 | { |
292 | - "ename": "FileExistsError", | 657 | + "ename": "KeyboardInterrupt", |
293 | - "evalue": "[Errno 17] File exists: 'output'", | 658 | + "evalue": "", |
294 | "output_type": "error", | 659 | "output_type": "error", |
295 | "traceback": [ | 660 | "traceback": [ |
296 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | 661 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
297 | - "\u001b[0;31mFileExistsError\u001b[0m Traceback (most recent call last)", | 662 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
298 | - "\u001b[0;32m<ipython-input-10-3cf64f8b526a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mceleba_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./motionpatch/*.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz_dim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbeta1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | 663 | + "\u001b[0;32m<ipython-input-10-bbe3447e21dd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mceleba_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./smallone/*.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz_dim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbeta1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
299 | - "\u001b[0;32m<ipython-input-8-4eafe8fdaf6d>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every, show_every)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mthreads\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_queue_runners\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msess\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msess\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoord\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoord\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;31m#sess.run(tf.global_variables_initializer())\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmkdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'output'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 28\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mepoch_i\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch_count\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbatch_images\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mget_batches\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 664 | + "\u001b[0;32m<ipython-input-8-2e8656e87584>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every, show_every)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;31m# Run optimizers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md_train_opt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0minput_real\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_images\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_z\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_z\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mg_train_opt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0minput_z\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_z\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msteps\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mprint_every\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
300 | - "\u001b[0;31mFileExistsError\u001b[0m: [Errno 17] File exists: 'output'" | 665 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 875\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 876\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 877\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 878\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 879\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
666 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1099\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1100\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1101\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1102\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
667 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1270\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1271\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[0;32m-> 1272\u001b[0;31m run_metadata)\n\u001b[0m\u001b[1;32m 1273\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1274\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
668 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1276\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1277\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1278\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1279\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1280\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
669 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1261\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_extend_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1262\u001b[0m return self._call_tf_sessionrun(\n\u001b[0;32m-> 1263\u001b[0;31m options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[1;32m 1264\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1265\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
670 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[0;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[1;32m 1348\u001b[0m return tf_session.TF_SessionRun_wrapper(\n\u001b[1;32m 1349\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1350\u001b[0;31m run_metadata)\n\u001b[0m\u001b[1;32m 1351\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1352\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_tf_sessionprun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
671 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " | ||
301 | ] | 672 | ] |
302 | } | 673 | } |
303 | ], | 674 | ], |
304 | "source": [ | 675 | "source": [ |
305 | - "batch_size = 50\n", | 676 | + "batch_size = 256\n", |
306 | "z_dim = 100\n", | 677 | "z_dim = 100\n", |
307 | "learning_rate = 0.00025\n", | 678 | "learning_rate = 0.00025\n", |
308 | "beta1 = 0.45\n", | 679 | "beta1 = 0.45\n", |
309 | "\n", | 680 | "\n", |
310 | - "epochs = 500\n", | 681 | + "epochs = 200\n", |
311 | - "print(len(glob('./motionpatch/*.png')))\n", | 682 | + "print(len(glob('./smallone/*.png')))\n", |
312 | - "celeba_dataset = Dataset( glob('./motionpatch/*.png'))\n", | 683 | + "celeba_dataset = Dataset( glob('./smallone/*.png'))\n", |
313 | "with tf.Graph().as_default():\n", | 684 | "with tf.Graph().as_default():\n", |
314 | " train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode)" | 685 | " train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode)" |
315 | ] | 686 | ] | ... | ... |
1 | +{ | ||
2 | + "cells": [ | ||
3 | + { | ||
4 | + "cell_type": "code", | ||
5 | + "execution_count": 2, | ||
6 | + "metadata": {}, | ||
7 | + "outputs": [], | ||
8 | + "source": [ | ||
9 | + "import cv2\n", | ||
10 | + "from glob import glob\n", | ||
11 | + "import os \n", | ||
12 | + "\n", | ||
13 | + "motionpatch_location = './motionpatch/*.png'\n", | ||
14 | + "output_location = './smallone/'\n", | ||
15 | + "count = 0\n", | ||
16 | + "for f in glob(motionpatch_location):\n", | ||
17 | + " count += 1\n", | ||
18 | + " image = cv2.imread(f)\n", | ||
19 | + " small = cv2.resize(image,dsize=(25,25))\n", | ||
20 | + " dst = os.path.join(output_location +str(count)+\".png\")\n", | ||
21 | + " cv2.imwrite(dst,small)" | ||
22 | + ] | ||
23 | + }, | ||
24 | + { | ||
25 | + "cell_type": "code", | ||
26 | + "execution_count": null, | ||
27 | + "metadata": {}, | ||
28 | + "outputs": [], | ||
29 | + "source": [] | ||
30 | + } | ||
31 | + ], | ||
32 | + "metadata": { | ||
33 | + "kernelspec": { | ||
34 | + "display_name": "Python 3", | ||
35 | + "language": "python", | ||
36 | + "name": "python3" | ||
37 | + }, | ||
38 | + "language_info": { | ||
39 | + "codemirror_mode": { | ||
40 | + "name": "ipython", | ||
41 | + "version": 3 | ||
42 | + }, | ||
43 | + "file_extension": ".py", | ||
44 | + "mimetype": "text/x-python", | ||
45 | + "name": "python", | ||
46 | + "nbconvert_exporter": "python", | ||
47 | + "pygments_lexer": "ipython3", | ||
48 | + "version": "3.5.0" | ||
49 | + } | ||
50 | + }, | ||
51 | + "nbformat": 4, | ||
52 | + "nbformat_minor": 2 | ||
53 | +} |
... | @@ -34,7 +34,7 @@ | ... | @@ -34,7 +34,7 @@ |
34 | " self.data_files = data_files\n", | 34 | " self.data_files = data_files\n", |
35 | " self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n", | 35 | " self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n", |
36 | " \n", | 36 | " \n", |
37 | - " def get_image(iself,mage_path, width, height, mode):\n", | 37 | + " def get_image(iself,image_path, width, height, mode):\n", |
38 | " image = Image.open(image_path)\n", | 38 | " image = Image.open(image_path)\n", |
39 | " image = image.resize((width,height))\n", | 39 | " image = image.resize((width,height))\n", |
40 | " return np.array(image)\n", | 40 | " return np.array(image)\n", |
... | @@ -234,10 +234,14 @@ | ... | @@ -234,10 +234,14 @@ |
234 | " saver = tf.train.Saver()\n", | 234 | " saver = tf.train.Saver()\n", |
235 | " sess.run(tf.global_variables_initializer())\n", | 235 | " sess.run(tf.global_variables_initializer())\n", |
236 | " \n", | 236 | " \n", |
237 | - " # continue training\n", | 237 | + " # continue training\n", |
238 | " save_path = saver.save(sess, \"/tmp/model.ckpt\")\n", | 238 | " save_path = saver.save(sess, \"/tmp/model.ckpt\")\n", |
239 | " ckpt = tf.train.latest_checkpoint('./model/')\n", | 239 | " ckpt = tf.train.latest_checkpoint('./model/')\n", |
240 | " saver.restore(sess, save_path)\n", | 240 | " saver.restore(sess, save_path)\n", |
241 | + " \n", | ||
242 | + " #newsaver = tf.train.import_meta_graph('./model/70.meta')\n", | ||
243 | + " #newsaver.restore(sess, tf.train.latest_checkpoint('./model/'))\n", | ||
244 | + " \n", | ||
241 | " coord = tf.train.Coordinator()\n", | 245 | " coord = tf.train.Coordinator()\n", |
242 | " threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n", | 246 | " threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n", |
243 | "\n", | 247 | "\n", |
... | @@ -286,7 +290,7 @@ | ... | @@ -286,7 +290,7 @@ |
286 | }, | 290 | }, |
287 | { | 291 | { |
288 | "cell_type": "code", | 292 | "cell_type": "code", |
289 | - "execution_count": 9, | 293 | + "execution_count": 10, |
290 | "metadata": { | 294 | "metadata": { |
291 | "scrolled": true | 295 | "scrolled": true |
292 | }, | 296 | }, |
... | @@ -295,40 +299,388 @@ | ... | @@ -295,40 +299,388 @@ |
295 | "name": "stdout", | 299 | "name": "stdout", |
296 | "output_type": "stream", | 300 | "output_type": "stream", |
297 | "text": [ | 301 | "text": [ |
298 | - "140\n", | 302 | + "5004\n", |
303 | + "(?, 4, 4, 1024)\n", | ||
304 | + "(?, 6, 6, 512)\n", | ||
305 | + "(?, 12, 12, 256)\n", | ||
306 | + "(?, 25, 25, 3)\n", | ||
307 | + "INFO:tensorflow:Restoring parameters from /tmp/model.ckpt\n", | ||
308 | + "Epoch 1/200 Step 10... Discriminator Loss: 0.7986... Generator Loss: 2.7782\n", | ||
309 | + "(?, 4, 4, 1024)\n", | ||
310 | + "(?, 6, 6, 512)\n", | ||
311 | + "(?, 12, 12, 256)\n", | ||
312 | + "(?, 25, 25, 3)\n", | ||
313 | + "Epoch 2/200 Step 20... Discriminator Loss: 0.7019... Generator Loss: 1.2096\n", | ||
314 | + "(?, 4, 4, 1024)\n", | ||
315 | + "(?, 6, 6, 512)\n", | ||
316 | + "(?, 12, 12, 256)\n", | ||
317 | + "(?, 25, 25, 3)\n", | ||
318 | + "Epoch 2/200 Step 30... Discriminator Loss: 0.6407... Generator Loss: 1.7675\n", | ||
319 | + "(?, 4, 4, 1024)\n", | ||
320 | + "(?, 6, 6, 512)\n", | ||
321 | + "(?, 12, 12, 256)\n", | ||
322 | + "(?, 25, 25, 3)\n", | ||
323 | + "Epoch 3/200 Step 40... Discriminator Loss: 0.9732... Generator Loss: 0.9018\n", | ||
324 | + "(?, 4, 4, 1024)\n", | ||
325 | + "(?, 6, 6, 512)\n", | ||
326 | + "(?, 12, 12, 256)\n", | ||
327 | + "(?, 25, 25, 3)\n", | ||
328 | + "Epoch 3/200 Step 50... Discriminator Loss: 1.2455... Generator Loss: 2.2003\n", | ||
329 | + "(?, 4, 4, 1024)\n", | ||
330 | + "(?, 6, 6, 512)\n", | ||
331 | + "(?, 12, 12, 256)\n", | ||
332 | + "(?, 25, 25, 3)\n", | ||
333 | + "Epoch 4/200 Step 60... Discriminator Loss: 0.9650... Generator Loss: 1.1981\n", | ||
334 | + "(?, 4, 4, 1024)\n", | ||
335 | + "(?, 6, 6, 512)\n", | ||
336 | + "(?, 12, 12, 256)\n", | ||
337 | + "(?, 25, 25, 3)\n", | ||
338 | + "Epoch 4/200 Step 70... Discriminator Loss: 0.9376... Generator Loss: 1.6022\n", | ||
339 | + "(?, 4, 4, 1024)\n", | ||
340 | + "(?, 6, 6, 512)\n", | ||
341 | + "(?, 12, 12, 256)\n", | ||
342 | + "(?, 25, 25, 3)\n", | ||
343 | + "Epoch 5/200 Step 80... Discriminator Loss: 0.9873... Generator Loss: 0.9408\n", | ||
344 | + "(?, 4, 4, 1024)\n", | ||
345 | + "(?, 6, 6, 512)\n", | ||
346 | + "(?, 12, 12, 256)\n", | ||
347 | + "(?, 25, 25, 3)\n", | ||
348 | + "Epoch 5/200 Step 90... Discriminator Loss: 1.1370... Generator Loss: 2.2449\n", | ||
349 | + "(?, 4, 4, 1024)\n", | ||
350 | + "(?, 6, 6, 512)\n", | ||
351 | + "(?, 12, 12, 256)\n", | ||
352 | + "(?, 25, 25, 3)\n", | ||
353 | + "Epoch 6/200 Step 100... Discriminator Loss: 0.9307... Generator Loss: 1.1019\n", | ||
354 | + "(?, 4, 4, 1024)\n", | ||
355 | + "(?, 6, 6, 512)\n", | ||
356 | + "(?, 12, 12, 256)\n", | ||
357 | + "(?, 25, 25, 3)\n", | ||
358 | + "Epoch 6/200 Step 110... Discriminator Loss: 0.9045... Generator Loss: 1.3023\n", | ||
359 | + "(?, 4, 4, 1024)\n", | ||
360 | + "(?, 6, 6, 512)\n", | ||
361 | + "(?, 12, 12, 256)\n", | ||
362 | + "(?, 25, 25, 3)\n", | ||
363 | + "Epoch 7/200 Step 120... Discriminator Loss: 1.4306... Generator Loss: 3.0811\n", | ||
364 | + "(?, 4, 4, 1024)\n", | ||
365 | + "(?, 6, 6, 512)\n", | ||
366 | + "(?, 12, 12, 256)\n", | ||
367 | + "(?, 25, 25, 3)\n", | ||
368 | + "Epoch 7/200 Step 130... Discriminator Loss: 0.8306... Generator Loss: 1.4418\n", | ||
369 | + "(?, 4, 4, 1024)\n", | ||
370 | + "(?, 6, 6, 512)\n", | ||
371 | + "(?, 12, 12, 256)\n", | ||
372 | + "(?, 25, 25, 3)\n", | ||
373 | + "Epoch 8/200 Step 140... Discriminator Loss: 1.0130... Generator Loss: 0.9772\n", | ||
374 | + "(?, 4, 4, 1024)\n", | ||
375 | + "(?, 6, 6, 512)\n", | ||
376 | + "(?, 12, 12, 256)\n", | ||
377 | + "(?, 25, 25, 3)\n", | ||
378 | + "Epoch 8/200 Step 150... Discriminator Loss: 1.1253... Generator Loss: 2.7651\n", | ||
379 | + "(?, 4, 4, 1024)\n", | ||
380 | + "(?, 6, 6, 512)\n", | ||
381 | + "(?, 12, 12, 256)\n", | ||
382 | + "(?, 25, 25, 3)\n", | ||
383 | + "Epoch 9/200 Step 160... Discriminator Loss: 1.2028... Generator Loss: 0.5614\n", | ||
384 | + "(?, 4, 4, 1024)\n", | ||
385 | + "(?, 6, 6, 512)\n", | ||
386 | + "(?, 12, 12, 256)\n", | ||
387 | + "(?, 25, 25, 3)\n", | ||
388 | + "Epoch 9/200 Step 170... Discriminator Loss: 1.1864... Generator Loss: 0.6131\n", | ||
389 | + "(?, 4, 4, 1024)\n", | ||
390 | + "(?, 6, 6, 512)\n", | ||
391 | + "(?, 12, 12, 256)\n", | ||
392 | + "(?, 25, 25, 3)\n", | ||
393 | + "Epoch 10/200 Step 180... Discriminator Loss: 0.8613... Generator Loss: 1.1399\n", | ||
394 | + "(?, 4, 4, 1024)\n", | ||
395 | + "(?, 6, 6, 512)\n", | ||
396 | + "(?, 12, 12, 256)\n", | ||
397 | + "(?, 25, 25, 3)\n", | ||
398 | + "Epoch 10/200 Step 190... Discriminator Loss: 0.7570... Generator Loss: 1.9568\n", | ||
399 | + "(?, 4, 4, 1024)\n", | ||
400 | + "(?, 6, 6, 512)\n", | ||
401 | + "(?, 12, 12, 256)\n", | ||
402 | + "(?, 25, 25, 3)\n", | ||
403 | + "Epoch 11/200 Step 200... Discriminator Loss: 0.8872... Generator Loss: 1.3420\n", | ||
404 | + "(?, 4, 4, 1024)\n", | ||
405 | + "(?, 6, 6, 512)\n", | ||
406 | + "(?, 12, 12, 256)\n", | ||
407 | + "(?, 25, 25, 3)\n", | ||
408 | + "Epoch 12/200 Step 210... Discriminator Loss: 0.7758... Generator Loss: 1.3705\n", | ||
409 | + "(?, 4, 4, 1024)\n", | ||
410 | + "(?, 6, 6, 512)\n", | ||
411 | + "(?, 12, 12, 256)\n", | ||
412 | + "(?, 25, 25, 3)\n", | ||
413 | + "Epoch 12/200 Step 220... Discriminator Loss: 0.9375... Generator Loss: 2.3697\n", | ||
414 | + "(?, 4, 4, 1024)\n", | ||
415 | + "(?, 6, 6, 512)\n", | ||
416 | + "(?, 12, 12, 256)\n", | ||
417 | + "(?, 25, 25, 3)\n", | ||
418 | + "Epoch 13/200 Step 230... Discriminator Loss: 1.0274... Generator Loss: 2.6057\n", | ||
419 | + "(?, 4, 4, 1024)\n", | ||
420 | + "(?, 6, 6, 512)\n", | ||
421 | + "(?, 12, 12, 256)\n", | ||
422 | + "(?, 25, 25, 3)\n", | ||
423 | + "Epoch 13/200 Step 240... Discriminator Loss: 0.8219... Generator Loss: 1.2095\n", | ||
424 | + "(?, 4, 4, 1024)\n", | ||
425 | + "(?, 6, 6, 512)\n", | ||
426 | + "(?, 12, 12, 256)\n", | ||
427 | + "(?, 25, 25, 3)\n", | ||
428 | + "Epoch 14/200 Step 250... Discriminator Loss: 0.8607... Generator Loss: 1.8890\n", | ||
429 | + "(?, 4, 4, 1024)\n", | ||
430 | + "(?, 6, 6, 512)\n", | ||
431 | + "(?, 12, 12, 256)\n", | ||
432 | + "(?, 25, 25, 3)\n", | ||
433 | + "Epoch 14/200 Step 260... Discriminator Loss: 0.8661... Generator Loss: 1.4806\n", | ||
434 | + "(?, 4, 4, 1024)\n", | ||
435 | + "(?, 6, 6, 512)\n", | ||
436 | + "(?, 12, 12, 256)\n", | ||
437 | + "(?, 25, 25, 3)\n", | ||
438 | + "Epoch 15/200 Step 270... Discriminator Loss: 0.8005... Generator Loss: 1.6766\n", | ||
439 | + "(?, 4, 4, 1024)\n", | ||
440 | + "(?, 6, 6, 512)\n", | ||
441 | + "(?, 12, 12, 256)\n", | ||
442 | + "(?, 25, 25, 3)\n", | ||
443 | + "Epoch 15/200 Step 280... Discriminator Loss: 0.8658... Generator Loss: 1.6609\n", | ||
444 | + "(?, 4, 4, 1024)\n", | ||
445 | + "(?, 6, 6, 512)\n", | ||
446 | + "(?, 12, 12, 256)\n", | ||
447 | + "(?, 25, 25, 3)\n", | ||
448 | + "Epoch 16/200 Step 290... Discriminator Loss: 1.3357... Generator Loss: 0.5010\n", | ||
449 | + "(?, 4, 4, 1024)\n", | ||
450 | + "(?, 6, 6, 512)\n", | ||
451 | + "(?, 12, 12, 256)\n", | ||
452 | + "(?, 25, 25, 3)\n", | ||
453 | + "Epoch 16/200 Step 300... Discriminator Loss: 0.8518... Generator Loss: 1.4408\n", | ||
454 | + "(?, 4, 4, 1024)\n", | ||
455 | + "(?, 6, 6, 512)\n", | ||
456 | + "(?, 12, 12, 256)\n", | ||
457 | + "(?, 25, 25, 3)\n", | ||
458 | + "Epoch 17/200 Step 310... Discriminator Loss: 0.9052... Generator Loss: 1.2558\n", | ||
459 | + "(?, 4, 4, 1024)\n", | ||
460 | + "(?, 6, 6, 512)\n", | ||
461 | + "(?, 12, 12, 256)\n", | ||
462 | + "(?, 25, 25, 3)\n", | ||
463 | + "Epoch 17/200 Step 320... Discriminator Loss: 0.9011... Generator Loss: 1.2468\n", | ||
464 | + "(?, 4, 4, 1024)\n", | ||
465 | + "(?, 6, 6, 512)\n", | ||
466 | + "(?, 12, 12, 256)\n", | ||
467 | + "(?, 25, 25, 3)\n", | ||
468 | + "Epoch 18/200 Step 330... Discriminator Loss: 0.9880... Generator Loss: 0.8800\n", | ||
469 | + "(?, 4, 4, 1024)\n", | ||
470 | + "(?, 6, 6, 512)\n", | ||
471 | + "(?, 12, 12, 256)\n", | ||
472 | + "(?, 25, 25, 3)\n", | ||
473 | + "Epoch 18/200 Step 340... Discriminator Loss: 0.9066... Generator Loss: 2.0460\n", | ||
474 | + "(?, 4, 4, 1024)\n", | ||
475 | + "(?, 6, 6, 512)\n", | ||
476 | + "(?, 12, 12, 256)\n", | ||
477 | + "(?, 25, 25, 3)\n", | ||
478 | + "Epoch 19/200 Step 350... Discriminator Loss: 0.9169... Generator Loss: 1.7369\n", | ||
479 | + "(?, 4, 4, 1024)\n", | ||
480 | + "(?, 6, 6, 512)\n", | ||
481 | + "(?, 12, 12, 256)\n", | ||
482 | + "(?, 25, 25, 3)\n", | ||
483 | + "Epoch 19/200 Step 360... Discriminator Loss: 0.9111... Generator Loss: 1.5251\n", | ||
484 | + "(?, 4, 4, 1024)\n", | ||
485 | + "(?, 6, 6, 512)\n", | ||
486 | + "(?, 12, 12, 256)\n", | ||
487 | + "(?, 25, 25, 3)\n", | ||
488 | + "Epoch 20/200 Step 370... Discriminator Loss: 0.9466... Generator Loss: 1.0476\n", | ||
489 | + "(?, 4, 4, 1024)\n", | ||
490 | + "(?, 6, 6, 512)\n", | ||
491 | + "(?, 12, 12, 256)\n", | ||
492 | + "(?, 25, 25, 3)\n", | ||
493 | + "Epoch 20/200 Step 380... Discriminator Loss: 1.0600... Generator Loss: 1.6264\n", | ||
494 | + "(?, 4, 4, 1024)\n", | ||
495 | + "(?, 6, 6, 512)\n", | ||
496 | + "(?, 12, 12, 256)\n", | ||
497 | + "(?, 25, 25, 3)\n", | ||
498 | + "Epoch 21/200 Step 390... Discriminator Loss: 1.1503... Generator Loss: 0.9095\n", | ||
499 | + "(?, 4, 4, 1024)\n", | ||
500 | + "(?, 6, 6, 512)\n", | ||
501 | + "(?, 12, 12, 256)\n", | ||
502 | + "(?, 25, 25, 3)\n", | ||
503 | + "Epoch 22/200 Step 400... Discriminator Loss: 1.1989... Generator Loss: 1.2204\n", | ||
504 | + "(?, 4, 4, 1024)\n", | ||
505 | + "(?, 6, 6, 512)\n", | ||
506 | + "(?, 12, 12, 256)\n", | ||
507 | + "(?, 25, 25, 3)\n", | ||
508 | + "Epoch 22/200 Step 410... Discriminator Loss: 1.1530... Generator Loss: 0.8920\n", | ||
509 | + "(?, 4, 4, 1024)\n", | ||
510 | + "(?, 6, 6, 512)\n", | ||
511 | + "(?, 12, 12, 256)\n", | ||
512 | + "(?, 25, 25, 3)\n", | ||
513 | + "Epoch 23/200 Step 420... Discriminator Loss: 1.2206... Generator Loss: 0.8665\n", | ||
514 | + "(?, 4, 4, 1024)\n", | ||
515 | + "(?, 6, 6, 512)\n", | ||
516 | + "(?, 12, 12, 256)\n", | ||
517 | + "(?, 25, 25, 3)\n", | ||
518 | + "Epoch 23/200 Step 430... Discriminator Loss: 1.1357... Generator Loss: 1.0771\n", | ||
519 | + "(?, 4, 4, 1024)\n", | ||
520 | + "(?, 6, 6, 512)\n", | ||
521 | + "(?, 12, 12, 256)\n", | ||
522 | + "(?, 25, 25, 3)\n", | ||
523 | + "Epoch 24/200 Step 440... Discriminator Loss: 1.5018... Generator Loss: 0.4140\n", | ||
524 | + "(?, 4, 4, 1024)\n", | ||
525 | + "(?, 6, 6, 512)\n", | ||
526 | + "(?, 12, 12, 256)\n", | ||
527 | + "(?, 25, 25, 3)\n", | ||
528 | + "Epoch 24/200 Step 450... Discriminator Loss: 1.1407... Generator Loss: 0.9182\n", | ||
529 | + "(?, 4, 4, 1024)\n", | ||
530 | + "(?, 6, 6, 512)\n", | ||
531 | + "(?, 12, 12, 256)\n", | ||
532 | + "(?, 25, 25, 3)\n", | ||
533 | + "Epoch 25/200 Step 460... Discriminator Loss: 1.1208... Generator Loss: 1.0497\n", | ||
534 | + "(?, 4, 4, 1024)\n", | ||
535 | + "(?, 6, 6, 512)\n", | ||
536 | + "(?, 12, 12, 256)\n", | ||
537 | + "(?, 25, 25, 3)\n", | ||
538 | + "Epoch 25/200 Step 470... Discriminator Loss: 1.2283... Generator Loss: 1.3409\n", | ||
539 | + "(?, 4, 4, 1024)\n", | ||
540 | + "(?, 6, 6, 512)\n", | ||
541 | + "(?, 12, 12, 256)\n", | ||
542 | + "(?, 25, 25, 3)\n", | ||
543 | + "Epoch 26/200 Step 480... Discriminator Loss: 1.1401... Generator Loss: 0.8807\n", | ||
544 | + "(?, 4, 4, 1024)\n", | ||
545 | + "(?, 6, 6, 512)\n", | ||
546 | + "(?, 12, 12, 256)\n", | ||
547 | + "(?, 25, 25, 3)\n", | ||
548 | + "Epoch 26/200 Step 490... Discriminator Loss: 1.1839... Generator Loss: 0.7198\n", | ||
549 | + "(?, 4, 4, 1024)\n", | ||
550 | + "(?, 6, 6, 512)\n", | ||
551 | + "(?, 12, 12, 256)\n", | ||
552 | + "(?, 25, 25, 3)\n", | ||
553 | + "Epoch 27/200 Step 500... Discriminator Loss: 1.5919... Generator Loss: 0.3560\n", | ||
554 | + "(?, 4, 4, 1024)\n", | ||
555 | + "(?, 6, 6, 512)\n", | ||
556 | + "(?, 12, 12, 256)\n", | ||
557 | + "(?, 25, 25, 3)\n", | ||
558 | + "Epoch 27/200 Step 510... Discriminator Loss: 1.2166... Generator Loss: 1.4234\n", | ||
559 | + "(?, 4, 4, 1024)\n", | ||
560 | + "(?, 6, 6, 512)\n", | ||
561 | + "(?, 12, 12, 256)\n", | ||
562 | + "(?, 25, 25, 3)\n", | ||
563 | + "Epoch 28/200 Step 520... Discriminator Loss: 1.1838... Generator Loss: 1.2357\n", | ||
564 | + "(?, 4, 4, 1024)\n", | ||
565 | + "(?, 6, 6, 512)\n", | ||
566 | + "(?, 12, 12, 256)\n", | ||
567 | + "(?, 25, 25, 3)\n", | ||
568 | + "Epoch 28/200 Step 530... Discriminator Loss: 1.2062... Generator Loss: 1.4508\n", | ||
569 | + "(?, 4, 4, 1024)\n", | ||
570 | + "(?, 6, 6, 512)\n", | ||
571 | + "(?, 12, 12, 256)\n", | ||
572 | + "(?, 25, 25, 3)\n", | ||
573 | + "Epoch 29/200 Step 540... Discriminator Loss: 1.2600... Generator Loss: 1.5470\n", | ||
574 | + "(?, 4, 4, 1024)\n", | ||
575 | + "(?, 6, 6, 512)\n", | ||
576 | + "(?, 12, 12, 256)\n", | ||
577 | + "(?, 25, 25, 3)\n", | ||
578 | + "Epoch 29/200 Step 550... Discriminator Loss: 1.1592... Generator Loss: 0.9399\n", | ||
579 | + "(?, 4, 4, 1024)\n", | ||
580 | + "(?, 6, 6, 512)\n", | ||
581 | + "(?, 12, 12, 256)\n", | ||
582 | + "(?, 25, 25, 3)\n", | ||
583 | + "Epoch 30/200 Step 560... Discriminator Loss: 1.1941... Generator Loss: 1.0776\n", | ||
584 | + "(?, 4, 4, 1024)\n", | ||
585 | + "(?, 6, 6, 512)\n", | ||
586 | + "(?, 12, 12, 256)\n", | ||
587 | + "(?, 25, 25, 3)\n", | ||
588 | + "Epoch 30/200 Step 570... Discriminator Loss: 1.5479... Generator Loss: 2.1296\n", | ||
589 | + "(?, 4, 4, 1024)\n", | ||
590 | + "(?, 6, 6, 512)\n", | ||
591 | + "(?, 12, 12, 256)\n", | ||
592 | + "(?, 25, 25, 3)\n", | ||
593 | + "Epoch 31/200 Step 580... Discriminator Loss: 1.3233... Generator Loss: 0.8222\n", | ||
594 | + "(?, 4, 4, 1024)\n", | ||
595 | + "(?, 6, 6, 512)\n", | ||
596 | + "(?, 12, 12, 256)\n", | ||
597 | + "(?, 25, 25, 3)\n" | ||
598 | + ] | ||
599 | + }, | ||
600 | + { | ||
601 | + "name": "stdout", | ||
602 | + "output_type": "stream", | ||
603 | + "text": [ | ||
604 | + "Epoch 32/200 Step 590... Discriminator Loss: 1.1821... Generator Loss: 0.9809\n", | ||
299 | "(?, 4, 4, 1024)\n", | 605 | "(?, 4, 4, 1024)\n", |
300 | "(?, 6, 6, 512)\n", | 606 | "(?, 6, 6, 512)\n", |
301 | "(?, 12, 12, 256)\n", | 607 | "(?, 12, 12, 256)\n", |
302 | "(?, 25, 25, 3)\n", | 608 | "(?, 25, 25, 3)\n", |
303 | - "INFO:tensorflow:Restoring parameters from /tmp/model.ckpt\n" | 609 | + "Epoch 32/200 Step 600... Discriminator Loss: 1.1763... Generator Loss: 0.7344\n", |
610 | + "(?, 4, 4, 1024)\n", | ||
611 | + "(?, 6, 6, 512)\n", | ||
612 | + "(?, 12, 12, 256)\n", | ||
613 | + "(?, 25, 25, 3)\n", | ||
614 | + "Epoch 33/200 Step 610... Discriminator Loss: 1.1730... Generator Loss: 1.3747\n", | ||
615 | + "(?, 4, 4, 1024)\n", | ||
616 | + "(?, 6, 6, 512)\n", | ||
617 | + "(?, 12, 12, 256)\n", | ||
618 | + "(?, 25, 25, 3)\n", | ||
619 | + "Epoch 33/200 Step 620... Discriminator Loss: 1.5791... Generator Loss: 0.3566\n", | ||
620 | + "(?, 4, 4, 1024)\n", | ||
621 | + "(?, 6, 6, 512)\n", | ||
622 | + "(?, 12, 12, 256)\n", | ||
623 | + "(?, 25, 25, 3)\n", | ||
624 | + "Epoch 34/200 Step 630... Discriminator Loss: 1.4445... Generator Loss: 0.4481\n", | ||
625 | + "(?, 4, 4, 1024)\n", | ||
626 | + "(?, 6, 6, 512)\n", | ||
627 | + "(?, 12, 12, 256)\n", | ||
628 | + "(?, 25, 25, 3)\n", | ||
629 | + "Epoch 34/200 Step 640... Discriminator Loss: 1.1244... Generator Loss: 1.1338\n", | ||
630 | + "(?, 4, 4, 1024)\n", | ||
631 | + "(?, 6, 6, 512)\n", | ||
632 | + "(?, 12, 12, 256)\n", | ||
633 | + "(?, 25, 25, 3)\n", | ||
634 | + "Epoch 35/200 Step 650... Discriminator Loss: 1.1750... Generator Loss: 0.9281\n", | ||
635 | + "(?, 4, 4, 1024)\n", | ||
636 | + "(?, 6, 6, 512)\n", | ||
637 | + "(?, 12, 12, 256)\n", | ||
638 | + "(?, 25, 25, 3)\n", | ||
639 | + "Epoch 35/200 Step 660... Discriminator Loss: 1.2072... Generator Loss: 1.1870\n", | ||
640 | + "(?, 4, 4, 1024)\n", | ||
641 | + "(?, 6, 6, 512)\n", | ||
642 | + "(?, 12, 12, 256)\n", | ||
643 | + "(?, 25, 25, 3)\n", | ||
644 | + "Epoch 36/200 Step 670... Discriminator Loss: 1.2960... Generator Loss: 0.5793\n", | ||
645 | + "(?, 4, 4, 1024)\n", | ||
646 | + "(?, 6, 6, 512)\n", | ||
647 | + "(?, 12, 12, 256)\n", | ||
648 | + "(?, 25, 25, 3)\n", | ||
649 | + "Epoch 36/200 Step 680... Discriminator Loss: 1.1635... Generator Loss: 1.0436\n", | ||
650 | + "(?, 4, 4, 1024)\n", | ||
651 | + "(?, 6, 6, 512)\n", | ||
652 | + "(?, 12, 12, 256)\n", | ||
653 | + "(?, 25, 25, 3)\n" | ||
304 | ] | 654 | ] |
305 | }, | 655 | }, |
306 | { | 656 | { |
307 | - "ename": "NameError", | 657 | + "ename": "KeyboardInterrupt", |
308 | - "evalue": "name 'image_path' is not defined", | 658 | + "evalue": "", |
309 | "output_type": "error", | 659 | "output_type": "error", |
310 | "traceback": [ | 660 | "traceback": [ |
311 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | 661 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
312 | - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | 662 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
313 | - "\u001b[0;32m<ipython-input-9-3cf64f8b526a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mceleba_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./motionpatch/*.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz_dim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbeta1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | 663 | + "\u001b[0;32m<ipython-input-10-bbe3447e21dd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mceleba_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./smallone/*.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz_dim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbeta1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
314 | - "\u001b[0;32m<ipython-input-8-14a3faf19639>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every, show_every)\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmkdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'output'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mepoch_i\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch_count\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 29\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mbatch_images\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mget_batches\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 30\u001b[0m \u001b[0;31m# Train Model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0msteps\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 664 | + "\u001b[0;32m<ipython-input-8-2e8656e87584>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every, show_every)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;31m# Run optimizers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md_train_opt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0minput_real\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_images\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_z\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_z\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mg_train_opt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0minput_z\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_z\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msteps\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mprint_every\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
315 | - "\u001b[0;32m<ipython-input-2-77ee1ea74a0f>\u001b[0m in \u001b[0;36mget_batches\u001b[0;34m(self, batch_size)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_files\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcurrent_index\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mcurrent_index\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m self.image_mode)\n\u001b[0m\u001b[1;32m 33\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0mcurrent_index\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 665 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 875\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 876\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 877\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 878\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 879\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
316 | - "\u001b[0;32m<ipython-input-2-77ee1ea74a0f>\u001b[0m in \u001b[0;36mget_batch\u001b[0;34m(self, image_files, width, height, mode)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mimage_files\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m data_batch = np.array(\n\u001b[0;32m---> 18\u001b[0;31m [self.get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)\n\u001b[0m\u001b[1;32m 19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# Make sure the images are in 4 dimensions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 666 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1099\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1100\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1101\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1102\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
317 | - "\u001b[0;32m<ipython-input-2-77ee1ea74a0f>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mimage_files\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m data_batch = np.array(\n\u001b[0;32m---> 18\u001b[0;31m [self.get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)\n\u001b[0m\u001b[1;32m 19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# Make sure the images are in 4 dimensions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 667 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1270\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1271\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[0;32m-> 1272\u001b[0;31m run_metadata)\n\u001b[0m\u001b[1;32m 1273\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1274\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
318 | - "\u001b[0;32m<ipython-input-2-77ee1ea74a0f>\u001b[0m in \u001b[0;36mget_image\u001b[0;34m(iself, mage_path, width, height, mode)\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmage_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mheight\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 668 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1276\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1277\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1278\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1279\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1280\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
319 | - "\u001b[0;31mNameError\u001b[0m: name 'image_path' is not defined" | 669 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1261\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_extend_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1262\u001b[0m return self._call_tf_sessionrun(\n\u001b[0;32m-> 1263\u001b[0;31m options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[1;32m 1264\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1265\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
670 | + "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[0;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[1;32m 1348\u001b[0m return tf_session.TF_SessionRun_wrapper(\n\u001b[1;32m 1349\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1350\u001b[0;31m run_metadata)\n\u001b[0m\u001b[1;32m 1351\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1352\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_tf_sessionprun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
671 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " | ||
320 | ] | 672 | ] |
321 | } | 673 | } |
322 | ], | 674 | ], |
323 | "source": [ | 675 | "source": [ |
324 | - "batch_size = 50\n", | 676 | + "batch_size = 256\n", |
325 | "z_dim = 100\n", | 677 | "z_dim = 100\n", |
326 | "learning_rate = 0.00025\n", | 678 | "learning_rate = 0.00025\n", |
327 | "beta1 = 0.45\n", | 679 | "beta1 = 0.45\n", |
328 | "\n", | 680 | "\n", |
329 | - "epochs = 500\n", | 681 | + "epochs = 200\n", |
330 | - "print(len(glob('./motionpatch/*.png')))\n", | 682 | + "print(len(glob('./smallone/*.png')))\n", |
331 | - "celeba_dataset = Dataset( glob('./motionpatch/*.png'))\n", | 683 | + "celeba_dataset = Dataset( glob('./smallone/*.png'))\n", |
332 | "with tf.Graph().as_default():\n", | 684 | "with tf.Graph().as_default():\n", |
333 | " train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode)" | 685 | " train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode)" |
334 | ] | 686 | ] | ... | ... |
DCGAN/outputs/output_augmentated_0318.tar
0 → 100644
This file is too large to display.
... | @@ -2,7 +2,7 @@ | ... | @@ -2,7 +2,7 @@ |
2 | "cells": [ | 2 | "cells": [ |
3 | { | 3 | { |
4 | "cell_type": "code", | 4 | "cell_type": "code", |
5 | - "execution_count": 3, | 5 | + "execution_count": 2, |
6 | "metadata": {}, | 6 | "metadata": {}, |
7 | "outputs": [], | 7 | "outputs": [], |
8 | "source": [ | 8 | "source": [ |
... | @@ -20,6 +20,49 @@ | ... | @@ -20,6 +20,49 @@ |
20 | " dst = os.path.join(output_location +str(count)+\".png\")\n", | 20 | " dst = os.path.join(output_location +str(count)+\".png\")\n", |
21 | " cv2.imwrite(dst,small)" | 21 | " cv2.imwrite(dst,small)" |
22 | ] | 22 | ] |
23 | + }, | ||
24 | + { | ||
25 | + "cell_type": "code", | ||
26 | + "execution_count": null, | ||
27 | + "metadata": {}, | ||
28 | + "outputs": [], | ||
29 | + "source": [ | ||
30 | + " def __init__(self, data_files):\n", | ||
31 | + " IMAGE_WIDTH = 25\n", | ||
32 | + " IMAGE_HEIGHT = 25\n", | ||
33 | + " self.image_mode = 'RGB'\n", | ||
34 | + " image_channels = 3\n", | ||
35 | + " self.data_files = data_files\n", | ||
36 | + " self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n", | ||
37 | + " \n", | ||
38 | + " def get_image(iself,image_path, width, height, mode):\n", | ||
39 | + " image = Image.open(image_path)\n", | ||
40 | + " image = Image.im2double(image)\n", | ||
41 | + " return np.array(image)" | ||
42 | + ] | ||
43 | + }, | ||
44 | + { | ||
45 | + "cell_type": "code", | ||
46 | + "execution_count": 10, | ||
47 | + "metadata": {}, | ||
48 | + "outputs": [], | ||
49 | + "source": [ | ||
50 | + "from PIL import Image\n", | ||
51 | + "import numpy as np\n", | ||
52 | + "from matplotlib import pyplot\n", | ||
53 | + "\n", | ||
54 | + "imgloc = './smallone/5004.png'\n", | ||
55 | + "image = Image.open(imgloc)\n", | ||
56 | + "dst = os.path.join(\"./samples/5004.png\")\n", | ||
57 | + "pyplot.imsave(dst,image)\n" | ||
58 | + ] | ||
59 | + }, | ||
60 | + { | ||
61 | + "cell_type": "code", | ||
62 | + "execution_count": null, | ||
63 | + "metadata": {}, | ||
64 | + "outputs": [], | ||
65 | + "source": [] | ||
23 | } | 66 | } |
24 | ], | 67 | ], |
25 | "metadata": { | 68 | "metadata": { | ... | ... |
DCGAN/samples/5004.png
0 → 100644

1.4 KB
1 | -S001C002P005R002A008 | ||
2 | -S001C002P006R001A008 | ||
3 | -S001C003P002R001A055 | ||
4 | -S001C003P002R002A012 | ||
5 | -S001C003P005R002A004 | ||
6 | -S001C003P005R002A005 | ||
7 | -S001C003P005R002A006 | ||
8 | -S001C003P006R002A008 | ||
9 | -S002C002P011R002A030 | ||
10 | -S002C003P008R001A020 | ||
11 | -S002C003P010R002A010 | ||
12 | -S002C003P011R002A007 | ||
13 | -S002C003P011R002A011 | ||
14 | -S002C003P014R002A007 | ||
15 | -S003C001P019R001A055 | ||
16 | -S003C002P002R002A055 | ||
17 | -S003C002P018R002A055 | ||
18 | -S003C003P002R001A055 | ||
19 | -S003C003P016R001A055 | ||
20 | -S003C003P018R002A024 | ||
21 | -S004C002P003R001A013 | ||
22 | -S004C002P008R001A009 | ||
23 | -S004C002P020R001A003 | ||
24 | -S004C002P020R001A004 | ||
25 | -S004C002P020R001A012 | ||
26 | -S004C002P020R001A020 | ||
27 | -S004C002P020R001A021 | ||
28 | -S004C002P020R001A036 | ||
29 | -S005C002P004R001A001 | ||
30 | -S005C002P004R001A003 | ||
31 | -S005C002P010R001A016 | ||
32 | -S005C002P010R001A017 | ||
33 | -S005C002P010R001A048 | ||
34 | -S005C002P010R001A049 | ||
35 | -S005C002P016R001A009 | ||
36 | -S005C002P016R001A010 | ||
37 | -S005C002P018R001A003 | ||
38 | -S005C002P018R001A028 | ||
39 | -S005C002P018R001A029 | ||
40 | -S005C003P016R002A009 | ||
41 | -S005C003P018R002A013 | ||
42 | -S005C003P021R002A057 | ||
43 | -S006C001P001R002A055 | ||
44 | -S006C002P007R001A005 | ||
45 | -S006C002P007R001A006 | ||
46 | -S006C002P016R001A043 | ||
47 | -S006C002P016R001A051 | ||
48 | -S006C002P016R001A052 | ||
49 | -S006C002P022R001A012 | ||
50 | -S006C002P023R001A020 | ||
51 | -S006C002P023R001A021 | ||
52 | -S006C002P023R001A022 | ||
53 | -S006C002P023R001A023 | ||
54 | -S006C002P024R001A018 | ||
55 | -S006C002P024R001A019 | ||
56 | -S006C003P001R002A013 | ||
57 | -S006C003P007R002A009 | ||
58 | -S006C003P007R002A010 | ||
59 | -S006C003P007R002A025 | ||
60 | -S006C003P016R001A060 | ||
61 | -S006C003P017R001A055 | ||
62 | -S006C003P017R002A013 | ||
63 | -S006C003P017R002A014 | ||
64 | -S006C003P017R002A015 | ||
65 | -S006C003P022R002A013 | ||
66 | -S007C001P018R002A050 | ||
67 | -S007C001P025R002A051 | ||
68 | -S007C001P028R001A050 | ||
69 | -S007C001P028R001A051 | ||
70 | -S007C001P028R001A052 | ||
71 | -S007C002P008R002A008 | ||
72 | -S007C002P015R002A055 | ||
73 | -S007C002P026R001A008 | ||
74 | -S007C002P026R001A009 | ||
75 | -S007C002P026R001A010 | ||
76 | -S007C002P026R001A011 | ||
77 | -S007C002P026R001A012 | ||
78 | -S007C002P026R001A050 | ||
79 | -S007C002P027R001A011 | ||
80 | -S007C002P027R001A013 | ||
81 | -S007C002P028R002A055 | ||
82 | -S007C003P007R001A002 | ||
83 | -S007C003P007R001A004 | ||
84 | -S007C003P019R001A060 | ||
85 | -S007C003P027R002A001 | ||
86 | -S007C003P027R002A002 | ||
87 | -S007C003P027R002A003 | ||
88 | -S007C003P027R002A004 | ||
89 | -S007C003P027R002A005 | ||
90 | -S007C003P027R002A006 | ||
91 | -S007C003P027R002A007 | ||
92 | -S007C003P027R002A008 | ||
93 | -S007C003P027R002A009 | ||
94 | -S007C003P027R002A010 | ||
95 | -S007C003P027R002A011 | ||
96 | -S007C003P027R002A012 | ||
97 | -S007C003P027R002A013 | ||
98 | -S008C002P001R001A009 | ||
99 | -S008C002P001R001A010 | ||
100 | -S008C002P001R001A014 | ||
101 | -S008C002P001R001A015 | ||
102 | -S008C002P001R001A016 | ||
103 | -S008C002P001R001A018 | ||
104 | -S008C002P001R001A019 | ||
105 | -S008C002P008R002A059 | ||
106 | -S008C002P025R001A060 | ||
107 | -S008C002P029R001A004 | ||
108 | -S008C002P031R001A005 | ||
109 | -S008C002P031R001A006 | ||
110 | -S008C002P032R001A018 | ||
111 | -S008C002P034R001A018 | ||
112 | -S008C002P034R001A019 | ||
113 | -S008C002P035R001A059 | ||
114 | -S008C002P035R002A002 | ||
115 | -S008C002P035R002A005 | ||
116 | -S008C003P007R001A009 | ||
117 | -S008C003P007R001A016 | ||
118 | -S008C003P007R001A017 | ||
119 | -S008C003P007R001A018 | ||
120 | -S008C003P007R001A019 | ||
121 | -S008C003P007R001A020 | ||
122 | -S008C003P007R001A021 | ||
123 | -S008C003P007R001A022 | ||
124 | -S008C003P007R001A023 | ||
125 | -S008C003P007R001A025 | ||
126 | -S008C003P007R001A026 | ||
127 | -S008C003P007R001A028 | ||
128 | -S008C003P007R001A029 | ||
129 | -S008C003P007R002A003 | ||
130 | -S008C003P008R002A050 | ||
131 | -S008C003P025R002A002 | ||
132 | -S008C003P025R002A011 | ||
133 | -S008C003P025R002A012 | ||
134 | -S008C003P025R002A016 | ||
135 | -S008C003P025R002A020 | ||
136 | -S008C003P025R002A022 | ||
137 | -S008C003P025R002A023 | ||
138 | -S008C003P025R002A030 | ||
139 | -S008C003P025R002A031 | ||
140 | -S008C003P025R002A032 | ||
141 | -S008C003P025R002A033 | ||
142 | -S008C003P025R002A049 | ||
143 | -S008C003P025R002A060 | ||
144 | -S008C003P031R001A001 | ||
145 | -S008C003P031R002A004 | ||
146 | -S008C003P031R002A014 | ||
147 | -S008C003P031R002A015 | ||
148 | -S008C003P031R002A016 | ||
149 | -S008C003P031R002A017 | ||
150 | -S008C003P032R002A013 | ||
151 | -S008C003P033R002A001 | ||
152 | -S008C003P033R002A011 | ||
153 | -S008C003P033R002A012 | ||
154 | -S008C003P034R002A001 | ||
155 | -S008C003P034R002A012 | ||
156 | -S008C003P034R002A022 | ||
157 | -S008C003P034R002A023 | ||
158 | -S008C003P034R002A024 | ||
159 | -S008C003P034R002A044 | ||
160 | -S008C003P034R002A045 | ||
161 | -S008C003P035R002A016 | ||
162 | -S008C003P035R002A017 | ||
163 | -S008C003P035R002A018 | ||
164 | -S008C003P035R002A019 | ||
165 | -S008C003P035R002A020 | ||
166 | -S008C003P035R002A021 | ||
167 | -S009C002P007R001A001 | ||
168 | -S009C002P007R001A003 | ||
169 | -S009C002P007R001A014 | ||
170 | -S009C002P008R001A014 | ||
171 | -S009C002P015R002A050 | ||
172 | -S009C002P016R001A002 | ||
173 | -S009C002P017R001A028 | ||
174 | -S009C002P017R001A029 | ||
175 | -S009C003P017R002A030 | ||
176 | -S009C003P025R002A054 | ||
177 | -S010C001P007R002A020 | ||
178 | -S010C002P016R002A055 | ||
179 | -S010C002P017R001A005 | ||
180 | -S010C002P017R001A018 | ||
181 | -S010C002P017R001A019 | ||
182 | -S010C002P019R001A001 | ||
183 | -S010C002P025R001A012 | ||
184 | -S010C003P007R002A043 | ||
185 | -S010C003P008R002A003 | ||
186 | -S010C003P016R001A055 | ||
187 | -S010C003P017R002A055 | ||
188 | -S011C001P002R001A008 | ||
189 | -S011C001P018R002A050 | ||
190 | -S011C002P008R002A059 | ||
191 | -S011C002P016R002A055 | ||
192 | -S011C002P017R001A020 | ||
193 | -S011C002P017R001A021 | ||
194 | -S011C002P018R002A055 | ||
195 | -S011C002P027R001A009 | ||
196 | -S011C002P027R001A010 | ||
197 | -S011C002P027R001A037 | ||
198 | -S011C003P001R001A055 | ||
199 | -S011C003P002R001A055 | ||
200 | -S011C003P008R002A012 | ||
201 | -S011C003P015R001A055 | ||
202 | -S011C003P016R001A055 | ||
203 | -S011C003P019R001A055 | ||
204 | -S011C003P025R001A055 | ||
205 | -S011C003P028R002A055 | ||
206 | -S012C001P019R001A060 | ||
207 | -S012C001P019R002A060 | ||
208 | -S012C002P015R001A055 | ||
209 | -S012C002P017R002A012 | ||
210 | -S012C002P025R001A060 | ||
211 | -S012C003P008R001A057 | ||
212 | -S012C003P015R001A055 | ||
213 | -S012C003P015R002A055 | ||
214 | -S012C003P016R001A055 | ||
215 | -S012C003P017R002A055 | ||
216 | -S012C003P018R001A055 | ||
217 | -S012C003P018R001A057 | ||
218 | -S012C003P019R002A011 | ||
219 | -S012C003P019R002A012 | ||
220 | -S012C003P025R001A055 | ||
221 | -S012C003P027R001A055 | ||
222 | -S012C003P027R002A009 | ||
223 | -S012C003P028R001A035 | ||
224 | -S012C003P028R002A055 | ||
225 | -S013C001P015R001A054 | ||
226 | -S013C001P017R002A054 | ||
227 | -S013C001P018R001A016 | ||
228 | -S013C001P028R001A040 | ||
229 | -S013C002P015R001A054 | ||
230 | -S013C002P017R002A054 | ||
231 | -S013C002P028R001A040 | ||
232 | -S013C003P008R002A059 | ||
233 | -S013C003P015R001A054 | ||
234 | -S013C003P017R002A054 | ||
235 | -S013C003P025R002A022 | ||
236 | -S013C003P027R001A055 | ||
237 | -S013C003P028R001A040 | ||
238 | -S014C001P027R002A040 | ||
239 | -S014C002P015R001A003 | ||
240 | -S014C002P019R001A029 | ||
241 | -S014C002P025R002A059 | ||
242 | -S014C002P027R002A040 | ||
243 | -S014C002P039R001A050 | ||
244 | -S014C003P007R002A059 | ||
245 | -S014C003P015R002A055 | ||
246 | -S014C003P019R002A055 | ||
247 | -S014C003P025R001A048 | ||
248 | -S014C003P027R002A040 | ||
249 | -S015C001P008R002A040 | ||
250 | -S015C001P016R001A055 | ||
251 | -S015C001P017R001A055 | ||
252 | -S015C001P017R002A055 | ||
253 | -S015C002P007R001A059 | ||
254 | -S015C002P008R001A003 | ||
255 | -S015C002P008R001A004 | ||
256 | -S015C002P008R002A040 | ||
257 | -S015C002P015R001A002 | ||
258 | -S015C002P016R001A001 | ||
259 | -S015C002P016R002A055 | ||
260 | -S015C003P008R002A007 | ||
261 | -S015C003P008R002A011 | ||
262 | -S015C003P008R002A012 | ||
263 | -S015C003P008R002A028 | ||
264 | -S015C003P008R002A040 | ||
265 | -S015C003P025R002A012 | ||
266 | -S015C003P025R002A017 | ||
267 | -S015C003P025R002A020 | ||
268 | -S015C003P025R002A021 | ||
269 | -S015C003P025R002A030 | ||
270 | -S015C003P025R002A033 | ||
271 | -S015C003P025R002A034 | ||
272 | -S015C003P025R002A036 | ||
273 | -S015C003P025R002A037 | ||
274 | -S015C003P025R002A044 | ||
275 | -S016C001P019R002A040 | ||
276 | -S016C001P025R001A011 | ||
277 | -S016C001P025R001A012 | ||
278 | -S016C001P025R001A060 | ||
279 | -S016C001P040R001A055 | ||
280 | -S016C001P040R002A055 | ||
281 | -S016C002P008R001A011 | ||
282 | -S016C002P019R002A040 | ||
283 | -S016C002P025R002A012 | ||
284 | -S016C003P008R001A011 | ||
285 | -S016C003P008R002A002 | ||
286 | -S016C003P008R002A003 | ||
287 | -S016C003P008R002A004 | ||
288 | -S016C003P008R002A006 | ||
289 | -S016C003P008R002A009 | ||
290 | -S016C003P019R002A040 | ||
291 | -S016C003P039R002A016 | ||
292 | -S017C001P016R002A031 | ||
293 | -S017C002P007R001A013 | ||
294 | -S017C002P008R001A009 | ||
295 | -S017C002P015R001A042 | ||
296 | -S017C002P016R002A031 | ||
297 | -S017C002P016R002A055 | ||
298 | -S017C003P007R002A013 | ||
299 | -S017C003P008R001A059 | ||
300 | -S017C003P016R002A031 | ||
301 | -S017C003P017R001A055 | ||
302 | -S017C003P020R001A059 | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | 1 | ||
2 | %your motion_patch location | 2 | %your motion_patch location |
3 | -ori = imread('/home/rfj/바탕화면/actionGAN/motion_patch/S001C001P001R001A020.png'); | 3 | +ori = imread('/home/rfj/바탕화면/actionGAN/DCGAN/new_motionpatch/sample_111.png'); |
4 | ori = im2double(ori); | 4 | ori = im2double(ori); |
5 | ori = ori(:,:,:); | 5 | ori = ori(:,:,:); |
6 | 6 | ... | ... |
1 | +clear; | ||
1 | 2 | ||
2 | -%missing file delete | ||
3 | -%LOCATION : raw skeletone files | ||
4 | path_name = '/media/rfj/EEA4441FA443E923/nturgb_skeletones/'; | 3 | path_name = '/media/rfj/EEA4441FA443E923/nturgb_skeletones/'; |
5 | -file_list = dir(path_name); | 4 | +fileID = fopen('/home/rfj/바탕화면/actionGAN/skeletone_INDEX/good_stand_2.txt','r'); |
6 | -L = length(file_list); | ||
7 | - | ||
8 | -fileID = fopen('/home/rfj/MATLAB/bin/samples_with_missing_skeletons.txt','r'); | ||
9 | formatSpec = '%s'; | 5 | formatSpec = '%s'; |
10 | -sizeA = [20 Inf]; | 6 | +sizeA = [20 Inf]; |
11 | -missing_file_list = fscanf(fileID,formatSpec,sizeA); | 7 | +perfect_list = fscanf(fileID,formatSpec,sizeA); |
12 | -missing_file_list = missing_file_list.'; | 8 | +perfect_list = perfect_list.'; |
13 | fclose(fileID); | 9 | fclose(fileID); |
14 | 10 | ||
15 | -perfect_list = []; | ||
16 | - | ||
17 | -for K = 3:L | ||
18 | - file_name = char(file_list(K).name); | ||
19 | - missing_num = 0; | ||
20 | - | ||
21 | - for J = 1:length(missing_file_list); | ||
22 | - missing_name = missing_file_list(J,:); | ||
23 | - if file_name(1:20) == missing_name | ||
24 | - missing_num = 1; | ||
25 | - end | ||
26 | - end | ||
27 | - | ||
28 | - if missing_num == 0 | ||
29 | - perfect_list = [perfect_list;file_name]; | ||
30 | - end | ||
31 | - | ||
32 | -end | ||
33 | - | ||
34 | -% make motion patch | ||
35 | - | ||
36 | L = length(perfect_list); | 11 | L = length(perfect_list); |
37 | 12 | ||
38 | for K = 1:L | 13 | for K = 1:L |
14 | + | ||
39 | file_name = char(perfect_list(K,:)); | 15 | file_name = char(perfect_list(K,:)); |
40 | name = strcat(path_name,file_name(1:20),'.skeleton'); | 16 | name = strcat(path_name,file_name(1:20),'.skeleton'); |
41 | - num_body = file_name(22); | ||
42 | - BN = str2num(num_body); | ||
43 | [token,remainder] = strtok(file_name,'A'); | 17 | [token,remainder] = strtok(file_name,'A'); |
44 | class = str2num(remainder(2:4)); | 18 | class = str2num(remainder(2:4)); |
45 | - | 19 | + |
46 | - if class == 20 | 20 | + bodyinfo = read_skeleton_file(name); |
47 | - bodyinfo = read_skeleton_file(name); | 21 | + frame_num = size(bodyinfo,2); |
48 | - frame_num = size(bodyinfo,2); | 22 | + try |
49 | - | ||
50 | %initialize | 23 | %initialize |
51 | cur_subject_x = zeros(frame_num, 25); | 24 | cur_subject_x = zeros(frame_num, 25); |
52 | cur_subject_y = zeros(frame_num, 25); | 25 | cur_subject_y = zeros(frame_num, 25); |
... | @@ -60,131 +33,149 @@ for K = 1:L | ... | @@ -60,131 +33,149 @@ for K = 1:L |
60 | joint_9 = zeros(1,3); | 33 | joint_9 = zeros(1,3); |
61 | joint_1 = zeros(1,3); | 34 | joint_1 = zeros(1,3); |
62 | joint_3 = zeros(1,3); | 35 | joint_3 = zeros(1,3); |
63 | - | 36 | + |
64 | - try | 37 | + %get total joints information |
65 | - %get total joints information | 38 | + for FN = 1:frame_num |
66 | - for FN = 1:frame_num | 39 | + cur_body = bodyinfo(FN).bodies(1); |
67 | - cur_body = bodyinfo(FN).bodies(1); | 40 | + joints = cur_body.joints; |
68 | - joints = cur_body.joints; | 41 | + |
42 | + for JN = 1:25 | ||
43 | + tot_x(FN,JN) = joints(JN).x; | ||
44 | + tot_y(FN,JN) = joints(JN).y; | ||
45 | + tot_z(FN,JN) = joints(JN).z; | ||
46 | + end | ||
47 | + end | ||
48 | + | ||
49 | + %Orientation normalization 1 : in space | ||
50 | + %get median values | ||
51 | + M_x = median(tot_x); | ||
52 | + M_y = median(tot_y); | ||
53 | + M_z = median(tot_z); | ||
54 | + | ||
55 | + %set 3 points for make plane | ||
56 | + joint_5 = [M_x(5) M_y(5) M_z(5)]; | ||
57 | + joint_9 = [M_x(9) M_y(9) M_z(9)]; | ||
58 | + joint_1 = [M_x(1) M_y(1) M_z(1)]; | ||
59 | + joint_3 = [M_x(3) M_y(3) M_z(3)]; | ||
60 | + | ||
61 | + %find RIGID TRNASFORMATION matrix | ||
62 | + d1 = joint_1 - joint_5; | ||
63 | + d2 = joint_1 - joint_9; | ||
64 | + n1 = cross(d1,d2); % because we will parallel transform, don't need to find belly | ||
65 | + u1 = n1/norm(n1); | ||
66 | + u2 = [0 0 1]; | ||
67 | + cs1 = dot(u1,u2)/norm(u1)*norm(u2); | ||
68 | + ss1 = sqrt(1-cs1.^2); | ||
69 | + v1 = cross(u1,u2)/norm(cross(u1,u2)); | ||
70 | + | ||
71 | + R1 = [v1(1)*v1(1)*(1-cs1)+cs1 v1(1)*v1(2)*(1-cs1)-v1(3)*ss1 v1(1)*v1(3)*(1-cs1)+v1(2)*ss1]; | ||
72 | + R1(2,:) = [v1(1)*v1(2)*(1-cs1)+v1(3)*ss1 v1(2)*v1(2)*(1-cs1)+cs1 v1(2)*v1(3)*(1-cs1)-v1(1)*ss1]; | ||
73 | + R1(3,:) = [v1(1)*v1(3)*(1-cs1)-v1(2)*ss1 v1(2)*v1(3)*(1-cs1)+v1(1)*ss1 v1(3)*v1(3)*(1-cs1)+cs1]; | ||
74 | + | ||
75 | + %1-3 number tolls to parallel x axis. Rigid transformation on plane surface | ||
76 | + %Z axis coords oyler angle transform | ||
77 | + | ||
78 | + t = joint_3 - joint_1; | ||
79 | + d3 = R1(1,:) * t.'; | ||
80 | + d3(1,2) = R1(2,:) * t.'; | ||
81 | + d3(1,3) = R1(3,:) * t.'; | ||
82 | + | ||
83 | + u3 = d3(1:2)/norm(d3(1:2)); | ||
84 | + v3 = [u3(1) -u3(2)]; | ||
85 | + v3(2,:) = [u3(2) u3(1)]; | ||
86 | + u4 = [1 0].'; | ||
87 | + | ||
88 | + csss = v3\u4; | ||
89 | + cs2 = csss(1); | ||
90 | + ss2 = csss(2); | ||
91 | + | ||
92 | + R2 = [cs2 -ss2 0]; | ||
93 | + R2(2,:) = [ss2 cs2 0]; | ||
94 | + R2(3,:) = [0 0 1]; | ||
95 | + | ||
96 | + | ||
97 | + %apply rigid transformation | ||
98 | + for FN = 1:frame_num | ||
99 | + cur_body = bodyinfo(FN).bodies(1); | ||
100 | + joints = cur_body.joints; | ||
101 | + | ||
102 | + for JN = 1:25 | ||
103 | + a = R1(1,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
104 | + b = R1(2,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
105 | + c = R1(3,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
106 | + | ||
107 | + cur_subject_x(FN,JN) = R2(1,:) * [a b c].'; | ||
108 | + cur_subject_y(FN,JN) = R2(2,:) * [a b c].'; | ||
109 | + cur_subject_z(FN,JN) = R2(3,:) * [a b c].'; | ||
69 | 110 | ||
70 | - for JN = 1:25 | 111 | + end |
71 | - tot_x(FN,JN) = joints(JN).x; | 112 | + end |
72 | - tot_y(FN,JN) = joints(JN).y; | 113 | + |
73 | - tot_z(FN,JN) = joints(JN).z; | 114 | + %orientation normalize 2 in plane surface |
74 | - end | 115 | + if cur_subject_x(1,4) < cur_subject_x(1,1) |
116 | + cur_subject_x = 0 - cur_subject_x; | ||
117 | + end | ||
118 | + | ||
119 | + if cur_subject_y(1,9) > cur_subject_y(1,5) | ||
120 | + cur_subject_y = 0 - cur_subject_y; | ||
121 | + end | ||
122 | + | ||
123 | + % for save origin subjects before data augment | ||
124 | + clear_subject_x = cur_subject_x; | ||
125 | + clear_subject_y = cur_subject_y; | ||
126 | + clear_subject_z = cur_subject_z; | ||
127 | + | ||
128 | + % Left <-> Right Change : 2option | ||
129 | + for LR = 1:2 | ||
130 | + if LR == 1 | ||
131 | + augment_y = clear_subject_y; | ||
132 | + else | ||
133 | + augment_y = 0 - clear_subject_y; | ||
75 | end | 134 | end |
76 | 135 | ||
77 | - %get median values | 136 | + %Height change : 3option |
78 | - M_x = median(tot_x); | 137 | + for HE = 1:3 |
79 | - M_y = median(tot_y); | 138 | + if HE == 1 |
80 | - M_z = median(tot_z); | 139 | + augment_x = clear_subject_x.* 1.2; |
81 | - | 140 | + elseif HE==2 |
82 | - | 141 | + augment_x = clear_subject_x.* 1.0; |
83 | - %set 3 points for make plane | 142 | + else |
84 | - joint_5 = [M_x(5) M_y(5) M_z(5)]; | 143 | + augment_x = clear_subject_x.* 0.8; |
85 | - joint_9 = [M_x(9) M_y(9) M_z(9)]; | 144 | + end |
86 | - joint_1 = [M_x(1) M_y(1) M_z(1)]; | ||
87 | - joint_3 = [M_x(3) M_y(3) M_z(3)]; | ||
88 | - | ||
89 | - %find RIGID TRNASFORMATION matrix | ||
90 | - d1 = joint_1 - joint_5; | ||
91 | - d2 = joint_1 - joint_9; | ||
92 | - n1 = cross(d1,d2); % because we will parallel transform, don't need to find belly | ||
93 | - u1 = n1/norm(n1); | ||
94 | - u2 = [0 0 1]; | ||
95 | - cs1 = dot(u1,u2)/norm(u1)*norm(u2); | ||
96 | - ss1 = sqrt(1-cs1.^2); | ||
97 | - v1 = cross(u1,u2)/norm(cross(u1,u2)); | ||
98 | - | ||
99 | - R1 = [v1(1)*v1(1)*(1-cs1)+cs1 v1(1)*v1(2)*(1-cs1)-v1(3)*ss1 v1(1)*v1(3)*(1-cs1)+v1(2)*ss1]; | ||
100 | - R1(2,:) = [v1(1)*v1(2)*(1-cs1)+v1(3)*ss1 v1(2)*v1(2)*(1-cs1)+cs1 v1(2)*v1(3)*(1-cs1)-v1(1)*ss1]; | ||
101 | - R1(3,:) = [v1(1)*v1(3)*(1-cs1)-v1(2)*ss1 v1(2)*v1(3)*(1-cs1)+v1(1)*ss1 v1(3)*v1(3)*(1-cs1)+cs1]; | ||
102 | - | ||
103 | - %1-3 number tolls to parallel x axis. Rigid transformation on plane surface | ||
104 | - %Z axis coords oyler angle transform | ||
105 | - | ||
106 | - t = joint_3 - joint_1; | ||
107 | - d3 = R1(1,:) * t.'; | ||
108 | - d3(1,2) = R1(2,:) * t.'; | ||
109 | - d3(1,3) = R1(3,:) * t.'; | ||
110 | - | ||
111 | - u3 = d3(1:2)/norm(d3(1:2)); | ||
112 | - v3 = [u3(1) -u3(2)]; | ||
113 | - v3(2,:) = [u3(2) u3(1)]; | ||
114 | - u4 = [1 0].'; | ||
115 | - | ||
116 | - csss = v3\u4; | ||
117 | - cs2 = csss(1); | ||
118 | - ss2 = csss(2); | ||
119 | - | ||
120 | - R2 = [cs2 -ss2 0]; | ||
121 | - R2(2,:) = [ss2 cs2 0]; | ||
122 | - R2(3,:) = [0 0 1]; | ||
123 | - | ||
124 | - | ||
125 | - %apply rigid transformation | ||
126 | - for FN = 1:frame_num | ||
127 | - cur_body = bodyinfo(FN).bodies(1); | ||
128 | - joints = cur_body.joints; | ||
129 | 145 | ||
130 | - for JN = 1:25 | 146 | + %Give Gaussian Random Variable : 0.01 - 6times |
131 | - a = R1(1,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | 147 | + for RV = 1:6 |
132 | - b = R1(2,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | 148 | + %3. Gaussian Random filter 0.1 |
133 | - c = R1(3,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | 149 | + cur_subject_x = augment_x + 0.01.*randn(frame_num,25); |
150 | + cur_subject_y = augment_y + 0.01.*randn(frame_num,25); | ||
151 | + cur_subject_z = clear_subject_z + 0.01.*randn(frame_num,25); | ||
152 | + | ||
153 | + % NORMALIZATION | ||
154 | + cur_subject_x = cur_subject_x - min(cur_subject_x(:)); | ||
155 | + max_tall = max(cur_subject_x(:)); | ||
156 | + cur_subject_x = cur_subject_x ./ max_tall; | ||
157 | + | ||
158 | + cur_subject_y = cur_subject_y - min(cur_subject_y(:)); | ||
159 | + cur_subject_y = cur_subject_y ./ max_tall; | ||
160 | + | ||
161 | + cur_subject_z = cur_subject_z - min(cur_subject_z(:)); | ||
162 | + cur_subject_z = cur_subject_z ./ max_tall; | ||
134 | 163 | ||
135 | - cur_subject_x(FN,JN) = R2(1,:) * [a b c].'; | 164 | + |
136 | - cur_subject_y(FN,JN) = R2(2,:) * [a b c].'; | 165 | + %Write image |
137 | - cur_subject_z(FN,JN) = R2(3,:) * [a b c].'; | 166 | + motionpatch = cur_subject_x; |
167 | + motionpatch(:,:,2) = cur_subject_y; | ||
168 | + motionpatch(:,:,3) = cur_subject_z; | ||
169 | + | ||
170 | + new_file_name = strcat('/home/rfj/바탕화면/actionGAN/DCGAN/new_motionpatch/',file_name(1:20),'_',num2str(LR),num2str(HE),num2str(RV),'.png'); | ||
171 | + imwrite(motionpatch,new_file_name); | ||
138 | 172 | ||
139 | end | 173 | end |
140 | end | 174 | end |
141 | - | ||
142 | - %orientation normalize 2 (with plane surface) | ||
143 | - if cur_subject_x(1,4) < cur_subject_x(1,1) | ||
144 | - cur_subject_x = 0 - cur_subject_x; | ||
145 | - end | ||
146 | - | ||
147 | - if cur_subject_y(1,9) > cur_subject_y(1,5) | ||
148 | - cur_subject_y = 0 - cur_subject_y; | ||
149 | - end | ||
150 | - | ||
151 | - %get current median | ||
152 | - CM_x=median(cur_subject_x); | ||
153 | - CM_y=median(cur_subject_y); | ||
154 | - CM_z=median(cur_subject_z); | ||
155 | - | ||
156 | - %for transform bellybutton to 0.5,0.5 (Except X) but it doesn't work | ||
157 | - belly_button = 0.5 - CM_y(2); | ||
158 | - belly_button(2) = 0.5 - CM_z(2); | ||
159 | - | ||
160 | - % normalize with x... <- HERE! WANT TO PARALLEL TRANSFORM | ||
161 | - ... but if I plus belly_button for x and y axis , it dosn't work | ||
162 | - cur_subject_x = cur_subject_x - min(cur_subject_x(:)); | ||
163 | - max_tall = max(cur_subject_x(:)); | ||
164 | - cur_subject_x = cur_subject_x ./ max_tall; | ||
165 | - | ||
166 | - cur_subject_y = cur_subject_y - min(cur_subject_y(:)); | ||
167 | - cur_subject_y = cur_subject_y ./ max_tall; | ||
168 | - | ||
169 | - cur_subject_z = cur_subject_z - min(cur_subject_z(:)); | ||
170 | - cur_subject_z = cur_subject_z ./ max_tall; | ||
171 | - | ||
172 | - | ||
173 | - % 이미지 저장 | ||
174 | - motionpatch = cur_subject_x; | ||
175 | - motionpatch(:,:,2) = cur_subject_y; | ||
176 | - motionpatch(:,:,3) = cur_subject_z; | ||
177 | - | ||
178 | - | ||
179 | - new_file_name = strcat('/home/rfj/바탕화면/motionpatch/',num2str(class),'/',file_name(1:20),'.png'); | ||
180 | - imwrite(motionpatch,new_file_name); | ||
181 | - | ||
182 | - catch | ||
183 | - name | ||
184 | end | 175 | end |
185 | 176 | ||
177 | + catch | ||
178 | + name | ||
186 | end | 179 | end |
187 | - | ||
188 | - | ||
189 | 180 | ||
190 | end | 181 | end | ... | ... |
data_preprocessing/transform_all_halfsize.m
0 → 100644
1 | +clear; | ||
2 | + | ||
3 | +path_name = '/media/rfj/EEA4441FA443E923/nturgb_skeletones/'; | ||
4 | +fileID = fopen('/home/rfj/바탕화면/actionGAN/skeletone_INDEX/good_stand_2.txt','r'); | ||
5 | +formatSpec = '%s'; | ||
6 | +sizeA = [20 Inf]; | ||
7 | +perfect_list = fscanf(fileID,formatSpec,sizeA); | ||
8 | +perfect_list = perfect_list.'; | ||
9 | +fclose(fileID); | ||
10 | + | ||
11 | +L = length(perfect_list); | ||
12 | + | ||
13 | +for K = 1:L | ||
14 | + | ||
15 | + file_name = char(perfect_list(K,:)); | ||
16 | + name = strcat(path_name,file_name(1:20),'.skeleton'); | ||
17 | + [token,remainder] = strtok(file_name,'A'); | ||
18 | + class = str2num(remainder(2:4)); | ||
19 | + | ||
20 | + bodyinfo = read_skeleton_file(name); | ||
21 | + frame_num = size(bodyinfo,2); | ||
22 | + try | ||
23 | + %initialize | ||
24 | + cur_subject_x = zeros(frame_num, 25); | ||
25 | + cur_subject_y = zeros(frame_num, 25); | ||
26 | + cur_subject_z = zeros(frame_num, 25); | ||
27 | + | ||
28 | + tot_x = zeros(frame_num,25); | ||
29 | + tot_y = zeros(frame_num,25); | ||
30 | + tot_z = zeros(frame_num,25); | ||
31 | + | ||
32 | + joint_5 = zeros(1,3); | ||
33 | + joint_9 = zeros(1,3); | ||
34 | + joint_1 = zeros(1,3); | ||
35 | + joint_3 = zeros(1,3); | ||
36 | + | ||
37 | + %get total joints information | ||
38 | + for FN = 1:frame_num | ||
39 | + cur_body = bodyinfo(FN).bodies(1); | ||
40 | + joints = cur_body.joints; | ||
41 | + | ||
42 | + for JN = 1:25 | ||
43 | + tot_x(FN,JN) = joints(JN).x; | ||
44 | + tot_y(FN,JN) = joints(JN).y; | ||
45 | + tot_z(FN,JN) = joints(JN).z; | ||
46 | + end | ||
47 | + end | ||
48 | + | ||
49 | + %Orientation normalization 1 : in space | ||
50 | + %get median values | ||
51 | + M_x = median(tot_x); | ||
52 | + M_y = median(tot_y); | ||
53 | + M_z = median(tot_z); | ||
54 | + | ||
55 | + %set 3 points for make plane | ||
56 | + joint_5 = [M_x(5) M_y(5) M_z(5)]; | ||
57 | + joint_9 = [M_x(9) M_y(9) M_z(9)]; | ||
58 | + joint_1 = [M_x(1) M_y(1) M_z(1)]; | ||
59 | + joint_3 = [M_x(3) M_y(3) M_z(3)]; | ||
60 | + | ||
61 | + %find RIGID TRNASFORMATION matrix | ||
62 | + d1 = joint_1 - joint_5; | ||
63 | + d2 = joint_1 - joint_9; | ||
64 | + n1 = cross(d1,d2); % because we will parallel transform, don't need to find belly | ||
65 | + u1 = n1/norm(n1); | ||
66 | + u2 = [0 0 1]; | ||
67 | + cs1 = dot(u1,u2)/norm(u1)*norm(u2); | ||
68 | + ss1 = sqrt(1-cs1.^2); | ||
69 | + v1 = cross(u1,u2)/norm(cross(u1,u2)); | ||
70 | + | ||
71 | + R1 = [v1(1)*v1(1)*(1-cs1)+cs1 v1(1)*v1(2)*(1-cs1)-v1(3)*ss1 v1(1)*v1(3)*(1-cs1)+v1(2)*ss1]; | ||
72 | + R1(2,:) = [v1(1)*v1(2)*(1-cs1)+v1(3)*ss1 v1(2)*v1(2)*(1-cs1)+cs1 v1(2)*v1(3)*(1-cs1)-v1(1)*ss1]; | ||
73 | + R1(3,:) = [v1(1)*v1(3)*(1-cs1)-v1(2)*ss1 v1(2)*v1(3)*(1-cs1)+v1(1)*ss1 v1(3)*v1(3)*(1-cs1)+cs1]; | ||
74 | + | ||
75 | + %1-3 number tolls to parallel x axis. Rigid transformation on plane surface | ||
76 | + %Z axis coords oyler angle transform | ||
77 | + | ||
78 | + t = joint_3 - joint_1; | ||
79 | + d3 = R1(1,:) * t.'; | ||
80 | + d3(1,2) = R1(2,:) * t.'; | ||
81 | + d3(1,3) = R1(3,:) * t.'; | ||
82 | + | ||
83 | + u3 = d3(1:2)/norm(d3(1:2)); | ||
84 | + v3 = [u3(1) -u3(2)]; | ||
85 | + v3(2,:) = [u3(2) u3(1)]; | ||
86 | + u4 = [1 0].'; | ||
87 | + | ||
88 | + csss = v3\u4; | ||
89 | + cs2 = csss(1); | ||
90 | + ss2 = csss(2); | ||
91 | + | ||
92 | + R2 = [cs2 -ss2 0]; | ||
93 | + R2(2,:) = [ss2 cs2 0]; | ||
94 | + R2(3,:) = [0 0 1]; | ||
95 | + | ||
96 | + | ||
97 | + %apply rigid transformation | ||
98 | + for FN = 1:frame_num | ||
99 | + cur_body = bodyinfo(FN).bodies(1); | ||
100 | + joints = cur_body.joints; | ||
101 | + | ||
102 | + for JN = 1:25 | ||
103 | + a = R1(1,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
104 | + b = R1(2,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
105 | + c = R1(3,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
106 | + | ||
107 | + cur_subject_x(FN,JN) = R2(1,:) * [a b c].'; | ||
108 | + cur_subject_y(FN,JN) = R2(2,:) * [a b c].'; | ||
109 | + cur_subject_z(FN,JN) = R2(3,:) * [a b c].'; | ||
110 | + | ||
111 | + end | ||
112 | + end | ||
113 | + | ||
114 | + %orientation normalize 2 in plane surface | ||
115 | + if cur_subject_x(1,4) < cur_subject_x(1,1) | ||
116 | + cur_subject_x = 0 - cur_subject_x; | ||
117 | + end | ||
118 | + | ||
119 | + if cur_subject_y(1,9) > cur_subject_y(1,5) | ||
120 | + cur_subject_y = 0 - cur_subject_y; | ||
121 | + end | ||
122 | + | ||
123 | + % for save origin subjects before data augment | ||
124 | + clear_subject_x = cur_subject_x; | ||
125 | + clear_subject_y = cur_subject_y; | ||
126 | + clear_subject_z = cur_subject_z; | ||
127 | + | ||
128 | + % Left <-> Right Change : 2option | ||
129 | + for LR = 1:2 | ||
130 | + if LR == 1 | ||
131 | + augment_y = clear_subject_y; | ||
132 | + else | ||
133 | + augment_y = 0 - clear_subject_y; | ||
134 | + end | ||
135 | + | ||
136 | + %Height change : 3option | ||
137 | + for HE = 1:3 | ||
138 | + if HE == 1 | ||
139 | + augment_x = clear_subject_x.* 1.2; | ||
140 | + elseif HE==2 | ||
141 | + augment_x = clear_subject_x.* 1.0; | ||
142 | + else | ||
143 | + augment_x = clear_subject_x.* 0.8; | ||
144 | + end | ||
145 | + | ||
146 | + %Give Gaussian Random Variable : 0.01 - 6times | ||
147 | + for RV = 1:6 | ||
148 | + %3. Gaussian Random filter 0.1 | ||
149 | + cur_subject_x = augment_x + 0.01.*randn(frame_num,25); | ||
150 | + cur_subject_y = augment_y + 0.01.*randn(frame_num,25); | ||
151 | + cur_subject_z = clear_subject_z + 0.01.*randn(frame_num,25); | ||
152 | + | ||
153 | + % NORMALIZATION | ||
154 | + cur_subject_x = cur_subject_x - min(cur_subject_x(:)); | ||
155 | + max_tall = max(cur_subject_x(:)) .*2; | ||
156 | + cur_subject_x = cur_subject_x ./ max_tall; | ||
157 | + | ||
158 | + cur_subject_y = cur_subject_y - min(cur_subject_y(:)); | ||
159 | + cur_subject_y = cur_subject_y ./ max_tall; | ||
160 | + | ||
161 | + cur_subject_z = cur_subject_z - min(cur_subject_z(:)); | ||
162 | + cur_subject_z = cur_subject_z ./ max_tall; | ||
163 | + | ||
164 | + | ||
165 | + %Write image | ||
166 | + motionpatch = cur_subject_x; | ||
167 | + motionpatch(:,:,2) = cur_subject_y; | ||
168 | + motionpatch(:,:,3) = cur_subject_z; | ||
169 | + | ||
170 | + new_file_name = strcat('/home/rfj/바탕화면/actionGAN/DCGAN/new_motionpatch_halfsize/',file_name(1:20),'_',num2str(LR),num2str(HE),num2str(RV),'.png'); | ||
171 | + imwrite(motionpatch,new_file_name); | ||
172 | + | ||
173 | + end | ||
174 | + end | ||
175 | + end | ||
176 | + | ||
177 | + catch | ||
178 | + name | ||
179 | + end | ||
180 | + | ||
181 | +end |
data_preprocessing/transform_all_rotated90.m
0 → 100644
1 | +clear; | ||
2 | + | ||
3 | +path_name = '/media/rfj/EEA4441FA443E923/nturgb_skeletones/'; | ||
4 | +fileID = fopen('/home/rfj/바탕화면/actionGAN/skeletone_INDEX/good_stand_2.txt','r'); | ||
5 | +formatSpec = '%s'; | ||
6 | +sizeA = [20 Inf]; | ||
7 | +perfect_list = fscanf(fileID,formatSpec,sizeA); | ||
8 | +perfect_list = perfect_list.'; | ||
9 | +fclose(fileID); | ||
10 | + | ||
11 | +L = length(perfect_list); | ||
12 | + | ||
13 | +for K = 1:L | ||
14 | + | ||
15 | + file_name = char(perfect_list(K,:)); | ||
16 | + name = strcat(path_name,file_name(1:20),'.skeleton'); | ||
17 | + [token,remainder] = strtok(file_name,'A'); | ||
18 | + class = str2num(remainder(2:4)); | ||
19 | + | ||
20 | + bodyinfo = read_skeleton_file(name); | ||
21 | + frame_num = size(bodyinfo,2); | ||
22 | + try | ||
23 | + | ||
24 | + %initialize | ||
25 | + cur_subject_x = zeros(frame_num, 25); | ||
26 | + cur_subject_y = zeros(frame_num, 25); | ||
27 | + cur_subject_z = zeros(frame_num, 25); | ||
28 | + | ||
29 | + tot_x = zeros(frame_num,25); | ||
30 | + tot_y = zeros(frame_num,25); | ||
31 | + tot_z = zeros(frame_num,25); | ||
32 | + | ||
33 | + joint_5 = zeros(1,3); | ||
34 | + joint_9 = zeros(1,3); | ||
35 | + joint_1 = zeros(1,3); | ||
36 | + joint_3 = zeros(1,3); | ||
37 | + | ||
38 | + %get total joints information | ||
39 | + for FN = 1:frame_num | ||
40 | + cur_body = bodyinfo(FN).bodies(1); | ||
41 | + joints = cur_body.joints; | ||
42 | + | ||
43 | + for JN = 1:25 | ||
44 | + tot_x(FN,JN) = joints(JN).x; | ||
45 | + tot_y(FN,JN) = joints(JN).y; | ||
46 | + tot_z(FN,JN) = joints(JN).z; | ||
47 | + end | ||
48 | + end | ||
49 | + | ||
50 | + %Orientation normalization 1 : in space | ||
51 | + %get median values | ||
52 | + M_x = median(tot_x); | ||
53 | + M_y = median(tot_y); | ||
54 | + M_z = median(tot_z); | ||
55 | + | ||
56 | + %set 3 points for make plane | ||
57 | + joint_5 = [M_x(5) M_y(5) M_z(5)]; | ||
58 | + joint_9 = [M_x(9) M_y(9) M_z(9)]; | ||
59 | + joint_1 = [M_x(1) M_y(1) M_z(1)]; | ||
60 | + joint_3 = [M_x(3) M_y(3) M_z(3)]; | ||
61 | + | ||
62 | + %find RIGID TRNASFORMATION matrix | ||
63 | + d1 = joint_1 - joint_5; | ||
64 | + d2 = joint_1 - joint_9; | ||
65 | + n1 = cross(d1,d2); % because we will parallel transform, don't need to find belly | ||
66 | + u1 = n1/norm(n1); | ||
67 | + u2 = [0 0 1]; | ||
68 | + cs1 = dot(u1,u2)/norm(u1)*norm(u2); | ||
69 | + ss1 = sqrt(1-cs1.^2); | ||
70 | + v1 = cross(u1,u2)/norm(cross(u1,u2)); | ||
71 | + | ||
72 | + R1 = [v1(1)*v1(1)*(1-cs1)+cs1 v1(1)*v1(2)*(1-cs1)-v1(3)*ss1 v1(1)*v1(3)*(1-cs1)+v1(2)*ss1]; | ||
73 | + R1(2,:) = [v1(1)*v1(2)*(1-cs1)+v1(3)*ss1 v1(2)*v1(2)*(1-cs1)+cs1 v1(2)*v1(3)*(1-cs1)-v1(1)*ss1]; | ||
74 | + R1(3,:) = [v1(1)*v1(3)*(1-cs1)-v1(2)*ss1 v1(2)*v1(3)*(1-cs1)+v1(1)*ss1 v1(3)*v1(3)*(1-cs1)+cs1]; | ||
75 | + | ||
76 | + %1-3 number tolls to parallel x axis. Rigid transformation on plane surface | ||
77 | + %Z axis coords oyler angle transform | ||
78 | + | ||
79 | + t = joint_3 - joint_1; | ||
80 | + d3 = R1(1,:) * t.'; | ||
81 | + d3(1,2) = R1(2,:) * t.'; | ||
82 | + d3(1,3) = R1(3,:) * t.'; | ||
83 | + | ||
84 | + u3 = d3(1:2)/norm(d3(1:2)); | ||
85 | + v3 = [u3(1) -u3(2)]; | ||
86 | + v3(2,:) = [u3(2) u3(1)]; | ||
87 | + u4 = [0 1].'; % decide orientation in plane | ||
88 | + | ||
89 | + csss = v3\u4; | ||
90 | + cs2 = csss(1); | ||
91 | + ss2 = csss(2); | ||
92 | + | ||
93 | + R2 = [cs2 -ss2 0]; | ||
94 | + R2(2,:) = [ss2 cs2 0]; | ||
95 | + R2(3,:) = [0 0 1]; | ||
96 | + | ||
97 | + | ||
98 | + %apply rigid transformation | ||
99 | + for FN = 1:frame_num | ||
100 | + cur_body = bodyinfo(FN).bodies(1); | ||
101 | + joints = cur_body.joints; | ||
102 | + | ||
103 | + for JN = 1:25 | ||
104 | + a = R1(1,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
105 | + b = R1(2,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
106 | + c = R1(3,:) * [joints(JN).x joints(JN).y joints(JN).z].'; | ||
107 | + | ||
108 | + cur_subject_x(FN,JN) = R2(1,:) * [a b c].'; | ||
109 | + cur_subject_y(FN,JN) = R2(2,:) * [a b c].'; | ||
110 | + cur_subject_z(FN,JN) = R2(3,:) * [a b c].'; | ||
111 | + | ||
112 | + end | ||
113 | + end | ||
114 | + | ||
115 | + %orientation normalize 2 (with plane surface) | ||
116 | + if cur_subject_y(1,4) < cur_subject_y(1,1) | ||
117 | + cur_subject_y = 0 - cur_subject_y; | ||
118 | + end | ||
119 | + | ||
120 | + if cur_subject_x(1,9) > cur_subject_x(1,5) | ||
121 | + cur_subject_x = 0 - cur_subject_x; | ||
122 | + end | ||
123 | + | ||
124 | + % for save origin subjects before data augment | ||
125 | + clear_subject_x = cur_subject_x; | ||
126 | + clear_subject_y = cur_subject_y; | ||
127 | + clear_subject_z = cur_subject_z; | ||
128 | + | ||
129 | + % Left <-> Right Change : 2option | ||
130 | + for LR = 1:2 | ||
131 | + if LR == 1 | ||
132 | + augment_x = clear_subject_x; | ||
133 | + else | ||
134 | + augment_x = 0 - clear_subject_x; | ||
135 | + end | ||
136 | + | ||
137 | + %Height change : 3option | ||
138 | + for HE = 1:3 | ||
139 | + if HE == 1 | ||
140 | + augment_y = clear_subject_y.* 1.2; | ||
141 | + elseif HE==2 | ||
142 | + augment_y = clear_subject_y.* 1.0; | ||
143 | + else | ||
144 | + augment_y = clear_subject_y.* 0.8; | ||
145 | + end | ||
146 | + | ||
147 | + %Give Gaussian Random Variable : 0.01 - 6times | ||
148 | + for RV = 1:6 | ||
149 | + %3. Gaussian Random filter 0.1 | ||
150 | + cur_subject_x = augment_x + 0.01.*randn(frame_num,25); | ||
151 | + cur_subject_y = augment_y + 0.01.*randn(frame_num,25); | ||
152 | + cur_subject_z = clear_subject_z + 0.01.*randn(frame_num,25); | ||
153 | + | ||
154 | + % NORMALIZATION | ||
155 | + cur_subject_y = cur_subject_y - min(cur_subject_y(:)); | ||
156 | + max_tall = max(cur_subject_y(:)); | ||
157 | + cur_subject_y = cur_subject_y ./ max_tall; | ||
158 | + | ||
159 | + cur_subject_x = cur_subject_x - min(cur_subject_x(:)); | ||
160 | + cur_subject_x = cur_subject_x ./ max_tall; | ||
161 | + | ||
162 | + cur_subject_z = cur_subject_z - min(cur_subject_z(:)); | ||
163 | + cur_subject_z = cur_subject_z ./ max_tall; | ||
164 | + | ||
165 | + | ||
166 | + %Write image | ||
167 | + motionpatch = cur_subject_x; | ||
168 | + motionpatch(:,:,2) = cur_subject_y; | ||
169 | + motionpatch(:,:,3) = cur_subject_z; | ||
170 | + | ||
171 | + new_file_name = strcat('/home/rfj/바탕화면/actionGAN/DCGAN/new_motionpatch_rotate90/',file_name(1:20),'_',num2str(LR),num2str(HE),num2str(RV),'.png'); | ||
172 | + imwrite(motionpatch,new_file_name); | ||
173 | + | ||
174 | + end | ||
175 | + end | ||
176 | + | ||
177 | + end | ||
178 | + | ||
179 | + catch | ||
180 | + name | ||
181 | + end | ||
182 | + | ||
183 | +end |
... | @@ -7,7 +7,7 @@ | ... | @@ -7,7 +7,7 @@ |
7 | 7 | ||
8 | clear; | 8 | clear; |
9 | 9 | ||
10 | -name = '/home/rfj/바탕화면/skeletones/S001C001P002R002A020.skeleton' | 10 | +name = '/home/rfj/바탕화면/actionGAN/sample_skeletones/S001C001P001R002A020.skeleton' |
11 | bodyinfo = read_skeleton_file(name); | 11 | bodyinfo = read_skeleton_file(name); |
12 | frame_num = size(bodyinfo,2); | 12 | frame_num = size(bodyinfo,2); |
13 | 13 | ||
... | @@ -37,6 +37,7 @@ for FN = 1:frame_num | ... | @@ -37,6 +37,7 @@ for FN = 1:frame_num |
37 | end | 37 | end |
38 | end | 38 | end |
39 | 39 | ||
40 | +%Orientation normalization 1 : in space | ||
40 | %get median values | 41 | %get median values |
41 | M_x = median(tot_x); | 42 | M_x = median(tot_x); |
42 | M_y = median(tot_y); | 43 | M_y = median(tot_y); |
... | @@ -109,89 +110,59 @@ end | ... | @@ -109,89 +110,59 @@ end |
109 | if cur_subject_y(1,9) > cur_subject_y(1,5) | 110 | if cur_subject_y(1,9) > cur_subject_y(1,5) |
110 | cur_subject_y = 0 - cur_subject_y; | 111 | cur_subject_y = 0 - cur_subject_y; |
111 | end | 112 | end |
112 | - | ||
113 | -%get current median | ||
114 | -CM_x=median(cur_subject_x); | ||
115 | -CM_y=median(cur_subject_y); | ||
116 | -CM_z=median(cur_subject_z); | ||
117 | - | ||
118 | -%for transform bellybutton to 0.5,0.5 (Except X) but it doesn't work | ||
119 | -belly_button = 0.5 - CM_y(2); | ||
120 | -belly_button(2) = 0.5 - CM_z(2); | ||
121 | - | ||
122 | -% normalize with x... <- HERE! WANT TO PARALLEL TRANSFORM | ||
123 | -... but if I plus belly_button for x and y axis , it dosn't work | ||
124 | -cur_subject_x = cur_subject_x - min(cur_subject_x(:)); | ||
125 | -max_tall = max(cur_subject_x(:)); | ||
126 | -cur_subject_x = cur_subject_x ./ max_tall; | ||
127 | - | ||
128 | -cur_subject_y = cur_subject_y - min(cur_subject_y(:)); | ||
129 | -cur_subject_y = cur_subject_y ./ max_tall; | ||
130 | - | ||
131 | -cur_subject_z = cur_subject_z - min(cur_subject_z(:)); | ||
132 | -cur_subject_z = cur_subject_z ./ max_tall; | ||
133 | - | ||
134 | - | ||
135 | -% 이미지 저장 | ||
136 | -motionpatch = cur_subject_x; | ||
137 | -motionpatch(:,:,2) = cur_subject_y; | ||
138 | -motionpatch(:,:,3) = cur_subject_z; | ||
139 | - | ||
140 | -new_file_name = strcat('/home/rfj/바탕화면/sample.png'); | ||
141 | -imwrite(motionpatch,new_file_name); | ||
142 | - | ||
143 | - | ||
144 | -% read image after write | ||
145 | - | ||
146 | -ori = imread('/home/rfj/바탕화면/sample.png'); | ||
147 | -ori = im2double(ori); | ||
148 | -ori = ori(:,:,:); | ||
149 | 113 | ||
150 | -dx = []; | 114 | +% for save origin subjects before data augment |
151 | -dy = []; | 115 | +clear_subject_x = cur_subject_x; |
152 | -dz = []; | 116 | +clear_subject_y = cur_subject_y; |
153 | - | 117 | +clear_subject_z = cur_subject_z; |
154 | -for f = 1:numel(ori(:,1,1)) | 118 | + |
155 | - for j = 1:25 | 119 | +% Left <-> Right Change : 2option |
156 | - dx = [dx;ori(f,j,1)]; | 120 | +for LR = 1:2 |
157 | - dy = [dy;ori(f,j,2)]; | 121 | + if LR == 1 |
158 | - dz = [dz;ori(f,j,3)]; | 122 | + augment_y = clear_subject_y; |
123 | + else | ||
124 | + augment_y = 0 - clear_subject_y; | ||
159 | end | 125 | end |
160 | -end | ||
161 | - | ||
162 | -a = [1 0 0]; % Red 척추 1,2,3,4,20 | ||
163 | -b = [0 0 1]; % Blue 오른팔 8,9,10,11,23,24 | ||
164 | -c = [0 1 0]; % Green왼팔 5,6,7,21,22 (여기서 5번이 빠짐. 넣고싶으면 나중에 24 joint가 아니라 25 joint로 추가) | ||
165 | -d = [1 1 0]; % Yellow 오른다리 16,17,18,19 | ||
166 | -e = [0 1 1]; % Skyblue 왼다리 12,13,14,15 | ||
167 | -colors = [a;a;a;a;c;c;c;c;b;b;b;b;e;e;e;e;d;d;d;d;a;c;c;b;b]; | ||
168 | - | ||
169 | -scatter3(dx,dy,dz,100,'filled'); | ||
170 | - | ||
171 | - | ||
172 | -connecting_joints= ... | ||
173 | - [2 1 21 3 21 5 6 7 21 9 10 11 1 13 14 15 1 17 18 19 2 8 8 12 12]; | ||
174 | - | ||
175 | -for jj=1:25:numel(dx)% 1부터 8개씩 numel = 열갯수..? | ||
176 | - current = []; | ||
177 | - current(:,1) = dy(jj:jj+24) ; | ||
178 | - current(:,2) = dz(jj:jj+24) ; | ||
179 | - current(:,3) = dx(jj:jj+24) ; | ||
180 | - | ||
181 | - scatter3(current(:,1),current(:,2),current(:,3),100,colors(:,:),'filled'); | ||
182 | 126 | ||
183 | - for j =1:25 | 127 | + %Height change : 3option |
184 | - k=connecting_joints(j); | 128 | + for HE = 1:3 |
185 | - line([current(j,1) current(k,1)], [current(j,2) current(k,2)] , [current(j,3) current(k,3)]) | 129 | + if HE == 1 |
130 | + augment_x = clear_subject_x.* 1.2; | ||
131 | + elseif HE==2 | ||
132 | + augment_x = clear_subject_x.* 1.0; | ||
133 | + else | ||
134 | + augment_x = clear_subject_x.* 0.8; | ||
135 | + end | ||
136 | + | ||
137 | + %Give Gaussian Random Variable : 0.01 - 6times | ||
138 | + for RV = 1:6 | ||
139 | + %3. Gaussian Random filter 0.1 | ||
140 | + cur_subject_x = augment_x + 0.01.*randn(frame_num,25); | ||
141 | + cur_subject_y = augment_y + 0.01.*randn(frame_num,25); | ||
142 | + cur_subject_z = clear_subject_z + 0.01.*randn(frame_num,25); | ||
143 | + | ||
144 | + % NORMALIZATION | ||
145 | + cur_subject_x = cur_subject_x - min(cur_subject_x(:)); | ||
146 | + max_tall = max(cur_subject_x(:)); | ||
147 | + cur_subject_x = cur_subject_x ./ max_tall; | ||
148 | + | ||
149 | + cur_subject_y = cur_subject_y - min(cur_subject_y(:)); | ||
150 | + cur_subject_y = cur_subject_y ./ max_tall; | ||
151 | + | ||
152 | + cur_subject_z = cur_subject_z - min(cur_subject_z(:)); | ||
153 | + cur_subject_z = cur_subject_z ./ max_tall; | ||
154 | + | ||
155 | + | ||
156 | + %Write image | ||
157 | + motionpatch = cur_subject_x; | ||
158 | + motionpatch(:,:,2) = cur_subject_y; | ||
159 | + motionpatch(:,:,3) = cur_subject_z; | ||
160 | + | ||
161 | + new_file_name = strcat('/home/rfj/바탕화면/actionGAN/DCGAN/new_motionpatch/sample_',num2str(LR),num2str(HE),num2str(RV),'.png'); | ||
162 | + imwrite(motionpatch,new_file_name); | ||
163 | + | ||
164 | + end | ||
186 | end | 165 | end |
187 | 166 | ||
188 | - set(gca,'Xdir','reverse','Ydir','reverse') | ||
189 | - xlim([0 1]); | ||
190 | - xlabel('x') | ||
191 | - ylim([0 1]); | ||
192 | - ylabel('y') | ||
193 | - zlim([0 1]); | ||
194 | - zlabel('z') | ||
195 | - drawnow | ||
196 | - pause(0.01) | ||
197 | -end | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
167 | +end | ||
168 | + | ... | ... |
No preview for this file type
No preview for this file type
No preview for this file type
datas/4_motionpatch_augmented.tar.gz
0 → 100644
This file is too large to display.
datas/5_motionpatch_halfsize.tar
0 → 100644
This file is too large to display.
datas/5_motionpatch_rotate90.tar
0 → 100644
This file is too large to display.
datas/smallone_augmentated.tar
0 → 100644
This file is too large to display.
... | @@ -4,7 +4,6 @@ S001C001P005R002A020 | ... | @@ -4,7 +4,6 @@ S001C001P005R002A020 |
4 | S001C001P007R001A020 | 4 | S001C001P007R001A020 |
5 | S001C001P008R002A020 | 5 | S001C001P008R002A020 |
6 | S001C002P002R002A020 | 6 | S001C002P002R002A020 |
7 | -S001C001P001R001A020 | ||
8 | S001C002P003R002A020 | 7 | S001C002P003R002A020 |
9 | S001C002P005R001A020 | 8 | S001C002P005R001A020 |
10 | S001C002P005R002A020 | 9 | S001C002P005R002A020 | ... | ... |
-
Please register or login to post a comment