Toggle navigation
Toggle navigation
This project
Loading...
Sign in
Hyunji
/
A-Performance-Evaluation-of-CNN-for-Brain-Age-Prediction-Using-Structural-MRI-Data
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
Hyunji
2021-12-20 03:49:05 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
198c41b4ed57345e5613dbcaa122688cc393c061
198c41b4
1 parent
ebfe69fd
dataset
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
411 additions
and
0 deletions
3DCNN_VGGNet_2DResNet/dataset.py
3DCNN_VGGNet_2DResNet/dataset.py
0 → 100644
View file @
198c41b
import
os
import
numpy
as
np
import
pandas
as
pd
import
nibabel
as
nib
from
collections
import
defaultdict
import
torch
from
torch.utils.data
import
Dataset
import
matplotlib.pyplot
as
plt
import
medicaltorch.transforms
as
mt_transforms
import
torchvision
as
tv
import
torchvision.utils
as
vutils
import
transforms
as
tf
from
tqdm
import
*
def
linked_augmentation
(
gm_batch
,
wm_batch
,
transform
):
gm_batch_size
=
gm_batch
.
size
(
0
)
gm_batch_cpu
=
gm_batch
.
cpu
()
.
detach
()
gm_batch_cpu
=
gm_batch_cpu
.
numpy
()
wm_batch_cpu
=
wm_batch
.
cpu
()
.
detach
()
wm_batch_cpu
=
wm_batch_cpu
.
numpy
()
samples_linked_aug
=
[]
sample_linked_aug
=
{
'input'
:
[
gm_batch_cpu
,
wm_batch_cpu
]}
# print('GM: ', sample_linked_aug['input'][0].shape)
# print('WM: ', sample_linked_aug['input'][1].shape)
out
=
transform
(
sample_linked_aug
)
# samples_linked_aug.append(out)
# samples_linked_aug = mt_datasets.mt_collate(samples_linked_aug)
return
out
class
PAC20192D
(
Dataset
):
def
__init__
(
self
,
ctx
,
set
,
split1
=
0.7
,
split2
=
0.8
,
portion
=
0.8
):
#set, split1=0.7, split2=0.8 ###
"""
split: train/val split
portion: portion of the axial slices that enter the dataset
"""
self
.
ctx
=
ctx
self
.
portion
=
portion
dataset_path
=
ctx
[
"dataset_path"
]
csv_path
=
os
.
path
.
join
(
dataset_path
,
"IXI1126.csv"
)
dataset
=
[]
stratified_dataset
=
[]
with
open
(
csv_path
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
sites
=
defaultdict
(
list
)
for
data
in
dataset
:
sites
[
data
[
'site'
]]
.
append
(
data
)
for
site
in
sites
.
keys
():
length
=
len
(
sites
[
site
])
if
set
==
'train'
:
stratified_dataset
+=
sites
[
site
][
0
:
int
(
length
*
split1
)]
print
(
stratified_dataset
)
if
set
==
'val'
:
stratified_dataset
+=
sites
[
site
][
int
(
length
*
split1
):
int
(
length
*
split2
)]
print
(
stratified_dataset
)
if
set
==
'test'
:
stratified_dataset
+=
sites
[
site
][
int
(
length
*
split2
):]
print
(
stratified_dataset
)
self
.
dataset
=
stratified_dataset
self
.
slices
=
[]
self
.
transform
=
tv
.
transforms
.
Compose
([
mt_transforms
.
ToPIL
(
labeled
=
False
),
mt_transforms
.
ElasticTransform
(
alpha_range
=
(
28.0
,
30.0
),
sigma_range
=
(
3.5
,
4.0
),
p
=
0.3
,
labeled
=
False
),
mt_transforms
.
RandomAffine
(
degrees
=
4.6
,
scale
=
(
0.98
,
1.02
),
translate
=
(
0.03
,
0.03
),
labeled
=
False
),
mt_transforms
.
RandomTensorChannelShift
((
-
0.10
,
0.10
)),
mt_transforms
.
ToTensor
(
labeled
=
False
),
])
self
.
preprocess_dataset
()
def
preprocess_dataset
(
self
):
for
i
,
data
in
enumerate
(
tqdm
(
self
.
dataset
,
desc
=
"Loading dataset"
)):
#filename_gm = os.path.join(self.ctx["dataset_path"], 'gm', data['subject'] + '_gm.nii.gz')
filename_gm
=
data
[
'filename'
]
input_image_gm
=
torch
.
FloatTensor
(
nib
.
load
(
filename_gm
)
.
get_fdata
())
input_image_gm
=
input_image_gm
.
permute
(
2
,
0
,
1
)
#filename_wm = os.path.join(self.ctx["dataset_path"], 'wm', data['subject'] + '_wm.nii.gz')
filename_wm
=
data
[
'filename'
]
input_image_wm
=
torch
.
FloatTensor
(
nib
.
load
(
filename_wm
)
.
get_fdata
())
input_image_wm
=
input_image_wm
.
permute
(
2
,
0
,
1
)
start
=
int
((
1.
-
self
.
portion
)
*
input_image_gm
.
shape
[
0
])
end
=
int
(
self
.
portion
*
input_image_gm
.
shape
[
0
])
input_image_gm
=
input_image_gm
[
start
:
end
,:,:]
input_image_wm
=
input_image_wm
[
start
:
end
,:,:]
for
slice_idx
in
range
(
input_image_wm
.
shape
[
0
]):
slice_gm
=
input_image_gm
[
slice_idx
,:,:]
slice_wm
=
input_image_wm
[
slice_idx
,:,:]
slice_gm
=
slice_gm
.
unsqueeze
(
0
)
slice_wm
=
slice_wm
.
unsqueeze
(
0
)
slice
=
torch
.
cat
([
slice_gm
,
slice_wm
],
dim
=
0
)
# print(slice.max(), slice.min())
self
.
slices
.
append
({
'image'
:
slice
,
'age'
:
data
[
'age'
]
})
# plt.imshow(slice.squeeze())
# plt.show()
def
__getitem__
(
self
,
idx
):
data
=
self
.
slices
[
idx
]
#transformed = {
#'input': data['image']
# }
# plt.imshow(data['image'][0])
# plt.title('gm')
# plt.show()
# plt.imshow(data['image'][1])
# plt.title('wm')
# plt.show()
gm
=
data
[
'image'
][
0
]
.
unsqueeze
(
0
)
wm
=
data
[
'image'
][
1
]
.
unsqueeze
(
0
)
batch
=
linked_augmentation
(
gm
,
wm
,
self
.
transform
)
# print('gm: ', batch['input'][0].shape)
# print('wm: ', batch['input'][1].shape)
batch
=
torch
.
cat
([
batch
[
'input'
][
0
],
batch
[
'input'
][
1
]],
dim
=
0
)
# print('Final shape: ', batch.shape)
#transformed = self.transform(transformed)
return
{
'input'
:
batch
,
'label'
:
data
[
'age'
]
}
def
__len__
(
self
):
return
len
(
self
.
slices
)
class
PAC20193D
(
Dataset
):
def
__init__
(
self
,
ctx
,
set
):
#set, split1=0.7, split2=0.8 ###
self
.
ctx
=
ctx
dataset_path
=
ctx
[
"dataset_path"
]
#csv_path = os.path.join(dataset_path, "IXI0923.csv")
csv_path_train
=
os
.
path
.
join
(
dataset_path
,
"train1105.csv"
)
csv_path_valid
=
os
.
path
.
join
(
dataset_path
,
"valid1105.csv"
)
csv_path_test
=
os
.
path
.
join
(
dataset_path
,
"test1105.csv"
)
#dataset = []
dataset_train
=
[]
dataset_valid
=
[]
dataset_test
=
[]
dataset
=
[]
stratified_dataset
=
[]
with
open
(
csv_path_train
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset_train
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
with
open
(
csv_path_valid
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset_valid
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
with
open
(
csv_path_test
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset_test
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
#sites = defaultdict(list)
sites_train
=
defaultdict
(
list
)
sites_valid
=
defaultdict
(
list
)
sites_test
=
defaultdict
(
list
)
for
data
in
dataset_train
:
sites_train
[
data
[
'site'
]]
.
append
(
data
)
for
data
in
dataset_valid
:
sites_valid
[
data
[
'site'
]]
.
append
(
data
)
for
data
in
dataset_test
:
sites_test
[
data
[
'site'
]]
.
append
(
data
)
if
set
==
'train'
:
for
site
in
sites_train
.
keys
():
length_train
=
len
(
sites_train
[
site
])
stratified_dataset
+=
sites_train
[
site
][
0
:
int
(
length_train
)]
print
(
stratified_dataset
)
if
set
==
'valid'
:
for
site
in
sites_valid
.
keys
():
length_valid
=
len
(
sites_valid
[
site
])
stratified_dataset
+=
sites_valid
[
site
][
0
:
int
(
length_valid
)]
print
(
stratified_dataset
)
if
set
==
'test'
:
for
site
in
sites_test
.
keys
():
length_test
=
len
(
sites_test
[
site
])
stratified_dataset
+=
sites_test
[
site
][
0
:
int
(
length_test
)]
print
(
stratified_dataset
)
self
.
dataset
=
stratified_dataset
self
.
transform
=
tv
.
transforms
.
Compose
([
tf
.
ImgAugTranslation
(
10
),
tf
.
ImgAugRotation
(
40
),
tf
.
ToTensor
(),
])
def
__getitem__
(
self
,
idx
):
data
=
self
.
dataset
[
idx
]
filename
=
data
[
'filename'
]
input_image
=
torch
.
FloatTensor
(
nib
.
load
(
filename
)
.
get_fdata
())
input_image
=
input_image
.
permute
(
2
,
0
,
1
)
transformed
=
{
'input'
:
input_image
}
transformed
=
self
.
transform
(
transformed
[
'input'
])
transformed
=
transformed
.
unsqueeze
(
0
)
print
(
transformed
.
shape
)
return
{
'input'
:
transformed
,
'label'
:
data
[
'age'
]
}
def
__len__
(
self
):
return
len
(
self
.
dataset
)
class
PAC2019
(
Dataset
):
def
__init__
(
self
,
ctx
,
set
,
split
=
0.8
):
self
.
ctx
=
ctx
dataset_path
=
ctx
[
"dataset_path"
]
csv_path_train
=
os
.
path
.
join
(
dataset_path
,
"train1105.csv"
)
csv_path_valid
=
os
.
path
.
join
(
dataset_path
,
"valid1105.csv"
)
csv_path_test
=
os
.
path
.
join
(
dataset_path
,
"test1105.csv"
)
dataset_train
=
[]
dataset_valid
=
[]
dataset_test
=
[]
dataset
=
[]
stratified_dataset
=
[]
with
open
(
csv_path_train
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset_train
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
with
open
(
csv_path_valid
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset_valid
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
with
open
(
csv_path_test
)
as
fid
:
for
i
,
line
in
enumerate
(
fid
):
if
i
==
0
:
continue
line
=
line
.
split
(
','
)
dataset_test
.
append
({
'subject'
:
line
[
0
],
'age'
:
float
(
line
[
1
]),
'gender'
:
line
[
2
],
'site'
:
int
(
line
[
3
]),
'filename'
:
line
[
4
]
.
replace
(
'
\n
'
,
''
)
})
#sites = defaultdict(list)
sites_train
=
defaultdict
(
list
)
sites_valid
=
defaultdict
(
list
)
sites_test
=
defaultdict
(
list
)
for
data
in
dataset_train
:
sites_train
[
data
[
'site'
]]
.
append
(
data
)
for
data
in
dataset_valid
:
sites_valid
[
data
[
'site'
]]
.
append
(
data
)
for
data
in
dataset_test
:
sites_test
[
data
[
'site'
]]
.
append
(
data
)
if
set
==
'train'
:
for
site
in
sites_train
.
keys
():
length_train
=
len
(
sites_train
[
site
])
stratified_dataset
+=
sites_train
[
site
][
0
:
int
(
length_train
)]
print
(
stratified_dataset
)
if
set
==
'valid'
:
for
site
in
sites_valid
.
keys
():
length_valid
=
len
(
sites_valid
[
site
])
stratified_dataset
+=
sites_valid
[
site
][
0
:
int
(
length_valid
)]
print
(
stratified_dataset
)
if
set
==
'test'
:
for
site
in
sites_test
.
keys
():
length_test
=
len
(
sites_test
[
site
])
stratified_dataset
+=
sites_test
[
site
][
0
:
int
(
length_test
)]
print
(
stratified_dataset
)
self
.
dataset
=
stratified_dataset
self
.
transform
=
tv
.
transforms
.
Compose
([
mt_transforms
.
ToPIL
(
labeled
=
False
),
mt_transforms
.
ElasticTransform
(
alpha_range
=
(
28.0
,
30.0
),
sigma_range
=
(
3.5
,
4.0
),
p
=
0.3
,
labeled
=
False
),
mt_transforms
.
RandomAffine
(
degrees
=
4.6
,
scale
=
(
0.98
,
1.02
),
translate
=
(
0.03
,
0.03
),
labeled
=
False
),
mt_transforms
.
RandomTensorChannelShift
((
-
0.10
,
0.10
)),
mt_transforms
.
ToTensor
(
labeled
=
False
),
])
def
__getitem__
(
self
,
idx
):
data
=
self
.
dataset
[
idx
]
filename
=
data
[
'filename'
]
t1_image
=
torch
.
FloatTensor
(
nib
.
load
(
filename
)
.
get_fdata
())
t1_image
=
t1_image
.
permute
(
2
,
0
,
1
)
# transformed = {
# 'input': gm_image
# }
# self.transform(transformed)
# plt.imshow(gm_image[60,:,:])
# plt.show()
# plt.imshow(gm_image[:,60,:])
# plt.show()
# plt.imshow(gm_image[:,:,60])
# plt.show()
#
# raise
return
{
#'t1':t1_image,
'input'
:
t1_image
,
'label'
:
data
[
'age'
]
}
def
__len__
(
self
):
return
len
(
self
.
dataset
)
\ No newline at end of file
Please
register
or
login
to post a comment