Toggle navigation
Toggle navigation
This project
Loading...
Sign in
Hyunji
/
A-Performance-Evaluation-of-CNN-for-Brain-Age-Prediction-Using-Structural-MRI-Data
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
Hyunji
2021-12-20 04:30:14 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
896df460decfd6c9a974949b60cb57af544d07fa
896df460
1 parent
908ef160
main
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
281 additions
and
0 deletions
2DCNN/main.py
2DCNN/main.py
0 → 100644
View file @
896df46
# -*- coding: utf-8 -*-
"""main.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1X0vDvK01A8_3JbSAu1whlPD-rBx0JlM-
"""
import
argparse
import
importlib
import
json
import
logging
import
os
import
pprint
import
sys
import
dill
import
torch
import
wandb
from
box
import
Box
from
torch.utils.data
import
DataLoader
from
src.common.dataset
import
get_dataset
from
lib.utils
import
logging
as
logging_utils
,
os
as
os_utils
,
optimizer
as
optimizer_utils
from
lib.base_trainer
import
Trainer
import
easydict
def
parser_setup
():
# define argparsers
str2bool
=
os_utils
.
str2bool
listorstr
=
os_utils
.
listorstr
parser
=
easydict
.
EasyDict
({
"debug"
:
False
,
"config"
:
None
,
"seed"
:
0
,
"wandb_use"
:
False
,
"wandb_run_id"
:
None
,
"wandb.watch"
:
False
,
"project"
:
"brain-age"
,
"exp_name"
:
None
,
"device"
:
"cuda"
,
"result_folder"
:
"a"
,
"mode"
:[
"test"
,
"train"
],
"statefile"
:
None
,
"data"
:
{
"name"
:
"brain_age"
,
"root_path"
:
"**root path"
,
"train_csv"
:
"**train csv"
,
"valid_csv"
:
"**valid csv"
,
"test_csv"
:
"**test csv"
,
"feat_csv"
:
None
,
"train_num_sample"
:
-
1
,
"frame_dim"
:
1
,
"frame_keep_style"
:
"random"
,
"frame_keep_fraction"
:
1
,
"impute"
:
"drop"
,
},
"model"
:
{
"name"
:
"regression"
,
"arch"
:
{
"file"
:
"src/arch/brain_age_3d.py"
,
"lstm_feat_dim"
:
2
,
"lstm_latent_dim"
:
128
,
"attn_num_heads"
:
1
,
"attn_dim"
:
32
,
"attn_drop"
:
False
,
"agg_fn"
:
"attention"
}
},
"train"
:{
"batch_size"
:
8
,
"patience"
:
100
,
"max_epoch"
:
100
,
"optimizer"
:
"adam"
,
"lr"
:
1e-3
,
"weight_decay"
:
1e-4
,
"gradient_norm_clip"
:
-
1
,
"save_strategy"
:[
"best"
,
"last"
],
"log_every"
:
100
,
"stopping_criteria"
:
"loss"
,
"stopping_criteria_direction"
:
"lower"
,
"evaluations"
:
None
,
"optimizer_momentum"
:
None
,
"scheduler"
:
None
,
"scheduler_gamma"
:
None
,
"scheduler_milestones"
:
None
,
"scheduler_patience"
:
None
,
"scheduler_step_size"
:
None
,
"scheduler_load_on_reduce"
:
None
,
},
"test"
:{
"batch_size"
:
8
,
"evaluations"
:
None
,
"eval_model"
:
"best"
,
},
"_actions"
:
None
,
"_defaults"
:
None
})
print
(
parser
.
seed
)
return
parser
if
__name__
==
"__main__"
:
# set seeds etc here
torch
.
backends
.
cudnn
.
benchmark
=
True
# define logger etc
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
"
%(asctime)
s
%(message)
s"
)
logger
=
logging
.
getLogger
()
parser
=
parser_setup
()
#config = os_utils.parse_args(parser)
config
=
parser
logger
.
info
(
"Config:"
)
logger
.
info
(
pprint
.
pformat
(
config
,
indent
=
4
))
os_utils
.
safe_makedirs
(
config
.
result_folder
)
statefile
,
run_id
,
result_folder
=
os_utils
.
get_state_params
(
config
.
wandb_use
,
config
.
wandb_run_id
,
config
.
result_folder
,
config
.
statefile
)
config
.
statefile
=
statefile
config
.
wandb_run_id
=
run_id
config
.
result_folder
=
result_folder
if
statefile
is
not
None
:
data
=
torch
.
load
(
open
(
statefile
,
"rb"
),
pickle_module
=
dill
)
epoch
=
data
[
"epoch"
]
if
epoch
>=
config
.
train
.
max_epoch
:
logger
.
error
(
"Aleady trained upto max epoch; exiting"
)
sys
.
exit
()
if
config
.
wandb_use
:
wandb
.
init
(
name
=
config
.
exp_name
if
config
.
exp_name
is
not
None
else
config
.
result_folder
,
config
=
config
.
to_dict
(),
project
=
config
.
project
,
dir
=
config
.
result_folder
,
resume
=
config
.
wandb_run_id
,
id
=
config
.
wandb_run_id
,
sync_tensorboard
=
True
,
)
logger
.
info
(
f
"Starting wandb with id {wandb_run_id}"
)
# NOTE: WANDB creates git patch so we probably can get rid of this in future
os_utils
.
copy_code
(
"src"
,
config
.
result_folder
,
replace
=
True
,)
json
.
dump
(
config
,
open
(
f
"{wandb_run.dir if config.wandb_use else config.result_folder}/config.json"
,
"w"
)
)
logger
.
info
(
"Getting data and dataloaders"
)
data
,
meta
=
get_dataset
(
**
config
.
data
,
device
=
config
.
device
,
replace
=
True
,
frac
=
2000
)
# num_workers = max(min(os.cpu_count(), 8), 1)
num_workers
=
os
.
cpu_count
()
logger
.
info
(
f
"Using {num_workers} workers"
)
train_loader
=
DataLoader
(
data
[
"train"
],
shuffle
=
False
,
batch_size
=
config
.
train
.
batch_size
,
num_workers
=
num_workers
)
valid_loader
=
DataLoader
(
data
[
"valid"
],
shuffle
=
False
,
batch_size
=
config
.
test
.
batch_size
,
num_workers
=
num_workers
)
test_loader
=
DataLoader
(
data
[
"test"
],
shuffle
=
False
,
batch_size
=
config
.
test
.
batch_size
,
num_workers
=
num_workers
)
logger
.
info
(
"Getting model"
)
# load arch module
arch_module
=
importlib
.
import_module
(
config
.
model
.
arch
.
file
.
replace
(
"/"
,
"."
)[:
-
3
])
model_arch
=
arch_module
.
get_arch
(
input_shape
=
meta
.
get
(
"input_shape"
),
output_size
=
meta
.
get
(
"num_class"
),
**
config
.
model
.
arch
,
slice_dim
=
config
.
data
.
frame_dim
)
# declaring models
if
config
.
model
.
name
in
"regression"
:
from
src.models.regression
import
Regression
model
=
Regression
(
**
model_arch
)
else
:
raise
Exception
(
"Unknown model"
)
model
.
to
(
config
.
device
)
model
.
stats
()
if
config
.
wandb_use
and
config
.
wandb_watch
:
wandb_watch
(
model
,
log
=
"all"
)
# declaring trainer
optimizer
,
scheduler
=
optimizer_utils
.
get_optimizer_scheduler
(
model
,
lr
=
config
.
train
.
lr
,
optimizer
=
config
.
train
.
optimizer
,
opt_params
=
{
"weight_decay"
:
config
.
train
.
get
(
"weight_decay"
,
1e-4
),
"momentum"
:
config
.
train
.
get
(
"optimizer_momentum"
,
0.9
)
},
scheduler
=
config
.
train
.
get
(
"scheduler"
,
None
),
scheduler_params
=
{
"gamma"
:
config
.
train
.
get
(
"scheduler_gamma"
,
0.1
),
"milestones"
:
config
.
train
.
get
(
"scheduler_milestones"
,
[
100
,
200
,
300
]),
"patience"
:
config
.
train
.
get
(
"scheduler_patience"
,
100
),
"step_size"
:
config
.
train
.
get
(
"scheduler_step_size"
,
100
),
"load_on_reduce"
:
config
.
train
.
get
(
"scheduler_load_on_reduce"
),
"mode"
:
"max"
if
config
.
train
.
get
(
"stopping_criteria_direction"
)
==
"bigger"
else
"min"
},
)
trainer
=
Trainer
(
model
,
optimizer
,
scheduler
=
scheduler
,
statefile
=
config
.
statefile
,
result_dir
=
config
.
result_folder
,
log_every
=
config
.
train
.
log_every
,
save_strategy
=
config
.
train
.
save_strategy
,
patience
=
config
.
train
.
patience
,
max_epoch
=
config
.
train
.
max_epoch
,
stopping_criteria
=
config
.
train
.
stopping_criteria
,
gradient_norm_clip
=
config
.
train
.
gradient_norm_clip
,
stopping_criteria_direction
=
config
.
train
.
stopping_criteria_direction
,
evaluations
=
Box
({
"train"
:
config
.
train
.
evaluations
,
"test"
:
config
.
test
.
evaluations
}))
if
"train"
in
config
.
mode
:
logger
.
info
(
"starting training"
)
print
(
train_loader
.
dataset
)
trainer
.
train
(
train_loader
,
valid_loader
)
logger
.
info
(
"Training done;"
)
# copy current step and write test results to
step_to_write
=
trainer
.
step
step_to_write
+=
1
if
"test"
in
config
.
mode
and
config
.
test
.
eval_model
==
"best"
:
if
os
.
path
.
exists
(
f
"{trainer.result_dir}/best_model.pt"
):
logger
.
info
(
"Loading best model"
)
trainer
.
load
(
f
"{trainer.result_dir}/best_model.pt"
)
else
:
logger
.
info
(
"eval_model is best, but best model not found ::: evaling last model"
)
else
:
logger
.
info
(
"eval model is not best, so skipping loading at end of training"
)
if
"test"
in
config
.
mode
:
logger
.
info
(
"evaluating model on test set"
)
logger
.
info
(
f
"Model was trained upto {trainer.epoch}"
)
# copy current step and write test results to
step_to_write
=
trainer
.
step
step_to_write
+=
1
print
(
"<<<<<test>>>>>"
)
loss
,
aux_loss
=
trainer
.
test
(
train_loader
,
test_loader
)
logging_utils
.
loss_logger_helper
(
loss
,
aux_loss
,
writer
=
trainer
.
summary_writer
,
force_print
=
True
,
step
=
step_to_write
,
epoch
=
trainer
.
epoch
,
log_every
=
trainer
.
log_every
,
string
=
"test"
,
new_line
=
True
)
print
(
"<<<<<training>>>>>"
)
loss
,
aux_loss
=
trainer
.
test
(
train_loader
,
train_loader
)
logging_utils
.
loss_logger_helper
(
loss
,
aux_loss
,
writer
=
trainer
.
summary_writer
,
force_print
=
True
,
step
=
step_to_write
,
epoch
=
trainer
.
epoch
,
log_every
=
trainer
.
log_every
,
string
=
"train_eval"
,
new_line
=
True
)
print
(
"<<<<<validation>>>>>"
)
loss
,
aux_loss
=
trainer
.
test
(
train_loader
,
valid_loader
)
logging_utils
.
loss_logger_helper
(
loss
,
aux_loss
,
writer
=
trainer
.
summary_writer
,
force_print
=
True
,
step
=
step_to_write
,
epoch
=
trainer
.
epoch
,
log_every
=
trainer
.
log_every
,
string
=
"valid_eval"
,
new_line
=
True
)
\ No newline at end of file
Please
register
or
login
to post a comment