Hyunji

main

# -*- coding: utf-8 -*-
"""main.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1X0vDvK01A8_3JbSAu1whlPD-rBx0JlM-
"""
import argparse
import importlib
import json
import logging
import os
import pprint
import sys
import dill
import torch
import wandb
from box import Box
from torch.utils.data import DataLoader
from src.common.dataset import get_dataset
from lib.utils import logging as logging_utils, os as os_utils, optimizer as optimizer_utils
from lib.base_trainer import Trainer
import easydict
def parser_setup():
# define argparsers
str2bool = os_utils.str2bool
listorstr = os_utils.listorstr
parser = easydict.EasyDict({
"debug":False,
"config":None,
"seed":0,
"wandb_use":False,
"wandb_run_id":None,
"wandb.watch":False,
"project":"brain-age",
"exp_name":None,
"device":"cuda",
"result_folder":"a",
"mode":["test", "train"],
"statefile":None,
"data" : {
"name":"brain_age",
"root_path":"**root path",
"train_csv":"**train csv",
"valid_csv":"**valid csv",
"test_csv":"**test csv",
"feat_csv":None,
"train_num_sample":-1,
"frame_dim":1,
"frame_keep_style":"random",
"frame_keep_fraction":1,
"impute":"drop",
},
"model" : {
"name":"regression",
"arch": {
"file":"src/arch/brain_age_3d.py",
"lstm_feat_dim":2,
"lstm_latent_dim":128,
"attn_num_heads":1,
"attn_dim":32,
"attn_drop":False,
"agg_fn":"attention"
}
},
"train":{
"batch_size":8,
"patience":100,
"max_epoch":100,
"optimizer":"adam",
"lr":1e-3,
"weight_decay":1e-4,
"gradient_norm_clip":-1,
"save_strategy":["best", "last"],
"log_every":100,
"stopping_criteria":"loss",
"stopping_criteria_direction":"lower",
"evaluations":None,
"optimizer_momentum":None,
"scheduler":None,
"scheduler_gamma":None,
"scheduler_milestones":None,
"scheduler_patience":None,
"scheduler_step_size":None,
"scheduler_load_on_reduce":None,
},
"test":{
"batch_size":8,
"evaluations":None,
"eval_model":"best",
},
"_actions":None,
"_defaults":None
})
print(parser.seed)
return parser
if __name__ == "__main__":
# set seeds etc here
torch.backends.cudnn.benchmark = True
# define logger etc
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s")
logger = logging.getLogger()
parser = parser_setup()
#config = os_utils.parse_args(parser)
config = parser
logger.info("Config:")
logger.info(pprint.pformat(config, indent=4))
os_utils.safe_makedirs(config.result_folder)
statefile, run_id, result_folder = os_utils.get_state_params(
config.wandb_use, config.wandb_run_id, config.result_folder, config.statefile
)
config.statefile = statefile
config.wandb_run_id = run_id
config.result_folder = result_folder
if statefile is not None:
data = torch.load(open(statefile, "rb"), pickle_module=dill)
epoch = data["epoch"]
if epoch >= config.train.max_epoch:
logger.error("Aleady trained upto max epoch; exiting")
sys.exit()
if config.wandb_use:
wandb.init(
name=config.exp_name if config.exp_name is not None else config.result_folder,
config=config.to_dict(),
project=config.project,
dir=config.result_folder,
resume=config.wandb_run_id,
id=config.wandb_run_id,
sync_tensorboard=True,
)
logger.info(f"Starting wandb with id {wandb_run_id}")
# NOTE: WANDB creates git patch so we probably can get rid of this in future
os_utils.copy_code("src", config.result_folder, replace=True,)
json.dump(
config,
open(f"{wandb_run.dir if config.wandb_use else config.result_folder}/config.json", "w")
)
logger.info("Getting data and dataloaders")
data, meta = get_dataset(**config.data, device=config.device, replace=True, frac=2000)
# num_workers = max(min(os.cpu_count(), 8), 1)
num_workers = os.cpu_count()
logger.info(f"Using {num_workers} workers")
train_loader = DataLoader(data["train"], shuffle=False, batch_size=config.train.batch_size,
num_workers=num_workers)
valid_loader = DataLoader(data["valid"], shuffle=False, batch_size=config.test.batch_size,
num_workers=num_workers)
test_loader = DataLoader(data["test"], shuffle=False, batch_size=config.test.batch_size,
num_workers=num_workers)
logger.info("Getting model")
# load arch module
arch_module = importlib.import_module(config.model.arch.file.replace("/", ".")[:-3])
model_arch = arch_module.get_arch(
input_shape=meta.get("input_shape"), output_size=meta.get("num_class"),
**config.model.arch,
slice_dim=config.data.frame_dim
)
# declaring models
if config.model.name in "regression":
from src.models.regression import Regression
model = Regression(**model_arch)
else:
raise Exception("Unknown model")
model.to(config.device)
model.stats()
if config.wandb_use and config.wandb_watch:
wandb_watch(model, log="all")
# declaring trainer
optimizer, scheduler = optimizer_utils.get_optimizer_scheduler(
model,
lr=config.train.lr,
optimizer=config.train.optimizer,
opt_params={
"weight_decay": config.train.get("weight_decay", 1e-4),
"momentum" : config.train.get("optimizer_momentum", 0.9)
},
scheduler=config.train.get("scheduler", None),
scheduler_params={
"gamma" : config.train.get("scheduler_gamma", 0.1),
"milestones" : config.train.get("scheduler_milestones", [100, 200, 300]),
"patience" : config.train.get("scheduler_patience", 100),
"step_size" : config.train.get("scheduler_step_size", 100),
"load_on_reduce": config.train.get("scheduler_load_on_reduce"),
"mode" : "max" if config.train.get(
"stopping_criteria_direction") == "bigger" else "min"
},
)
trainer = Trainer(model, optimizer, scheduler=scheduler, statefile=config.statefile,
result_dir=config.result_folder, log_every=config.train.log_every,
save_strategy=config.train.save_strategy,
patience=config.train.patience,
max_epoch=config.train.max_epoch,
stopping_criteria=config.train.stopping_criteria,
gradient_norm_clip=config.train.gradient_norm_clip,
stopping_criteria_direction=config.train.stopping_criteria_direction,
evaluations=Box({"train": config.train.evaluations,
"test" : config.test.evaluations}))
if "train" in config.mode:
logger.info("starting training")
print(train_loader.dataset)
trainer.train(train_loader, valid_loader)
logger.info("Training done;")
# copy current step and write test results to
step_to_write = trainer.step
step_to_write += 1
if "test" in config.mode and config.test.eval_model == "best":
if os.path.exists(f"{trainer.result_dir}/best_model.pt"):
logger.info("Loading best model")
trainer.load(f"{trainer.result_dir}/best_model.pt")
else:
logger.info("eval_model is best, but best model not found ::: evaling last model")
else:
logger.info("eval model is not best, so skipping loading at end of training")
if "test" in config.mode:
logger.info("evaluating model on test set")
logger.info(f"Model was trained upto {trainer.epoch}")
# copy current step and write test results to
step_to_write = trainer.step
step_to_write += 1
print("<<<<<test>>>>>")
loss, aux_loss = trainer.test(train_loader, test_loader)
logging_utils.loss_logger_helper(loss, aux_loss, writer=trainer.summary_writer,
force_print=True, step=step_to_write,
epoch=trainer.epoch,
log_every=trainer.log_every, string="test",
new_line=True)
print("<<<<<training>>>>>")
loss, aux_loss = trainer.test(train_loader, train_loader)
logging_utils.loss_logger_helper(loss, aux_loss, writer=trainer.summary_writer,
force_print=True, step=step_to_write,
epoch=trainer.epoch,
log_every=trainer.log_every, string="train_eval",
new_line=True)
print("<<<<<validation>>>>>")
loss, aux_loss = trainer.test(train_loader, valid_loader)
logging_utils.loss_logger_helper(loss, aux_loss, writer=trainer.summary_writer,
force_print=True, step=step_to_write,
epoch=trainer.epoch,
log_every=trainer.log_every, string="valid_eval",
new_line=True)
\ No newline at end of file