curve255.js
6.13 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"use strict";
/**
* @fileOverview
* Core operations on curve 25519 required for the higher level modules.
*/
/*
* Copyright (c) 2007, 2013, 2014 Michele Bini
* Copyright (c) 2014 Mega Limited
* under the MIT License.
*
* Authors: Guy K. Kloss, Michele Bini
*
* You should have received a copy of the license along with this program.
*/
var core = require('./core');
var utils = require('./utils');
/**
* @exports jodid25519/curve255
* Legacy compatibility module for Michele Bini's previous curve255.js.
*
* @description
* Legacy compatibility module for Michele Bini's previous curve255.js.
*
* <p>
* This code presents an API with all key formats as previously available
* from Michele Bini's curve255.js implementation.
* </p>
*/
var ns = {};
function curve25519_raw(f, c) {
var a, x_1, q;
x_1 = c;
a = core.dbl(x_1, core.ONE());
q = [x_1, core.ONE()];
var n = 255;
while (core.getbit(f, n) == 0) {
n--;
// For correct constant-time operation, bit 255 should always be
// set to 1 so the following 'while' loop is never entered.
if (n < 0) {
return core.ZERO();
}
}
n--;
var aq = [a, q];
while (n >= 0) {
var r, s;
var b = core.getbit(f, n);
r = core.sum(aq[0][0], aq[0][1], aq[1][0], aq[1][1], x_1);
s = core.dbl(aq[1 - b][0], aq[1 - b][1]);
aq[1 - b] = s;
aq[b] = r;
n--;
}
q = aq[1];
q[1] = core.invmodp(q[1]);
q[0] = core.mulmodp(q[0], q[1]);
core.reduce(q[0]);
return q[0];
}
function curve25519b32(a, b) {
return _base32encode(curve25519(_base32decode(a),
_base32decode(b)));
}
function curve25519(f, c) {
if (!c) {
c = core.BASE();
}
f[0] &= 0xFFF8;
f[15] = (f[15] & 0x7FFF) | 0x4000;
return curve25519_raw(f, c);
}
function _hexEncodeVector(k) {
var hexKey = utils.hexEncode(k);
// Pad with '0' at the front.
hexKey = new Array(64 + 1 - hexKey.length).join('0') + hexKey;
// Invert bytes.
return hexKey.split(/(..)/).reverse().join('');
}
function _hexDecodeVector(v) {
// assert(length(x) == 64);
// Invert bytes.
var hexKey = v.split(/(..)/).reverse().join('');
return utils.hexDecode(hexKey);
}
// Expose some functions to the outside through this name space.
/**
* Computes the scalar product of a point on the curve 25519.
*
* This function is used for the DH key-exchange protocol.
*
* Before multiplication, some bit operations are applied to the
* private key to ensure it is a valid Curve25519 secret key.
* It is the user's responsibility to make sure that the private
* key is a uniformly random, secret value.
*
* @function
* @param f {array}
* Private key.
* @param c {array}
* Public point on the curve. If not given, the curve's base point is used.
* @returns {array}
* Key point resulting from scalar product.
*/
ns.curve25519 = curve25519;
/**
* Computes the scalar product of a point on the curve 25519.
*
* This variant does not make sure that the private key is valid.
* The user has the responsibility to ensure the private key is
* valid or that this results in a safe protocol. Unless you know
* exactly what you are doing, you should not use this variant,
* please use 'curve25519' instead.
*
* @function
* @param f {array}
* Private key.
* @param c {array}
* Public point on the curve. If not given, the curve's base point is used.
* @returns {array}
* Key point resulting from scalar product.
*/
ns.curve25519_raw = curve25519_raw;
/**
* Encodes the internal representation of a key to a canonical hex
* representation.
*
* This is the format commonly used in other libraries and for
* test vectors, and is equivalent to the hex dump of the key in
* little-endian binary format.
*
* @function
* @param n {array}
* Array representation of key.
* @returns {string}
* Hexadecimal string representation of key.
*/
ns.hexEncodeVector = _hexEncodeVector;
/**
* Decodes a canonical hex representation of a key
* to an internally compatible array representation.
*
* @function
* @param n {string}
* Hexadecimal string representation of key.
* @returns {array}
* Array representation of key.
*/
ns.hexDecodeVector = _hexDecodeVector;
/**
* Encodes the internal representation of a key into a
* hexadecimal representation.
*
* This is a strict positional notation, most significant digit first.
*
* @function
* @param n {array}
* Array representation of key.
* @returns {string}
* Hexadecimal string representation of key.
*/
ns.hexencode = utils.hexEncode;
/**
* Decodes a hex representation of a key to an internally
* compatible array representation.
*
* @function
* @param n {string}
* Hexadecimal string representation of key.
* @returns {array}
* Array representation of key.
*/
ns.hexdecode = utils.hexDecode;
/**
* Encodes the internal representation of a key to a base32
* representation.
*
* @function
* @param n {array}
* Array representation of key.
* @returns {string}
* Base32 string representation of key.
*/
ns.base32encode = utils.base32encode;
/**
* Decodes a base32 representation of a key to an internally
* compatible array representation.
*
* @function
* @param n {string}
* Base32 string representation of key.
* @returns {array}
* Array representation of key.
*/
ns.base32decode = utils.base32decode;
module.exports = ns;