Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-1-capstone-design1
/
KHY_Project1
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Graphs
Network
Create a new issue
Commits
Issue Boards
Authored by
Graduate
2020-06-17 15:45:39 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
3aaf4258c158201d2c1c44dcdebdd1722ea9b7b1
3aaf4258
1 parent
aae80a16
Make register GUI version
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
184 additions
and
50 deletions
DB/SQL/create_table_lecture.sql
register/register.py
DB/SQL/create_table_lecture.sql
View file @
3aaf425
CREATE
TABLE
lecture
(
lecture_id
VARCHAR
(
20
)
NOT
NULL
,
lecture_name
VARCHAR
(
50
),
lecture_room
VARCHAR
(
50
)
NOT
NULL
,
PRIMARY
KEY
(
lecture_id
)
);
...
...
@@ -32,7 +31,8 @@ FOREIGN KEY (lecture_id) REFERENCES lecture(lecture_id)
CREATE
TABLE
lecture_schedule
(
lecture_id
VARCHAR
(
20
)
NOT
NULL
,
lecture_day
VARCHAR
(
20
)
NOT
NULL
,
lecture_day
TINYINT
NOT
NULL
,
lecture_room
VARCHAR
(
50
)
NOT
NULL
,
lecture_start_time
TIME
NOT
NULL
,
lecture_end_time
TIME
NOT
NULL
,
FOREIGN
KEY
(
lecture_id
)
REFERENCES
lecture
(
lecture_id
)
...
...
register/register.py
View file @
3aaf425
...
...
@@ -2,6 +2,10 @@
#1. webcam에서 얼굴을 인식합니다
#2. 인식한 얼굴을 등록합니다
##################################################
import
tkinter
as
tk
import
tkinter.font
import
tkinter.messagebox
import
threading
import
torch
import
numpy
as
np
import
cv2
...
...
@@ -11,52 +15,109 @@ import json
import
os
import
timeit
import
base64
import
time
from
PIL
import
Image
from
PIL
import
Image
,
ImageTk
from
io
import
BytesIO
import
requests
from
models.mtcnn
import
MTCNN
device
=
torch
.
device
(
'cuda:0'
if
torch
.
cuda
.
is_available
()
else
'cpu'
)
print
(
'Running on device: {}'
.
format
(
device
))
class
Register
(
tk
.
Frame
):
def
__init__
(
self
,
parent
,
*
args
,
**
kwargs
):
tk
.
Frame
.
__init__
(
self
,
parent
,
*
args
,
**
kwargs
)
mtcnn
=
MTCNN
(
keep_all
=
True
,
device
=
device
)
# tkinter GUI
self
.
width
=
740
self
.
height
=
640
uri
=
'ws://169.56.95.131:8765'
self
.
parent
=
parent
self
.
parent
.
geometry
(
"
%
dx
%
d+100+100"
%
(
self
.
width
,
self
.
height
))
self
.
pack
()
self
.
create_widgets
()
async
def
send_face
(
face_list
,
image_list
):
global
uri
async
with
websockets
.
connect
(
uri
)
as
websocket
:
for
face
,
image
in
zip
(
face_list
,
image_list
):
#type: np.float32
send
=
json
.
dumps
({
'action'
:
'register'
,
'student_id'
:
'2014101898'
,
'student_name'
:
'김다솜'
,
'MTCNN'
:
face
.
tolist
()})
await
websocket
.
send
(
send
)
recv
=
await
websocket
.
recv
()
data
=
json
.
loads
(
recv
)
if
data
[
'status'
]
==
'success'
:
# 성공
print
(
data
[
'student_id'
],
'is registered'
)
# URI
self
.
uri
=
'ws://169.56.95.131:8765'
def
detect_face
(
frame
):
# If required, create a face detection pipeline using MTCNN:
global
mtcnn
results
=
mtcnn
.
detect
(
frame
)
image_list
=
[]
if
results
[
1
][
0
]
==
None
:
return
[]
for
box
,
prob
in
zip
(
results
[
0
],
results
[
1
]):
if
prob
<
0.95
:
continue
print
(
'face detected. prob:'
,
prob
)
x1
,
y1
,
x2
,
y2
=
box
image
=
frame
[
int
(
y1
-
10
):
int
(
y2
+
10
),
int
(
x1
-
10
):
int
(
x2
+
10
)]
image_list
.
append
(
image
)
return
image_list
# Pytorch Model
self
.
device
=
device
=
torch
.
device
(
'cuda:0'
if
torch
.
cuda
.
is_available
()
else
'cpu'
)
self
.
mtcnn
=
MTCNN
(
keep_all
=
True
,
device
=
device
)
# OpenCV
self
.
cap
=
cv2
.
VideoCapture
(
0
,
cv2
.
CAP_DSHOW
)
self
.
cam_width
=
640
self
.
cam_height
=
480
self
.
cap
.
set
(
3
,
self
.
cam_width
)
self
.
cap
.
set
(
4
,
self
.
cam_height
)
# Application Function
self
.
detecting_square
=
(
200
,
200
)
self
.
detected
=
False
self
.
face_list
=
[]
self
.
image_list
=
[]
# Event loop and Thread
# self.event_loop = asyncio.new_event_loop()
self
.
thread
=
threading
.
Thread
(
target
=
self
.
mainthread
)
self
.
thread
.
start
()
def
create_widgets
(
self
):
image
=
np
.
zeros
([
480
,
640
,
3
],
dtype
=
np
.
uint8
)
image
=
Image
.
fromarray
(
image
)
image
=
ImageTk
.
PhotoImage
(
image
)
font
=
tk
.
font
.
Font
(
family
=
"맑은 고딕"
,
size
=
15
)
self
.
alert
=
tk
.
Label
(
self
,
text
=
"카메라를 정면으로 향하고 화면의 사각형에 얼굴을 맞춰주세요"
,
font
=
font
)
self
.
alert
.
grid
(
row
=
0
,
column
=
0
,
columnspan
=
20
)
self
.
label
=
tk
.
Label
(
self
,
image
=
image
)
self
.
label
.
grid
(
row
=
1
,
column
=
0
,
columnspan
=
20
)
self
.
studentID
=
tk
.
StringVar
()
self
.
studentIdLabel
=
tk
.
Label
(
self
,
text
=
"학번"
)
self
.
studentIdLabel
.
grid
(
row
=
2
,
column
=
10
)
self
.
studentIdEntry
=
tk
.
Entry
(
self
,
width
=
20
,
textvariable
=
self
.
studentID
)
self
.
studentIdEntry
.
grid
(
row
=
2
,
column
=
11
)
self
.
studentName
=
tk
.
StringVar
()
self
.
studentNameLabel
=
tk
.
Label
(
self
,
text
=
"이름"
)
self
.
studentNameLabel
.
grid
(
row
=
3
,
column
=
10
)
self
.
studentNameEntry
=
tk
.
Entry
(
self
,
width
=
20
,
textvariable
=
self
.
studentName
)
self
.
studentNameEntry
.
grid
(
row
=
3
,
column
=
11
)
self
.
registerButton
=
tk
.
Button
(
self
,
text
=
"등록"
,
fg
=
"blue"
,
command
=
self
.
register_face
)
self
.
registerButton
.
grid
(
row
=
4
,
column
=
10
)
self
.
registerButton
=
tk
.
Button
(
self
,
text
=
"다시촬영"
,
command
=
self
.
restart
)
self
.
registerButton
.
grid
(
row
=
4
,
column
=
11
)
self
.
quit
=
tk
.
Button
(
self
,
text
=
"나가기"
,
fg
=
"red"
,
command
=
self
.
stop
)
self
.
quit
.
grid
(
row
=
5
,
column
=
10
)
def
register_face
(
self
):
if
not
self
.
detected
:
tk
.
messagebox
.
showinfo
(
"경고"
,
"얼굴이 인식되지 않았습니다."
)
return
asyncio
.
get_event_loop
()
.
run_until_complete
(
self
.
send_face
())
def
detect_face
(
frame
):
results
=
mtcnn
.
detect
(
frame
)
faces
=
mtcnn
(
frame
,
return_prob
=
False
)
def
restart
(
self
):
if
not
self
.
thread
.
isAlive
():
self
.
cap
=
cv2
.
VideoCapture
(
0
,
cv2
.
CAP_DSHOW
)
self
.
cap
.
set
(
3
,
self
.
cam_width
)
self
.
cap
.
set
(
4
,
self
.
cam_height
)
self
.
detected
=
False
self
.
face_list
=
[]
self
.
image_list
=
[]
self
.
thread
=
threading
.
Thread
(
target
=
self
.
mainthread
)
self
.
thread
.
start
()
def
detect_face
(
self
,
frame
):
results
=
self
.
mtcnn
.
detect
(
frame
)
faces
=
self
.
mtcnn
(
frame
,
return_prob
=
False
)
image_list
=
[]
face_list
=
[]
if
results
[
1
][
0
]
==
None
:
...
...
@@ -64,23 +125,96 @@ def detect_face(frame):
for
box
,
face
,
prob
in
zip
(
results
[
0
],
faces
,
results
[
1
]):
if
prob
<
0.97
:
continue
print
(
'face detected. prob:'
,
prob
)
# for debug
# print('face detected. prob:', prob)
x1
,
y1
,
x2
,
y2
=
box
if
(
x2
-
x1
)
*
(
y2
-
y1
)
<
15000
:
# 얼굴 해상도가 너무 낮으면 무시
self
.
alert
.
config
(
text
=
"인식된 얼굴이 너무 작습니다. 카메라에 더 가까이 접근해주세요."
,
fg
=
"red"
)
self
.
alert
.
update
()
continue
# 얼굴 주변 ±3 영역 저장
image
=
frame
[
int
(
y1
-
3
):
int
(
y2
+
3
),
int
(
x1
-
3
):
int
(
x2
+
3
)]
image
=
frame
image_list
.
append
(
image
)
# MTCNN 데이터 저장
face_list
.
append
(
face
.
numpy
())
return
image_list
,
face_list
cap
=
cv2
.
VideoCapture
(
0
,
cv2
.
CAP_DSHOW
)
cap
.
set
(
3
,
720
)
cap
.
set
(
4
,
480
)
ret
,
frame
=
cap
.
read
()
frame
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
image_list
,
face_list
=
detect_face
(
frame
)
if
face_list
:
asyncio
.
get_event_loop
()
.
run_until_complete
(
send_face
(
face_list
,
image_list
))
\ No newline at end of file
return
face_list
,
image_list
def
mainthread
(
self
):
t
=
threading
.
currentThread
()
#asyncio.set_event_loop(self.event_loop)
x1
=
int
(
self
.
cam_width
/
2
-
self
.
detecting_square
[
0
]
/
2
)
x2
=
int
(
self
.
cam_width
/
2
+
self
.
detecting_square
[
0
]
/
2
)
y1
=
int
(
self
.
cam_height
/
2
-
self
.
detecting_square
[
1
]
/
2
)
y2
=
int
(
self
.
cam_height
/
2
+
self
.
detecting_square
[
1
]
/
2
)
detected_time
=
None
while
getattr
(
t
,
"do_run"
,
True
):
ret
,
frame
=
self
.
cap
.
read
()
# model에 이용하기 위해 convert
converted
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
# 사각형 영역만 검사 (속도 차이 큼)
face_list
,
image_list
=
self
.
detect_face
(
converted
[
y1
:
y2
,
x1
:
x2
])
# 얼굴이 인식된 경우 파란색 사각형을 띄움
if
face_list
:
frame
=
cv2
.
rectangle
(
frame
,
(
x1
,
y1
),
(
x2
,
y2
),
(
255
,
0
,
0
),
3
)
else
:
frame
=
cv2
.
rectangle
(
frame
,
(
x1
,
y1
),
(
x2
,
y2
),
(
0
,
0
,
255
),
3
)
# show image
converted
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
image
=
Image
.
fromarray
(
converted
)
image
=
ImageTk
.
PhotoImage
(
image
)
self
.
label
.
configure
(
image
=
image
)
self
.
label
.
image
=
image
# kind of double buffering
# 얼굴이 인식되면 멤버함수에 넣음
if
face_list
:
self
.
face_list
=
face_list
self
.
image_list
=
image_list
# 2초 후에 사진이 찍힘
if
detected_time
is
None
:
detected_time
=
time
.
time
()
else
:
self
.
alert
.
config
(
text
=
"얼굴이 인식되었습니다.
%
f초 후 사진을 촬영합니다"
%
(
2
-
(
time
.
time
()
-
detected_time
)),
fg
=
"red"
)
if
time
.
time
()
-
detected_time
>=
2
:
self
.
thread
.
do_run
=
False
self
.
detected
=
True
self
.
alert
.
config
(
text
=
"얼굴을 등록해주세요. 올바르게 촬영되지 않았을 경우 다시촬영을 눌러주세요."
,
fg
=
"blue"
)
else
:
detected_time
=
None
self
.
face_list
=
[]
self
.
image_list
=
[]
async
def
wait
(
self
,
n
):
await
asyncio
.
sleep
(
n
)
async
def
send_face
(
self
):
try
:
async
with
websockets
.
connect
(
self
.
uri
)
as
websocket
:
for
face
,
image
in
zip
(
self
.
face_list
,
self
.
image_list
):
#type: np.float32
send
=
json
.
dumps
({
'action'
:
'register'
,
'student_id'
:
self
.
studentID
,
'student_name'
:
self
.
studentName
,
'MTCNN'
:
face
.
tolist
()})
await
websocket
.
send
(
send
)
recv
=
await
websocket
.
recv
()
data
=
json
.
loads
(
recv
)
if
data
[
'status'
]
==
'success'
:
tk
.
messagebox
.
showinfo
(
"등록완료"
,
self
.
studentID
.
get
()
+
' '
+
self
.
studentName
.
get
())
except
Exception
as
e
:
tk
.
messagebox
.
showinfo
(
"등록실패"
,
e
)
def
stop
(
self
):
self
.
thread
.
do_run
=
False
# self.thread.join() # there is a freeze problem
# self.event_loop.close()
self
.
cap
.
release
()
self
.
parent
.
destroy
()
if
__name__
==
'__main__'
:
root
=
tk
.
Tk
()
Register
(
root
)
root
.
mainloop
()
...
...
Please
register
or
login
to post a comment