Showing
12 changed files
with
891 additions
and
0 deletions
code/yolov3/args.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import numpy as np | ||
4 | +import tensorflow as tf | ||
5 | +import random | ||
6 | +import math | ||
7 | + | ||
8 | +from misc_utils import parse_anchors, read_class_names | ||
9 | +from tfrecord_utils import TFRecordIterator | ||
10 | + | ||
11 | +### Some paths | ||
12 | +data_path = '../../data/' | ||
13 | +train_file = data_path + 'train.tfrecord' # The path of the training txt file. | ||
14 | +val_file = data_path + 'val.tfrecord' # The path of the validation txt file. | ||
15 | +restore_path = data_path + 'darknet_weights/yolov3.ckpt' # The path of the weights to restore. | ||
16 | +save_dir = '../../checkpoint/' # The directory of the weights to save. | ||
17 | + | ||
18 | +### we are not using tensorboard logs in this code | ||
19 | + | ||
20 | +log_dir = data_path + 'logs/' # The directory to store the tensorboard log files. | ||
21 | +progress_log_path = data_path + 'progress.log' # The path to record the training progress. | ||
22 | + | ||
23 | +anchor_path = data_path + 'yolo_anchors.txt' # The path of the anchor txt file. | ||
24 | +class_name_path = data_path + 'classes.txt' # The path of the class names. | ||
25 | + | ||
26 | +### Training releated numbers | ||
27 | +batch_size = 6 | ||
28 | +img_size = [416, 416] # Images will be resized to `img_size` and fed to the network, size format: [width, height] | ||
29 | +letterbox_resize = True # Whether to use the letterbox resize, i.e., keep the original aspect ratio in the resized image. | ||
30 | +total_epoches = 50 | ||
31 | +train_evaluation_step = 10 # Evaluate on the training batch after some steps. | ||
32 | +val_evaluation_epoch = 2 # Evaluate on the whole validation dataset after some epochs. Set to None to evaluate every epoch. | ||
33 | +save_epoch = 5 # Save the model after some epochs. | ||
34 | +batch_norm_decay = 0.99 # decay in bn ops | ||
35 | +weight_decay = 5e-4 # l2 weight decay | ||
36 | +global_step = 0 # used when resuming training | ||
37 | + | ||
38 | +### tf.data parameters | ||
39 | +num_threads = 10 # Number of threads for image processing used in tf.data pipeline. | ||
40 | +prefetech_buffer = 5 # Prefetech_buffer used in tf.data pipeline. | ||
41 | + | ||
42 | +### Learning rate and optimizer | ||
43 | +optimizer_name = 'momentum' # Chosen from [sgd, momentum, adam, rmsprop] | ||
44 | +save_optimizer = True # Whether to save the optimizer parameters into the checkpoint file. | ||
45 | +learning_rate_init = 1e-4 | ||
46 | +lr_type = 'piecewise' # Chosen from [fixed, exponential, cosine_decay, cosine_decay_restart, piecewise] | ||
47 | +lr_decay_epoch = 5 # Epochs after which learning rate decays. Int or float. Used when chosen `exponential` and `cosine_decay_restart` lr_type. | ||
48 | +lr_decay_factor = 0.96 # The learning rate decay factor. Used when chosen `exponential` lr_type. | ||
49 | +lr_lower_bound = 1e-6 # The minimum learning rate. | ||
50 | +# only used in piecewise lr type | ||
51 | +pw_boundaries = [30, 50] # epoch based boundaries | ||
52 | +pw_values = [learning_rate_init, 3e-5, 1e-5] | ||
53 | + | ||
54 | +### Load and finetune | ||
55 | +# Choose the parts you want to restore the weights. List form. | ||
56 | +# restore_include: None, restore_exclude: None => restore the whole model | ||
57 | +# restore_include: None, restore_exclude: scope => restore the whole model except `scope` | ||
58 | +# restore_include: scope1, restore_exclude: scope2 => if scope1 contains scope2, restore scope1 and not restore scope2 (scope1 - scope2) | ||
59 | +# choise 1: only restore the darknet body | ||
60 | +# restore_include = ['yolov3/darknet53_body'] | ||
61 | +# restore_exclude = None | ||
62 | +# choise 2: restore all layers except the last 3 conv2d layers in 3 scale | ||
63 | +restore_include = None | ||
64 | +restore_exclude = ['yolov3/yolov3_head/Conv_14', 'yolov3/yolov3_head/Conv_6', 'yolov3/yolov3_head/Conv_22'] | ||
65 | +# Choose the parts you want to finetune. List form. | ||
66 | +# Set to None to train the whole model. | ||
67 | + | ||
68 | +update_part = ['yolov3/yolov3_head'] | ||
69 | + | ||
70 | +### other training strategies | ||
71 | +multi_scale_train = True # Whether to apply multi-scale training strategy. Image size varies from [320, 320] to [640, 640] by default. | ||
72 | +use_label_smooth = True # Whether to use class label smoothing strategy. | ||
73 | +use_focal_loss = True # Whether to apply focal loss on the conf loss. | ||
74 | +use_mix_up = True # Whether to use mix up data augmentation strategy. | ||
75 | +use_warm_up = True # whether to use warm up strategy to prevent from gradient exploding. | ||
76 | +warm_up_epoch = 3 # Warm up training epoches. Set to a larger value if gradient explodes. | ||
77 | + | ||
78 | +### some constants in validation | ||
79 | +# nms | ||
80 | +nms_threshold = 0.45 # iou threshold in nms operation | ||
81 | +score_threshold = 0.01 # threshold of the probability of the classes in nms operation, i.e. score = pred_confs * pred_probs. set lower for higher recall. | ||
82 | +nms_topk = 150 # keep at most nms_topk outputs after nms | ||
83 | +# mAP eval | ||
84 | +eval_threshold = 0.5 # the iou threshold applied in mAP evaluation | ||
85 | +use_voc_07_metric = False # whether to use voc 2007 evaluation metric, i.e. the 11-point metric | ||
86 | + | ||
87 | +### parse some params | ||
88 | +anchors = parse_anchors(anchor_path) | ||
89 | +classes = read_class_names(class_name_path) | ||
90 | +class_num = len(classes) | ||
91 | +train_img_cnt = TFRecordIterator(train_file, 'GZIP').count() | ||
92 | +val_img_cnt = TFRecordIterator(val_file, 'GZIP').count() | ||
93 | +train_batch_num = int(math.ceil(float(train_img_cnt) / batch_size)) | ||
94 | + | ||
95 | +lr_decay_freq = int(train_batch_num * lr_decay_epoch) | ||
96 | +pw_boundaries = [float(i) * train_batch_num + global_step for i in pw_boundaries] |
code/yolov3/data_utils.py
0 → 100644
This diff is collapsed. Click to expand it.
code/yolov3/eval.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import tensorflow as tf | ||
4 | +import numpy as np | ||
5 | +import argparse | ||
6 | +from tqdm import trange | ||
7 | +import os | ||
8 | + | ||
9 | +from data_utils import get_batch_data | ||
10 | +from misc_utils import parse_anchors, read_class_names, AverageMeter | ||
11 | +from eval_utils import evaluate_on_cpu, evaluate_on_gpu, get_preds_gpu, voc_eval, parse_gt_rec | ||
12 | +from nms_utils import gpu_nms | ||
13 | + | ||
14 | +from model import yolov3 | ||
15 | + | ||
16 | +### ArgumentParser | ||
17 | +parser = argparse.ArgumentParser(description="YOLO-V3 eval procedure.") | ||
18 | + | ||
19 | +# paths | ||
20 | +parser.add_argument("--eval_file", type=str, default="./data/my_data/val.txt", | ||
21 | + help="The path of the validation or test txt file.") | ||
22 | + | ||
23 | +parser.add_argument("--restore_path", type=str, default="./data/darknet_weights/yolov3.ckpt", | ||
24 | + help="The path of the weights to restore.") | ||
25 | + | ||
26 | +parser.add_argument("--anchor_path", type=str, default="./data/yolo_anchors.txt", | ||
27 | + help="The path of the anchor txt file.") | ||
28 | + | ||
29 | +parser.add_argument("--class_name_path", type=str, default="./data/coco.names", | ||
30 | + help="The path of the class names.") | ||
31 | + | ||
32 | +# some numbers | ||
33 | +parser.add_argument("--img_size", nargs='*', type=int, default=[416, 416], | ||
34 | + help="Resize the input image to `img_size`, size format: [width, height]") | ||
35 | + | ||
36 | +parser.add_argument("--letterbox_resize", type=lambda x: (str(x).lower() == 'true'), default=False, | ||
37 | + help="Whether to use the letterbox resize, i.e., keep the original image aspect ratio.") | ||
38 | + | ||
39 | +parser.add_argument("--num_threads", type=int, default=10, | ||
40 | + help="Number of threads for image processing used in tf.data pipeline.") | ||
41 | + | ||
42 | +parser.add_argument("--prefetech_buffer", type=int, default=5, | ||
43 | + help="Prefetech_buffer used in tf.data pipeline.") | ||
44 | + | ||
45 | +parser.add_argument("--nms_threshold", type=float, default=0.45, | ||
46 | + help="IOU threshold in nms operation.") | ||
47 | + | ||
48 | +parser.add_argument("--score_threshold", type=float, default=0.01, | ||
49 | + help="Threshold of the probability of the classes in nms operation.") | ||
50 | + | ||
51 | +parser.add_argument("--nms_topk", type=int, default=400, | ||
52 | + help="Keep at most nms_topk outputs after nms.") | ||
53 | + | ||
54 | +parser.add_argument("--use_voc_07_metric", type=lambda x: (str(x).lower() == 'true'), default=False, | ||
55 | + help="Whether to use the voc 2007 mAP metrics.") | ||
56 | + | ||
57 | +args = parser.parse_args() | ||
58 | + | ||
59 | +# args params | ||
60 | +args.anchors = parse_anchors(args.anchor_path) | ||
61 | +args.classes = read_class_names(args.class_name_path) | ||
62 | +args.class_num = len(args.classes) | ||
63 | +args.img_cnt = len(open(args.eval_file, 'r').readlines()) | ||
64 | + | ||
65 | +# setting placeholders | ||
66 | +is_training = tf.placeholder(dtype=tf.bool, name="phase_train") | ||
67 | +handle_flag = tf.placeholder(tf.string, [], name='iterator_handle_flag') | ||
68 | +pred_boxes_flag = tf.placeholder(tf.float32, [1, None, None]) | ||
69 | +pred_scores_flag = tf.placeholder(tf.float32, [1, None, None]) | ||
70 | +gpu_nms_op = gpu_nms(pred_boxes_flag, pred_scores_flag, args.class_num, args.nms_topk, args.score_threshold, args.nms_threshold) | ||
71 | + | ||
72 | +### tf.data pipeline | ||
73 | +val_dataset = tf.data.TFRecordDataset(filenames=args.eval_file, compression_type='GZIP') | ||
74 | +val_dataset = val_dataset.batch(1) | ||
75 | +val_dataset = val_dataset.map( | ||
76 | + lambda x: tf.py_func(get_batch_data, [x, args.class_num, args.img_size, args.anchors, False, False, False, args.letterbox_resize], [tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]), | ||
77 | + num_parallel_calls=args.num_threads | ||
78 | +) | ||
79 | +val_dataset.prefetch(args.prefetech_buffer) | ||
80 | +iterator = val_dataset.make_one_shot_iterator() | ||
81 | + | ||
82 | +image_ids, image, y_true_13, y_true_26, y_true_52 = iterator.get_next() | ||
83 | +image_ids.set_shape([None]) | ||
84 | +y_true = [y_true_13, y_true_26, y_true_52] | ||
85 | +image.set_shape([None, args.img_size[1], args.img_size[0], 3]) | ||
86 | +for y in y_true: | ||
87 | + y.set_shape([None, None, None, None, None]) | ||
88 | + | ||
89 | +### Model definition | ||
90 | +yolo_model = yolov3(args.class_num, args.anchors) | ||
91 | +with tf.variable_scope('yolov3'): | ||
92 | + pred_feature_maps = yolo_model.forward(image, is_training=is_training) | ||
93 | +loss = yolo_model.compute_loss(pred_feature_maps, y_true) | ||
94 | +y_pred = yolo_model.predict(pred_feature_maps) | ||
95 | + | ||
96 | +saver_to_restore = tf.train.Saver() | ||
97 | + | ||
98 | +with tf.Session() as sess: | ||
99 | + sess.run([tf.global_variables_initializer()]) | ||
100 | + if os.path.exists(args.restore_path): | ||
101 | + saver_to_restore.restore(sess, args.restore_path) | ||
102 | + | ||
103 | + print('\nStart evaluation...\n') | ||
104 | + | ||
105 | + val_loss_total, val_loss_xy, val_loss_wh, val_loss_conf, val_loss_class = \ | ||
106 | + AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() | ||
107 | + val_preds = [] | ||
108 | + | ||
109 | + for j in trange(args.img_cnt): | ||
110 | + __image_ids, __y_pred, __loss = sess.run([image_ids, y_pred, loss], feed_dict={is_training: False}) | ||
111 | + pred_content = get_preds_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __image_ids, __y_pred) | ||
112 | + | ||
113 | + val_preds.extend(pred_content) | ||
114 | + val_loss_total.update(__loss[0]) | ||
115 | + val_loss_xy.update(__loss[1]) | ||
116 | + val_loss_wh.update(__loss[2]) | ||
117 | + val_loss_conf.update(__loss[3]) | ||
118 | + val_loss_class.update(__loss[4]) | ||
119 | + | ||
120 | + rec_total, prec_total, ap_total = AverageMeter(), AverageMeter(), AverageMeter() | ||
121 | + gt_dict = parse_gt_rec(args.eval_file, 'GZIP', args.img_size, args.letterbox_resize) | ||
122 | + print('mAP eval:') | ||
123 | + for ii in range(args.class_num): | ||
124 | + npos, nd, rec, prec, ap = voc_eval(gt_dict, val_preds, ii, iou_thres=0.5, use_07_metric=args.use_voc_07_metric) | ||
125 | + rec_total.update(rec, npos) | ||
126 | + prec_total.update(prec, nd) | ||
127 | + ap_total.update(ap, 1) | ||
128 | + print('Class {}: Recall: {:.4f}, Precision: {:.4f}, AP: {:.4f}'.format(ii, rec, prec, ap)) | ||
129 | + | ||
130 | + mAP = ap_total.average | ||
131 | + print('final mAP: {:.4f}'.format(mAP)) | ||
132 | + print("recall: {:.3f}, precision: {:.3f}".format(rec_total.average, prec_total.average)) | ||
133 | + print("total_loss: {:.3f}, loss_xy: {:.3f}, loss_wh: {:.3f}, loss_conf: {:.3f}, loss_class: {:.3f}".format( | ||
134 | + val_loss_total.average, val_loss_xy.average, val_loss_wh.average, val_loss_conf.average, val_loss_class.average | ||
135 | + )) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/eval_utils.py
0 → 100644
This diff is collapsed. Click to expand it.
code/yolov3/misc_utils.py
0 → 100644
1 | +import numpy as np | ||
2 | +import tensorflow as tf | ||
3 | +import random | ||
4 | + | ||
5 | +class AverageMeter(object): | ||
6 | + def __init__(self): | ||
7 | + self.reset() | ||
8 | + | ||
9 | + def reset(self): | ||
10 | + self.val = 0 | ||
11 | + self.average = 0 | ||
12 | + self.sum = 0 | ||
13 | + self.count = 0 | ||
14 | + | ||
15 | + def update(self, val, n=1): | ||
16 | + self.val = val | ||
17 | + self.sum += val * n | ||
18 | + self.count += n | ||
19 | + self.average = self.sum / float(self.count) | ||
20 | + | ||
21 | + | ||
22 | +def parse_anchors(anchor_path): | ||
23 | + anchors = np.reshape(np.asarray(open(anchor_path, 'r').read().split(','), np.float32), [-1, 2]) | ||
24 | + return anchors | ||
25 | + | ||
26 | + | ||
27 | +def read_class_names(class_name_path): | ||
28 | + names = {} | ||
29 | + with open(class_name_path, 'r') as data: | ||
30 | + for ID, name in enumerate(data): | ||
31 | + names[ID] = name.strip('\n') | ||
32 | + return names | ||
33 | + | ||
34 | + | ||
35 | +def shuffle_and_overwrite(file_name): | ||
36 | + content = open(file_name, 'r').readlines() | ||
37 | + random.shuffle(content) | ||
38 | + with open(file_name, 'w') as f: | ||
39 | + for line in content: | ||
40 | + f.write(line) | ||
41 | + | ||
42 | + | ||
43 | +def update_dict(ori_dict, new_dict): | ||
44 | + if not ori_dict: | ||
45 | + return new_dict | ||
46 | + for key in ori_dict: | ||
47 | + ori_dict[key] += new_dict[key] | ||
48 | + return ori_dict | ||
49 | + | ||
50 | + | ||
51 | +def list_add(ori_list, new_list): | ||
52 | + for i in range(len(ori_list)): | ||
53 | + ori_list[i] += new_list[i] | ||
54 | + return ori_list | ||
55 | + | ||
56 | + | ||
57 | +def load_weights(var_list, weights_file): | ||
58 | + with open(weights_file, "rb") as fp: | ||
59 | + np.fromfile(fp, dtype=np.int32, count=5) | ||
60 | + weights = np.fromfile(fp, dtype=np.float32) | ||
61 | + | ||
62 | + ptr = 0 | ||
63 | + i = 0 | ||
64 | + assign_ops = [] | ||
65 | + while i < len(var_list) - 1: | ||
66 | + var1 = var_list[i] | ||
67 | + var2 = var_list[i + 1] | ||
68 | + if 'Conv' in var1.name.split('/')[-2]: | ||
69 | + if 'BatchNorm' in var2.name.split('/')[-2]: | ||
70 | + gamma, beta, mean, var = var_list[i + 1:i + 5] | ||
71 | + batch_norm_vars = [beta, gamma, mean, var] | ||
72 | + for var in batch_norm_vars: | ||
73 | + shape = var.shape.as_list() | ||
74 | + num_params = np.prod(shape) | ||
75 | + var_weights = weights[ptr:ptr + num_params].reshape(shape) | ||
76 | + ptr += num_params | ||
77 | + assign_ops.append(tf.assign(var, var_weights, validate_shape=True)) | ||
78 | + i += 4 | ||
79 | + elif 'Conv' in var2.name.split('/')[-2]: | ||
80 | + # load biases | ||
81 | + bias = var2 | ||
82 | + bias_shape = bias.shape.as_list() | ||
83 | + bias_params = np.prod(bias_shape) | ||
84 | + bias_weights = weights[ptr:ptr + | ||
85 | + bias_params].reshape(bias_shape) | ||
86 | + ptr += bias_params | ||
87 | + assign_ops.append(tf.assign(bias, bias_weights, validate_shape=True)) | ||
88 | + i += 1 | ||
89 | + | ||
90 | + shape = var1.shape.as_list() | ||
91 | + num_params = np.prod(shape) | ||
92 | + | ||
93 | + var_weights = weights[ptr:ptr + num_params].reshape( | ||
94 | + (shape[3], shape[2], shape[0], shape[1])) | ||
95 | + | ||
96 | + var_weights = np.transpose(var_weights, (2, 3, 1, 0)) | ||
97 | + ptr += num_params | ||
98 | + assign_ops.append( | ||
99 | + tf.assign(var1, var_weights, validate_shape=True)) | ||
100 | + i += 1 | ||
101 | + | ||
102 | + return assign_ops | ||
103 | + | ||
104 | + | ||
105 | +def config_learning_rate(args, global_step): | ||
106 | + if args.lr_type == 'exponential': | ||
107 | + lr_tmp = tf.train.exponential_decay(args.learning_rate_init, global_step, args.lr_decay_freq, | ||
108 | + args.lr_decay_factor, staircase=True, name='exponential_learning_rate') | ||
109 | + return tf.maximum(lr_tmp, args.lr_lower_bound) | ||
110 | + elif args.lr_type == 'cosine_decay': | ||
111 | + train_steps = (args.total_epoches - float(args.use_warm_up) * args.warm_up_epoch) * args.train_batch_num | ||
112 | + return args.lr_lower_bound + 0.5 * (args.learning_rate_init - args.lr_lower_bound) * \ | ||
113 | + (1 + tf.cos(global_step / train_steps * np.pi)) | ||
114 | + elif args.lr_type == 'cosine_decay_restart': | ||
115 | + return tf.train.cosine_decay_restarts(args.learning_rate_init, global_step, | ||
116 | + args.lr_decay_freq, t_mul=2.0, m_mul=1.0, | ||
117 | + name='cosine_decay_learning_rate_restart') | ||
118 | + elif args.lr_type == 'fixed': | ||
119 | + return tf.convert_to_tensor(args.learning_rate_init, name='fixed_learning_rate') | ||
120 | + elif args.lr_type == 'piecewise': | ||
121 | + return tf.train.piecewise_constant(global_step, boundaries=args.pw_boundaries, values=args.pw_values, | ||
122 | + name='piecewise_learning_rate') | ||
123 | + else: | ||
124 | + raise ValueError('Unsupported learning rate type!') | ||
125 | + | ||
126 | + | ||
127 | +def config_optimizer(optimizer_name, learning_rate, decay=0.9, momentum=0.9): | ||
128 | + if optimizer_name == 'momentum': | ||
129 | + return tf.train.MomentumOptimizer(learning_rate, momentum=momentum) | ||
130 | + elif optimizer_name == 'rmsprop': | ||
131 | + return tf.train.RMSPropOptimizer(learning_rate, decay=decay, momentum=momentum) | ||
132 | + elif optimizer_name == 'adam': | ||
133 | + return tf.train.AdamOptimizer(learning_rate) | ||
134 | + elif optimizer_name == 'sgd': | ||
135 | + return tf.train.GradientDescentOptimizer(learning_rate) | ||
136 | + else: | ||
137 | + raise ValueError('Unsupported optimizer type!') | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/model.py
0 → 100644
This diff is collapsed. Click to expand it.
code/yolov3/nms_utils.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import numpy as np | ||
4 | +import tensorflow as tf | ||
5 | + | ||
6 | +def gpu_nms(boxes, scores, num_classes, max_boxes=50, score_thresh=0.5, nms_thresh=0.5): | ||
7 | + boxes_list, label_list, score_list = [], [], [] | ||
8 | + max_boxes = tf.constant(max_boxes, dtype='int32') | ||
9 | + | ||
10 | + boxes = tf.reshape(boxes, [-1, 4]) # '-1' means we don't konw the exact number of boxes | ||
11 | + score = tf.reshape(scores, [-1, num_classes]) | ||
12 | + | ||
13 | + # Step 1: Create a filtering mask based on "box_class_scores" by using "threshold". | ||
14 | + mask = tf.greater_equal(score, tf.constant(score_thresh)) | ||
15 | + # Step 2: Do non_max_suppression for each class | ||
16 | + for i in range(num_classes): | ||
17 | + # Step 3: Apply the mask to scores, boxes and pick them out | ||
18 | + filter_boxes = tf.boolean_mask(boxes, mask[:,i]) | ||
19 | + filter_score = tf.boolean_mask(score[:,i], mask[:,i]) | ||
20 | + nms_indices = tf.image.non_max_suppression(boxes=filter_boxes, | ||
21 | + scores=filter_score, | ||
22 | + max_output_size=max_boxes, | ||
23 | + iou_threshold=nms_thresh, name='nms_indices') | ||
24 | + label_list.append(tf.ones_like(tf.gather(filter_score, nms_indices), 'int32')*i) | ||
25 | + boxes_list.append(tf.gather(filter_boxes, nms_indices)) | ||
26 | + score_list.append(tf.gather(filter_score, nms_indices)) | ||
27 | + | ||
28 | + boxes = tf.concat(boxes_list, axis=0) | ||
29 | + score = tf.concat(score_list, axis=0) | ||
30 | + label = tf.concat(label_list, axis=0) | ||
31 | + | ||
32 | + return boxes, score, label | ||
33 | + | ||
34 | + | ||
35 | +def py_nms(boxes, scores, max_boxes=50, iou_thresh=0.5): | ||
36 | + assert boxes.shape[1] == 4 and len(scores.shape) == 1 | ||
37 | + | ||
38 | + x1 = boxes[:, 0] | ||
39 | + y1 = boxes[:, 1] | ||
40 | + x2 = boxes[:, 2] | ||
41 | + y2 = boxes[:, 3] | ||
42 | + | ||
43 | + areas = (x2 - x1) * (y2 - y1) | ||
44 | + order = scores.argsort()[::-1] | ||
45 | + | ||
46 | + keep = [] | ||
47 | + while order.size > 0: | ||
48 | + i = order[0] | ||
49 | + keep.append(i) | ||
50 | + xx1 = np.maximum(x1[i], x1[order[1:]]) | ||
51 | + yy1 = np.maximum(y1[i], y1[order[1:]]) | ||
52 | + xx2 = np.minimum(x2[i], x2[order[1:]]) | ||
53 | + yy2 = np.minimum(y2[i], y2[order[1:]]) | ||
54 | + | ||
55 | + w = np.maximum(0.0, xx2 - xx1 + 1) | ||
56 | + h = np.maximum(0.0, yy2 - yy1 + 1) | ||
57 | + inter = w * h | ||
58 | + ovr = inter / (areas[i] + areas[order[1:]] - inter) | ||
59 | + | ||
60 | + inds = np.where(ovr <= iou_thresh)[0] | ||
61 | + order = order[inds + 1] | ||
62 | + | ||
63 | + return keep[:max_boxes] | ||
64 | + | ||
65 | + | ||
66 | +def cpu_nms(boxes, scores, num_classes, max_boxes=50, score_thresh=0.5, iou_thresh=0.5): | ||
67 | + boxes = boxes.reshape(-1, 4) | ||
68 | + scores = scores.reshape(-1, num_classes) | ||
69 | + picked_boxes, picked_score, picked_label = [], [], [] | ||
70 | + | ||
71 | + for i in range(num_classes): | ||
72 | + indices = np.where(scores[:,i] >= score_thresh) | ||
73 | + filter_boxes = boxes[indices] | ||
74 | + filter_scores = scores[:,i][indices] | ||
75 | + if len(filter_boxes) == 0: | ||
76 | + continue | ||
77 | + | ||
78 | + indices = py_nms(filter_boxes, filter_scores, | ||
79 | + max_boxes=max_boxes, iou_thresh=iou_thresh) | ||
80 | + picked_boxes.append(filter_boxes[indices]) | ||
81 | + picked_score.append(filter_scores[indices]) | ||
82 | + picked_label.append(np.ones(len(indices), dtype='int32')*i) | ||
83 | + if len(picked_boxes) == 0: | ||
84 | + return None, None, None | ||
85 | + | ||
86 | + boxes = np.concatenate(picked_boxes, axis=0) | ||
87 | + score = np.concatenate(picked_score, axis=0) | ||
88 | + label = np.concatenate(picked_label, axis=0) | ||
89 | + | ||
90 | + return boxes, score, label | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/plot_utils.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import cv2 | ||
4 | +import random | ||
5 | + | ||
6 | + | ||
7 | +def get_color_table(class_num, seed=2): | ||
8 | + random.seed(seed) | ||
9 | + color_table = {} | ||
10 | + for i in range(class_num): | ||
11 | + color_table[i] = [random.randint(0, 255) for _ in range(3)] | ||
12 | + return color_table | ||
13 | + | ||
14 | + | ||
15 | +def plot_one_box(img, coord, label=None, color=None, line_thickness=None): | ||
16 | + tl = line_thickness or int(round(0.002 * max(img.shape[0:2]))) # line thickness | ||
17 | + color = color or [random.randint(0, 255) for _ in range(3)] | ||
18 | + c1, c2 = (int(coord[0]), int(coord[1])), (int(coord[2]), int(coord[3])) | ||
19 | + cv2.rectangle(img, c1, c2, color, thickness=tl) | ||
20 | + if label: | ||
21 | + tf = max(tl - 1, 1) # font thickness | ||
22 | + t_size = cv2.getTextSize(label, 0, fontScale=float(tl) / 3, thickness=tf)[0] | ||
23 | + c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 | ||
24 | + cv2.rectangle(img, c1, c2, color, -1) # filled | ||
25 | + cv2.putText(img, label, (c1[0], c1[1] - 2), 0, float(tl) / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/test_single_image.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import tensorflow as tf | ||
4 | +import numpy as np | ||
5 | +import argparse | ||
6 | +import cv2 | ||
7 | + | ||
8 | +from misc_utils import parse_anchors, read_class_names | ||
9 | +from nms_utils import gpu_nms | ||
10 | +from plot_utils import get_color_table, plot_one_box | ||
11 | +from data_utils import letterbox_resize | ||
12 | + | ||
13 | +from model import yolov3 | ||
14 | + | ||
15 | +parser = argparse.ArgumentParser(description="YOLO-V3 test single image test procedure.") | ||
16 | +parser.add_argument("input_image", type=str, | ||
17 | + help="The path of the input image.") | ||
18 | +parser.add_argument("--anchor_path", type=str, default="./data/yolo_anchors.txt", | ||
19 | + help="The path of the anchor txt file.") | ||
20 | +parser.add_argument("--new_size", nargs='*', type=int, default=[416, 416], | ||
21 | + help="Resize the input image with `new_size`, size format: [width, height]") | ||
22 | +parser.add_argument("--letterbox_resize", type=lambda x: (str(x).lower() == 'true'), default=True, | ||
23 | + help="Whether to use the letterbox resize.") | ||
24 | +parser.add_argument("--class_name_path", type=str, default="./data/coco.names", | ||
25 | + help="The path of the class names.") | ||
26 | +parser.add_argument("--restore_path", type=str, default="./data/darknet_weights/yolov3.ckpt", | ||
27 | + help="The path of the weights to restore.") | ||
28 | +args = parser.parse_args() | ||
29 | + | ||
30 | +args.anchors = parse_anchors(args.anchor_path) | ||
31 | +args.classes = read_class_names(args.class_name_path) | ||
32 | +args.num_class = len(args.classes) | ||
33 | + | ||
34 | +color_table = get_color_table(args.num_class) | ||
35 | + | ||
36 | +img_ori = cv2.imread(args.input_image) | ||
37 | +if args.letterbox_resize: | ||
38 | + img, resize_ratio, dw, dh = letterbox_resize(img_ori, args.new_size[0], args.new_size[1]) | ||
39 | +else: | ||
40 | + height_ori, width_ori = img_ori.shape[:2] | ||
41 | + img = cv2.resize(img_ori, tuple(args.new_size)) | ||
42 | +img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
43 | +img = np.asarray(img, np.float32) | ||
44 | +img = img[np.newaxis, :] / 255. | ||
45 | + | ||
46 | +with tf.Session() as sess: | ||
47 | + input_data = tf.placeholder(tf.float32, [1, args.new_size[1], args.new_size[0], 3], name='input_data') | ||
48 | + yolo_model = yolov3(args.num_class, args.anchors) | ||
49 | + with tf.variable_scope('yolov3'): | ||
50 | + pred_feature_maps = yolo_model.forward(input_data, False) | ||
51 | + pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps) | ||
52 | + | ||
53 | + pred_scores = pred_confs * pred_probs | ||
54 | + | ||
55 | + boxes, scores, labels = gpu_nms(pred_boxes, pred_scores, args.num_class, max_boxes=200, score_thresh=0.3, nms_thresh=0.45) | ||
56 | + | ||
57 | + saver = tf.train.Saver() | ||
58 | + saver.restore(sess, args.restore_path) | ||
59 | + | ||
60 | + boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img}) | ||
61 | + | ||
62 | + if args.letterbox_resize: | ||
63 | + boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio | ||
64 | + boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio | ||
65 | + else: | ||
66 | + boxes_[:, [0, 2]] *= (width_ori/float(args.new_size[0])) | ||
67 | + boxes_[:, [1, 3]] *= (height_ori/float(args.new_size[1])) | ||
68 | + | ||
69 | + print("box coords:") | ||
70 | + print(boxes_) | ||
71 | + print('*' * 30) | ||
72 | + print("scores:") | ||
73 | + print(scores_) | ||
74 | + print('*' * 30) | ||
75 | + print("labels:") | ||
76 | + print(labels_) | ||
77 | + | ||
78 | + for i in range(len(boxes_)): | ||
79 | + x0, y0, x1, y1 = boxes_[i] | ||
80 | + plot_one_box(img_ori, [x0, y0, x1, y1], label=args.classes[labels_[i]] + ', {:.2f}%'.format(scores_[i] * 100), color=color_table[labels_[i]]) | ||
81 | + cv2.imshow('Detection result', img_ori) | ||
82 | + cv2.imwrite('detection_result.jpg', img_ori) | ||
83 | + cv2.waitKey(0) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/tfrecord_utils.py
0 → 100644
1 | +import tensorflow as tf | ||
2 | +from itertools import tee | ||
3 | + | ||
4 | +class TFRecordIterator: | ||
5 | + def __init__(self, path, compression=None): | ||
6 | + self._core = tf.python_io.tf_record_iterator(path, tf.python_io.TFRecordOptions(compression)) | ||
7 | + self._iterator = iter(self._core) | ||
8 | + self._iterator, self._iterator_temp = tee(self._iterator) | ||
9 | + self._total_cnt = sum(1 for _ in self._iterator_temp) | ||
10 | + | ||
11 | + def _read_value(self, feature): | ||
12 | + if len(feature.int64_list.value) > 0: | ||
13 | + return feature.int64_list.value | ||
14 | + | ||
15 | + if len(feature.bytes_list.value) > 0: | ||
16 | + return feature.bytes_list.value | ||
17 | + | ||
18 | + if len(feature.float_list.value) > 0: | ||
19 | + return feature.float_list.value | ||
20 | + | ||
21 | + return None | ||
22 | + | ||
23 | + def _read_features(self, features): | ||
24 | + d = dict() | ||
25 | + for data in features: | ||
26 | + d[data] = self._read_value(features[data]) | ||
27 | + return d | ||
28 | + | ||
29 | + def __enter__(self): | ||
30 | + return self | ||
31 | + | ||
32 | + def __exit__(self, exception_type, exception_value, traceback): | ||
33 | + pass | ||
34 | + | ||
35 | + def __iter__(self): | ||
36 | + return self | ||
37 | + | ||
38 | + def __next__(self): | ||
39 | + record = next(self._iterator) | ||
40 | + example = tf.train.Example() | ||
41 | + example.ParseFromString(record) | ||
42 | + return self._read_features(example.features.feature) | ||
43 | + | ||
44 | + def count(self): | ||
45 | + return self._total_cnt | ||
46 | + | ||
47 | + | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/train.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import tensorflow as tf | ||
4 | +import numpy as np | ||
5 | +import os | ||
6 | +from tqdm import trange | ||
7 | + | ||
8 | +import args | ||
9 | + | ||
10 | +from misc_utils import shuffle_and_overwrite, config_learning_rate, config_optimizer, AverageMeter | ||
11 | +from data_utils import get_batch_data | ||
12 | +from eval_utils import evaluate_on_cpu, evaluate_on_gpu, get_preds_gpu, voc_eval, parse_gt_rec | ||
13 | +from nms_utils import gpu_nms | ||
14 | + | ||
15 | +from model import yolov3 | ||
16 | + | ||
17 | +train_dataset = tf.data.TFRecordDataset(filenames=train_file, compression_type='GZIP') | ||
18 | +train_dataset = train_dataset.shuffle(train_img_cnt) | ||
19 | +train_dataset = train_dataset.batch(batch_size) | ||
20 | +train_dataset = train_dataset.map( | ||
21 | + lambda x: tf.py_func(get_batch_data, | ||
22 | + inp=[x, args.class_num, args.img_size, args.anchors, True, args.multi_scale_train, args.use_mix_up, args.letterbox_resize], | ||
23 | + Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]), | ||
24 | + num_parallel_calls=args.num_threads | ||
25 | +) | ||
26 | +train_dataset = train_dataset.prefetch(prefetech_buffer) | ||
27 | + | ||
28 | +val_dataset = tf.data.TFRecordDataset(filenames=val_file, compression_type='GZIP') | ||
29 | +val_dataset = val_dataset.batch(1) | ||
30 | +val_dataset = val_dataset.map( | ||
31 | + lambda x: tf.py_func(get_batch_data, | ||
32 | + inp=[x, args.class_num, args.img_size, args.anchors, False, False, False, args.letterbox_resize], | ||
33 | + Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]), | ||
34 | + num_parallel_calls=args.num_threads | ||
35 | +) | ||
36 | +val_dataset.prefetch(prefetech_buffer) | ||
37 | + | ||
38 | +iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes) | ||
39 | +train_init_op = iterator.make_initializer(train_dataset) | ||
40 | +val_init_op = iterator.make_initializer(val_dataset) | ||
41 | + | ||
42 | +image_ids, image, y_true_13, y_true_26, y_true_52 = iterator.get_next() | ||
43 | +y_true = [y_true_13, y_true_26, y_true_52] | ||
44 | + | ||
45 | +image_ids.set_shape([None]) | ||
46 | +image.set_shape([None, None, None, 3]) | ||
47 | +for y in y_true: | ||
48 | + y.set_shape([None, None, None, None, None]) | ||
49 | + | ||
50 | + | ||
51 | +### Model definition | ||
52 | +yolo_model = yolov3(class_num, anchors, use_label_smooth, use_focal_loss, batch_norm_decay, weight_decay, use_static_shape=False) | ||
53 | + | ||
54 | +with tf.variable_scope('yolov3'): | ||
55 | + pred_feature_maps = yolo_model.forward(image, is_training=is_training) | ||
56 | + | ||
57 | +loss = yolo_model.compute_loss(pred_feature_maps, y_true) | ||
58 | +y_pred = yolo_model.predict(pred_feature_maps) | ||
59 | + | ||
60 | +l2_loss = tf.losses.get_regularization_loss() | ||
61 | + | ||
62 | +saver_to_restore = tf.train.Saver(var_list=tf.contrib.framework.get_variables_to_restore(include=restore_include, exclude=restore_exclude)) | ||
63 | +update_vars = tf.contrib.framework.get_variables_to_restore(include=update_part) | ||
64 | + | ||
65 | + | ||
66 | +global_step = tf.Variable(float(global_step), trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]) | ||
67 | +if use_warm_up: | ||
68 | + learning_rate = tf.cond(tf.less(global_step, train_batch_num * warm_up_epoch), | ||
69 | + lambda: learning_rate_init * global_step / (train_batch_num * warm_up_epoch), | ||
70 | + lambda: config_learning_rate(global_step - args.train_batch_num * args.warm_up_epoch)) | ||
71 | +else: | ||
72 | + learning_rate = config_learning_rate(global_step) | ||
73 | + | ||
74 | +optimizer = config_optimizer(args.optimizer_name, learning_rate) | ||
75 | + | ||
76 | +update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) | ||
77 | + | ||
78 | +with tf.control_dependencies(update_ops): | ||
79 | + gvs = optimizer.compute_gradients(loss[0] + l2_loss, var_list=update_vars) | ||
80 | + clip_grad_var = [gv if gv[0] is None else [ | ||
81 | + tf.clip_by_norm(gv[0], 100.), gv[1]] for gv in gvs] | ||
82 | + train_op = optimizer.apply_gradients(clip_grad_var, global_step=global_step) | ||
83 | + | ||
84 | +if args.save_optimizer: | ||
85 | + print('Saving optimizer parameters: ON') | ||
86 | + saver_to_save = tf.train.Saver() | ||
87 | + saver_best = tf.train.Saver() | ||
88 | +else: | ||
89 | + print('Saving optimizer parameters: OFF') | ||
90 | + | ||
91 | + | ||
92 | +##### Start training | ||
93 | + | ||
94 | +with tf.Session() as sess: | ||
95 | + sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()]) | ||
96 | + | ||
97 | + if os.path.exists(args.restore_path): | ||
98 | + saver_to_restore.restore(sess, args.restore_path) | ||
99 | + | ||
100 | + print('\nStart training...\n') | ||
101 | + | ||
102 | + best_mAP = -np.Inf | ||
103 | + | ||
104 | + for epoch in range(args.total_epoches): | ||
105 | + sess.run(train_init_op) | ||
106 | + loss_total, loss_xy, loss_wh, loss_conf, loss_class = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() | ||
107 | + | ||
108 | + ### train part | ||
109 | + for i in trange(args.train_batch_num): | ||
110 | + _, __y_pred, __y_true, __loss, __global_step, __lr = sess.run( | ||
111 | + [train_op, y_pred, y_true, loss, global_step, learning_rate], | ||
112 | + feed_dict={is_training: True}) | ||
113 | + | ||
114 | + loss_total.update(__loss[0], len(__y_pred[0])) | ||
115 | + loss_xy.update(__loss[1], len(__y_pred[0])) | ||
116 | + loss_wh.update(__loss[2], len(__y_pred[0])) | ||
117 | + loss_conf.update(__loss[3], len(__y_pred[0])) | ||
118 | + loss_class.update(__loss[4], len(__y_pred[0])) | ||
119 | + | ||
120 | + if __global_step % args.train_evaluation_step == 0 and __global_step > 0: | ||
121 | + recall, precision = evaluate_on_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __y_pred, __y_true, args.class_num, args.nms_threshold) | ||
122 | + | ||
123 | + info = "Epoch: {}, global_step: {} | loss: total: {:.2f}, xy: {:.2f}, wh: {:.2f}, conf: {:.2f}, class: {:.2f} | ".format( | ||
124 | + epoch, int(__global_step), loss_total.average, loss_xy.average, loss_wh.average, loss_conf.average, loss_class.average) | ||
125 | + info += 'Last batch: rec: {:.3f}, prec: {:.3f} | lr: {:.5g}'.format(recall, precision, __lr) | ||
126 | + print(info) | ||
127 | + | ||
128 | + if np.isnan(loss_total.average): | ||
129 | + print('****' * 10) | ||
130 | + raise ArithmeticError('Gradient exploded!') | ||
131 | + | ||
132 | + ## train end (saving parameters) | ||
133 | + if args.save_optimizer and epoch % args.save_epoch == 0 and epoch > 0: | ||
134 | + if loss_total.average <= 2.: | ||
135 | + saver_to_save.save(sess, args.save_dir + 'model-epoch_{}_step_{}_loss_{:.4f}_lr_{:.5g}'.format(epoch, int(__global_step), loss_total.average, __lr)) | ||
136 | + | ||
137 | + ### validation part | ||
138 | + if epoch % args.val_evaluation_epoch == 0 and epoch >= args.warm_up_epoch: | ||
139 | + sess.run(val_init_op) | ||
140 | + | ||
141 | + val_loss_total, val_loss_xy, val_loss_wh, val_loss_conf, val_loss_class = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() | ||
142 | + | ||
143 | + val_preds = [] | ||
144 | + | ||
145 | + for j in trange(args.val_img_cnt): | ||
146 | + __image_ids, __y_pred, __loss = sess.run([image_ids, y_pred, loss], | ||
147 | + feed_dict={is_training: False}) | ||
148 | + pred_content = get_preds_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __image_ids, __y_pred) | ||
149 | + val_preds.extend(pred_content) | ||
150 | + val_loss_total.update(__loss[0]) | ||
151 | + val_loss_xy.update(__loss[1]) | ||
152 | + val_loss_wh.update(__loss[2]) | ||
153 | + val_loss_conf.update(__loss[3]) | ||
154 | + val_loss_class.update(__loss[4]) | ||
155 | + | ||
156 | + # calc mAP | ||
157 | + rec_total, prec_total, ap_total = AverageMeter(), AverageMeter(), AverageMeter() | ||
158 | + gt_dict = parse_gt_rec(args.val_file, args.img_size, args.letterbox_resize) | ||
159 | + | ||
160 | + info = '======> Epoch: {}, global_step: {}, lr: {:.6g} <======\n'.format(epoch, __global_step, __lr) | ||
161 | + | ||
162 | + for ii in range(args.class_num): | ||
163 | + npos, nd, rec, prec, ap = voc_eval(gt_dict, val_preds, ii, iou_thres=args.eval_threshold, use_07_metric=args.use_voc_07_metric) | ||
164 | + info += 'EVAL: Class {}: Recall: {:.4f}, Precision: {:.4f}, AP: {:.4f}\n'.format(ii, rec, prec, ap) | ||
165 | + rec_total.update(rec, npos) | ||
166 | + prec_total.update(prec, nd) | ||
167 | + ap_total.update(ap, 1) | ||
168 | + | ||
169 | + mAP = ap_total.average | ||
170 | + info += 'EVAL: Recall: {:.4f}, Precison: {:.4f}, mAP: {:.4f}\n'.format(rec_total.average, prec_total.average, mAP) | ||
171 | + info += 'EVAL: loss: total: {:.2f}, xy: {:.2f}, wh: {:.2f}, conf: {:.2f}, class: {:.2f}\n'.format( | ||
172 | + val_loss_total.average, val_loss_xy.average, val_loss_wh.average, val_loss_conf.average, val_loss_class.average) | ||
173 | + print(info) | ||
174 | + | ||
175 | + if args.save_optimizer and mAP > best_mAP: | ||
176 | + best_mAP = mAP | ||
177 | + saver_best.save(sess, args.save_dir + 'best_model_Epoch_{}_step_{}_mAP_{:.4f}_loss_{:.4f}_lr_{:.7g}'.format( | ||
178 | + epoch, int(__global_step), best_mAP, val_loss_total.average, __lr)) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
code/yolov3/video_test.py
0 → 100644
1 | +from __future__ import division, print_function | ||
2 | + | ||
3 | +import tensorflow as tf | ||
4 | +import numpy as np | ||
5 | +import argparse | ||
6 | +import cv2 | ||
7 | +import time | ||
8 | + | ||
9 | +from misc_utils import parse_anchors, read_class_names | ||
10 | +from nms_utils import gpu_nms | ||
11 | +from plot_utils import get_color_table, plot_one_box | ||
12 | +from data_utils import letterbox_resize | ||
13 | + | ||
14 | +from model import yolov3 | ||
15 | + | ||
16 | +parser = argparse.ArgumentParser(description="YOLO-V3 video test procedure.") | ||
17 | +parser.add_argument("input_video", type=str, | ||
18 | + help="The path of the input video.") | ||
19 | +parser.add_argument("--anchor_path", type=str, default="./data/yolo_anchors.txt", | ||
20 | + help="The path of the anchor txt file.") | ||
21 | +parser.add_argument("--new_size", nargs='*', type=int, default=[416, 416], | ||
22 | + help="Resize the input image with `new_size`, size format: [width, height]") | ||
23 | +parser.add_argument("--letterbox_resize", type=lambda x: (str(x).lower() == 'true'), default=True, | ||
24 | + help="Whether to use the letterbox resize.") | ||
25 | +parser.add_argument("--class_name_path", type=str, default="./data/classes.txt", | ||
26 | + help="The path of the class names.") | ||
27 | +parser.add_argument("--restore_path", type=str, default="./data/darknet_weights/yolov3.ckpt", | ||
28 | + help="The path of the weights to restore.") | ||
29 | +parser.add_argument("--save_video", type=lambda x: (str(x).lower() == 'true'), default=False, | ||
30 | + help="Whether to save the video detection results.") | ||
31 | +args = parser.parse_args() | ||
32 | + | ||
33 | +args.anchors = parse_anchors(args.anchor_path) | ||
34 | +args.classes = read_class_names(args.class_name_path) | ||
35 | +args.num_class = len(args.classes) | ||
36 | + | ||
37 | +color_table = get_color_table(args.num_class) | ||
38 | + | ||
39 | +vid = cv2.VideoCapture(args.input_video) | ||
40 | +video_frame_cnt = int(vid.get(7)) | ||
41 | +video_width = int(vid.get(3)) | ||
42 | +video_height = int(vid.get(4)) | ||
43 | +video_fps = int(vid.get(5)) | ||
44 | + | ||
45 | +if args.save_video: | ||
46 | + fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | ||
47 | + videoWriter = cv2.VideoWriter('video_result.mp4', fourcc, video_fps, (video_width, video_height)) | ||
48 | + | ||
49 | +with tf.Session() as sess: | ||
50 | + input_data = tf.placeholder(tf.float32, [1, args.new_size[1], args.new_size[0], 3], name='input_data') | ||
51 | + yolo_model = yolov3(args.num_class, args.anchors) | ||
52 | + with tf.variable_scope('yolov3'): | ||
53 | + pred_feature_maps = yolo_model.forward(input_data, False) | ||
54 | + pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps) | ||
55 | + | ||
56 | + pred_scores = pred_confs * pred_probs | ||
57 | + | ||
58 | + boxes, scores, labels = gpu_nms(pred_boxes, pred_scores, args.num_class, max_boxes=200, score_thresh=0.3, nms_thresh=0.45) | ||
59 | + | ||
60 | + saver = tf.train.Saver() | ||
61 | + saver.restore(sess, args.restore_path) | ||
62 | + | ||
63 | + for i in range(video_frame_cnt): | ||
64 | + ret, img_ori = vid.read() | ||
65 | + if args.letterbox_resize: | ||
66 | + img, resize_ratio, dw, dh = letterbox_resize(img_ori, args.new_size[0], args.new_size[1]) | ||
67 | + else: | ||
68 | + height_ori, width_ori = img_ori.shape[:2] | ||
69 | + img = cv2.resize(img_ori, tuple(args.new_size)) | ||
70 | + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
71 | + img = np.asarray(img, np.float32) | ||
72 | + img = img[np.newaxis, :] / 255. | ||
73 | + | ||
74 | + start_time = time.time() | ||
75 | + boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img}) | ||
76 | + end_time = time.time() | ||
77 | + | ||
78 | + # rescale the coordinates to the original image | ||
79 | + if args.letterbox_resize: | ||
80 | + boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio | ||
81 | + boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio | ||
82 | + else: | ||
83 | + boxes_[:, [0, 2]] *= (width_ori/float(args.new_size[0])) | ||
84 | + boxes_[:, [1, 3]] *= (height_ori/float(args.new_size[1])) | ||
85 | + | ||
86 | + | ||
87 | + for i in range(len(boxes_)): | ||
88 | + x0, y0, x1, y1 = boxes_[i] | ||
89 | + plot_one_box(img_ori, [x0, y0, x1, y1], label=args.classes[labels_[i]] + ', {:.2f}%'.format(scores_[i] * 100), color=color_table[labels_[i]]) | ||
90 | + cv2.putText(img_ori, '{:.2f}ms'.format((end_time - start_time) * 1000), (40, 40), 0, | ||
91 | + fontScale=1, color=(0, 255, 0), thickness=2) | ||
92 | + cv2.imshow('image', img_ori) | ||
93 | + if args.save_video: | ||
94 | + videoWriter.write(img_ori) | ||
95 | + if cv2.waitKey(1) & 0xFF == ord('q'): | ||
96 | + break | ||
97 | + | ||
98 | + vid.release() | ||
99 | + if args.save_video: | ||
100 | + videoWriter.release() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
-
Please register or login to post a comment