Showing
2 changed files
with
455 additions
and
6 deletions
code/FAA2/FAA2.ipynb
0 → 100644
1 | +{ | ||
2 | + "nbformat": 4, | ||
3 | + "nbformat_minor": 0, | ||
4 | + "metadata": { | ||
5 | + "colab": { | ||
6 | + "name": "FAA2.ipynb", | ||
7 | + "provenance": [], | ||
8 | + "collapsed_sections": [], | ||
9 | + "toc_visible": true | ||
10 | + }, | ||
11 | + "kernelspec": { | ||
12 | + "name": "python3", | ||
13 | + "display_name": "Python 3" | ||
14 | + }, | ||
15 | + "accelerator": "GPU" | ||
16 | + }, | ||
17 | + "cells": [ | ||
18 | + { | ||
19 | + "cell_type": "code", | ||
20 | + "metadata": { | ||
21 | + "id": "sWjZQ8LCWcZv", | ||
22 | + "colab_type": "code", | ||
23 | + "outputId": "3d4f5ec9-214c-4365-b43c-a3946f447631", | ||
24 | + "colab": { | ||
25 | + "base_uri": "https://localhost:8080/", | ||
26 | + "height": 35 | ||
27 | + } | ||
28 | + }, | ||
29 | + "source": [ | ||
30 | + "from google.colab import drive\n", | ||
31 | + "drive.mount('/content/drive')" | ||
32 | + ], | ||
33 | + "execution_count": 0, | ||
34 | + "outputs": [ | ||
35 | + { | ||
36 | + "output_type": "stream", | ||
37 | + "text": [ | ||
38 | + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" | ||
39 | + ], | ||
40 | + "name": "stdout" | ||
41 | + } | ||
42 | + ] | ||
43 | + }, | ||
44 | + { | ||
45 | + "cell_type": "code", | ||
46 | + "metadata": { | ||
47 | + "id": "3arNqMB_Wgbx", | ||
48 | + "colab_type": "code", | ||
49 | + "outputId": "7f1de510-e87c-4a78-8f63-8349aeba3a8b", | ||
50 | + "colab": { | ||
51 | + "base_uri": "https://localhost:8080/", | ||
52 | + "height": 35 | ||
53 | + } | ||
54 | + }, | ||
55 | + "source": [ | ||
56 | + "!git clone http://khuhub.khu.ac.kr/2020-1-capstone-design2/2016104167.git" | ||
57 | + ], | ||
58 | + "execution_count": 0, | ||
59 | + "outputs": [ | ||
60 | + { | ||
61 | + "output_type": "stream", | ||
62 | + "text": [ | ||
63 | + "fatal: destination path '2016104167' already exists and is not an empty directory.\n" | ||
64 | + ], | ||
65 | + "name": "stdout" | ||
66 | + } | ||
67 | + ] | ||
68 | + }, | ||
69 | + { | ||
70 | + "cell_type": "code", | ||
71 | + "metadata": { | ||
72 | + "id": "ISXM-edL-lGF", | ||
73 | + "colab_type": "code", | ||
74 | + "outputId": "b3d9b459-bdbf-4bcf-8c23-3ae0dd99a913", | ||
75 | + "colab": { | ||
76 | + "base_uri": "https://localhost:8080/", | ||
77 | + "height": 35 | ||
78 | + } | ||
79 | + }, | ||
80 | + "source": [ | ||
81 | + "%cd '2016104167/code/FAA2/'" | ||
82 | + ], | ||
83 | + "execution_count": 0, | ||
84 | + "outputs": [ | ||
85 | + { | ||
86 | + "output_type": "stream", | ||
87 | + "text": [ | ||
88 | + "/content/2016104167/code/FAA2\n" | ||
89 | + ], | ||
90 | + "name": "stdout" | ||
91 | + } | ||
92 | + ] | ||
93 | + }, | ||
94 | + { | ||
95 | + "cell_type": "code", | ||
96 | + "metadata": { | ||
97 | + "id": "43zJwd05_Tst", | ||
98 | + "colab_type": "code", | ||
99 | + "outputId": "bb293b7c-5b79-4720-fff8-5bfe077b6694", | ||
100 | + "colab": { | ||
101 | + "base_uri": "https://localhost:8080/", | ||
102 | + "height": 718 | ||
103 | + } | ||
104 | + }, | ||
105 | + "source": [ | ||
106 | + "!python -m pip install -r \"requirements.txt\"" | ||
107 | + ], | ||
108 | + "execution_count": 0, | ||
109 | + "outputs": [ | ||
110 | + { | ||
111 | + "output_type": "stream", | ||
112 | + "text": [ | ||
113 | + "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 1)) (0.16.0)\n", | ||
114 | + "Requirement already satisfied: tb-nightly in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 2)) (2.3.0a20200331)\n", | ||
115 | + "Requirement already satisfied: torchvision in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 3)) (0.5.0)\n", | ||
116 | + "Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 4)) (1.4.0)\n", | ||
117 | + "Requirement already satisfied: hyperopt in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 5)) (0.1.2)\n", | ||
118 | + "Requirement already satisfied: pillow==6.2.1 in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 6)) (6.2.1)\n", | ||
119 | + "Requirement already satisfied: natsort in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 7)) (5.5.0)\n", | ||
120 | + "Requirement already satisfied: fire in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 8)) (0.3.0)\n", | ||
121 | + "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.0.0)\n", | ||
122 | + "Requirement already satisfied: numpy>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.18.2)\n", | ||
123 | + "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (2.21.0)\n", | ||
124 | + "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (46.0.0)\n", | ||
125 | + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (3.2.1)\n", | ||
126 | + "Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (3.10.0)\n", | ||
127 | + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (0.4.1)\n", | ||
128 | + "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.7.2)\n", | ||
129 | + "Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.27.2)\n", | ||
130 | + "Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (0.34.2)\n", | ||
131 | + "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.12.0)\n", | ||
132 | + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.6.0.post2)\n", | ||
133 | + "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (0.9.0)\n", | ||
134 | + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (1.4.1)\n", | ||
135 | + "Requirement already satisfied: pymongo in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (3.10.1)\n", | ||
136 | + "Requirement already satisfied: networkx in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (2.4)\n", | ||
137 | + "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (4.38.0)\n", | ||
138 | + "Requirement already satisfied: termcolor in /usr/local/lib/python3.6/dist-packages (from fire->-r requirements.txt (line 8)) (1.1.0)\n", | ||
139 | + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (3.0.4)\n", | ||
140 | + "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (1.24.3)\n", | ||
141 | + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (2019.11.28)\n", | ||
142 | + "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (2.8)\n", | ||
143 | + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 2)) (1.3.0)\n", | ||
144 | + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (0.2.8)\n", | ||
145 | + "Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (4.0)\n", | ||
146 | + "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (3.1.1)\n", | ||
147 | + "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx->hyperopt->-r requirements.txt (line 5)) (4.4.2)\n", | ||
148 | + "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 2)) (3.1.0)\n", | ||
149 | + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (0.4.8)\n" | ||
150 | + ], | ||
151 | + "name": "stdout" | ||
152 | + } | ||
153 | + ] | ||
154 | + }, | ||
155 | + { | ||
156 | + "cell_type": "code", | ||
157 | + "metadata": { | ||
158 | + "id": "16kGbCYwfhYF", | ||
159 | + "colab_type": "code", | ||
160 | + "colab": {} | ||
161 | + }, | ||
162 | + "source": [ | ||
163 | + "# !pip3 install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl\n", | ||
164 | + "# !pip3 install torchvision" | ||
165 | + ], | ||
166 | + "execution_count": 0, | ||
167 | + "outputs": [] | ||
168 | + }, | ||
169 | + { | ||
170 | + "cell_type": "code", | ||
171 | + "metadata": { | ||
172 | + "id": "hofwjBN3ZY_h", | ||
173 | + "colab_type": "code", | ||
174 | + "colab": {} | ||
175 | + }, | ||
176 | + "source": [ | ||
177 | + "use_cuda = True" | ||
178 | + ], | ||
179 | + "execution_count": 0, | ||
180 | + "outputs": [] | ||
181 | + }, | ||
182 | + { | ||
183 | + "cell_type": "code", | ||
184 | + "metadata": { | ||
185 | + "id": "0h78dEdg_Jsg", | ||
186 | + "colab_type": "code", | ||
187 | + "colab": {} | ||
188 | + }, | ||
189 | + "source": [ | ||
190 | + "# try CIFAR10\n", | ||
191 | + "#!python \"train.py\" --seed=24 --scale=3 --optimizer=sgd --fast_auto_augment=True --use_cuda=True --network=ResNet50" | ||
192 | + ], | ||
193 | + "execution_count": 0, | ||
194 | + "outputs": [] | ||
195 | + }, | ||
196 | + { | ||
197 | + "cell_type": "code", | ||
198 | + "metadata": { | ||
199 | + "id": "nz8P9CpzES4L", | ||
200 | + "colab_type": "code", | ||
201 | + "outputId": "913ec5c8-4a66-45fd-8f76-a8367376c270", | ||
202 | + "colab": { | ||
203 | + "base_uri": "https://localhost:8080/", | ||
204 | + "height": 1000 | ||
205 | + } | ||
206 | + }, | ||
207 | + "source": [ | ||
208 | + "# BraTS, grayResNet2\n", | ||
209 | + "!python \"train.py\" --use_cuda=True --network=resnet50 --dataset=BraTS --optimizer=adam --fast_auto_augment=True" | ||
210 | + ], | ||
211 | + "execution_count": 0, | ||
212 | + "outputs": [ | ||
213 | + { | ||
214 | + "output_type": "stream", | ||
215 | + "text": [ | ||
216 | + "\n", | ||
217 | + "[+] Parse arguments\n", | ||
218 | + "Args(augment_path=None, batch_size=128, dataset='BraTS', fast_auto_augment=True, learning_rate=0.0001, max_step=10000, network='resnet50', num_workers=4, optimizer='adam', print_step=500, scheduler='exp', seed=None, start_step=0, use_cuda=True, val_step=500)\n", | ||
219 | + "\n", | ||
220 | + "[+] Create log dir\n", | ||
221 | + "2020-04-01 05:45:32.118038: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n", | ||
222 | + "\n", | ||
223 | + "[+] Create network\n", | ||
224 | + "BaseNet(\n", | ||
225 | + " (first): Sequential(\n", | ||
226 | + " (0): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", | ||
227 | + " )\n", | ||
228 | + " (after): Sequential(\n", | ||
229 | + " (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
230 | + " (1): ReLU(inplace=True)\n", | ||
231 | + " (2): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", | ||
232 | + " (3): Sequential(\n", | ||
233 | + " (0): Bottleneck(\n", | ||
234 | + " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
235 | + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
236 | + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
237 | + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
238 | + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
239 | + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
240 | + " (relu): ReLU(inplace=True)\n", | ||
241 | + " (downsample): Sequential(\n", | ||
242 | + " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
243 | + " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
244 | + " )\n", | ||
245 | + " )\n", | ||
246 | + " (1): Bottleneck(\n", | ||
247 | + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
248 | + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
249 | + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
250 | + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
251 | + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
252 | + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
253 | + " (relu): ReLU(inplace=True)\n", | ||
254 | + " )\n", | ||
255 | + " (2): Bottleneck(\n", | ||
256 | + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
257 | + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
258 | + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
259 | + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
260 | + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
261 | + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
262 | + " (relu): ReLU(inplace=True)\n", | ||
263 | + " )\n", | ||
264 | + " )\n", | ||
265 | + " (4): Sequential(\n", | ||
266 | + " (0): Bottleneck(\n", | ||
267 | + " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
268 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
269 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | ||
270 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
271 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
272 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
273 | + " (relu): ReLU(inplace=True)\n", | ||
274 | + " (downsample): Sequential(\n", | ||
275 | + " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", | ||
276 | + " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
277 | + " )\n", | ||
278 | + " )\n", | ||
279 | + " (1): Bottleneck(\n", | ||
280 | + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
281 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
282 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
283 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
284 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
285 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
286 | + " (relu): ReLU(inplace=True)\n", | ||
287 | + " )\n", | ||
288 | + " (2): Bottleneck(\n", | ||
289 | + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
290 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
291 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
292 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
293 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
294 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
295 | + " (relu): ReLU(inplace=True)\n", | ||
296 | + " )\n", | ||
297 | + " (3): Bottleneck(\n", | ||
298 | + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
299 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
300 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
301 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
302 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
303 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
304 | + " (relu): ReLU(inplace=True)\n", | ||
305 | + " )\n", | ||
306 | + " )\n", | ||
307 | + " (5): Sequential(\n", | ||
308 | + " (0): Bottleneck(\n", | ||
309 | + " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
310 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
311 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | ||
312 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
313 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
314 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
315 | + " (relu): ReLU(inplace=True)\n", | ||
316 | + " (downsample): Sequential(\n", | ||
317 | + " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", | ||
318 | + " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
319 | + " )\n", | ||
320 | + " )\n", | ||
321 | + " (1): Bottleneck(\n", | ||
322 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
323 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
324 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
325 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
326 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
327 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
328 | + " (relu): ReLU(inplace=True)\n", | ||
329 | + " )\n", | ||
330 | + " (2): Bottleneck(\n", | ||
331 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
332 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
333 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
334 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
335 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
336 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
337 | + " (relu): ReLU(inplace=True)\n", | ||
338 | + " )\n", | ||
339 | + " (3): Bottleneck(\n", | ||
340 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
341 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
342 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
343 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
344 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
345 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
346 | + " (relu): ReLU(inplace=True)\n", | ||
347 | + " )\n", | ||
348 | + " (4): Bottleneck(\n", | ||
349 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
350 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
351 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
352 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
353 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
354 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
355 | + " (relu): ReLU(inplace=True)\n", | ||
356 | + " )\n", | ||
357 | + " (5): Bottleneck(\n", | ||
358 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
359 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
360 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
361 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
362 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
363 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
364 | + " (relu): ReLU(inplace=True)\n", | ||
365 | + " )\n", | ||
366 | + " )\n", | ||
367 | + " (6): Sequential(\n", | ||
368 | + " (0): Bottleneck(\n", | ||
369 | + " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
370 | + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
371 | + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | ||
372 | + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
373 | + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
374 | + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
375 | + " (relu): ReLU(inplace=True)\n", | ||
376 | + " (downsample): Sequential(\n", | ||
377 | + " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", | ||
378 | + " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
379 | + " )\n", | ||
380 | + " )\n", | ||
381 | + " (1): Bottleneck(\n", | ||
382 | + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
383 | + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
384 | + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
385 | + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
386 | + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
387 | + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
388 | + " (relu): ReLU(inplace=True)\n", | ||
389 | + " )\n", | ||
390 | + " (2): Bottleneck(\n", | ||
391 | + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
392 | + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
393 | + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
394 | + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
395 | + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
396 | + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
397 | + " (relu): ReLU(inplace=True)\n", | ||
398 | + " )\n", | ||
399 | + " )\n", | ||
400 | + " (7): AdaptiveAvgPool2d(output_size=(1, 1))\n", | ||
401 | + " )\n", | ||
402 | + " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", | ||
403 | + ")\n", | ||
404 | + "\n", | ||
405 | + "[+] Load dataset\n", | ||
406 | + "[+] Child 0 training started (GPU: 0)\n", | ||
407 | + "\n", | ||
408 | + "[+] Training step: 0/10000\tElapsed time: 0.24min\tLearning rate: 9.999283e-05\tDevice name: Tesla P100-PCIE-16GB\n", | ||
409 | + " Acc@1 : 0.000%\n", | ||
410 | + " Acc@5 : 0.000%\n", | ||
411 | + " Loss : 7.242412567138672\n", | ||
412 | + "\n", | ||
413 | + "[+] Training step: 500/10000\tElapsed time: 9.44min\tLearning rate: 9.647145853624023e-05\tDevice name: Tesla P100-PCIE-16GB\n", | ||
414 | + " Acc@1 : 100.000%\n", | ||
415 | + " Acc@5 : 100.000%\n", | ||
416 | + " Loss : 0.00023103877902030945\n" | ||
417 | + ], | ||
418 | + "name": "stdout" | ||
419 | + } | ||
420 | + ] | ||
421 | + }, | ||
422 | + { | ||
423 | + "cell_type": "code", | ||
424 | + "metadata": { | ||
425 | + "id": "3iBnXLMsES7H", | ||
426 | + "colab_type": "code", | ||
427 | + "colab": {} | ||
428 | + }, | ||
429 | + "source": [ | ||
430 | + "" | ||
431 | + ], | ||
432 | + "execution_count": 0, | ||
433 | + "outputs": [] | ||
434 | + }, | ||
435 | + { | ||
436 | + "cell_type": "code", | ||
437 | + "metadata": { | ||
438 | + "id": "Wc8cguWUhp9l", | ||
439 | + "colab_type": "code", | ||
440 | + "colab": {} | ||
441 | + }, | ||
442 | + "source": [ | ||
443 | + "" | ||
444 | + ], | ||
445 | + "execution_count": 0, | ||
446 | + "outputs": [] | ||
447 | + } | ||
448 | + ] | ||
449 | +} | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
... | @@ -104,20 +104,20 @@ def dict_to_namedtuple(d): | ... | @@ -104,20 +104,20 @@ def dict_to_namedtuple(d): |
104 | 104 | ||
105 | def parse_args(kwargs): | 105 | def parse_args(kwargs): |
106 | # combine with default args | 106 | # combine with default args |
107 | - kwargs['dataset'] = kwargs['dataset'] if 'dataset' in kwargs else 'cifar10' | 107 | + kwargs['dataset'] = kwargs['dataset'] if 'dataset' in kwargs else 'BraTS' |
108 | - kwargs['network'] = kwargs['network'] if 'network' in kwargs else 'resnet_cifar10' | 108 | + kwargs['network'] = kwargs['network'] if 'network' in kwargs else 'resnet50' |
109 | kwargs['optimizer'] = kwargs['optimizer'] if 'optimizer' in kwargs else 'adam' | 109 | kwargs['optimizer'] = kwargs['optimizer'] if 'optimizer' in kwargs else 'adam' |
110 | - kwargs['learning_rate'] = kwargs['learning_rate'] if 'learning_rate' in kwargs else 0.1 | 110 | + kwargs['learning_rate'] = kwargs['learning_rate'] if 'learning_rate' in kwargs else 0.0001 |
111 | kwargs['seed'] = kwargs['seed'] if 'seed' in kwargs else None | 111 | kwargs['seed'] = kwargs['seed'] if 'seed' in kwargs else None |
112 | kwargs['use_cuda'] = kwargs['use_cuda'] if 'use_cuda' in kwargs else True | 112 | kwargs['use_cuda'] = kwargs['use_cuda'] if 'use_cuda' in kwargs else True |
113 | kwargs['use_cuda'] = kwargs['use_cuda'] and torch.cuda.is_available() | 113 | kwargs['use_cuda'] = kwargs['use_cuda'] and torch.cuda.is_available() |
114 | kwargs['num_workers'] = kwargs['num_workers'] if 'num_workers' in kwargs else 4 | 114 | kwargs['num_workers'] = kwargs['num_workers'] if 'num_workers' in kwargs else 4 |
115 | - kwargs['print_step'] = kwargs['print_step'] if 'print_step' in kwargs else 2000 | 115 | + kwargs['print_step'] = kwargs['print_step'] if 'print_step' in kwargs else 500 |
116 | - kwargs['val_step'] = kwargs['val_step'] if 'val_step' in kwargs else 2000 | 116 | + kwargs['val_step'] = kwargs['val_step'] if 'val_step' in kwargs else 500 |
117 | kwargs['scheduler'] = kwargs['scheduler'] if 'scheduler' in kwargs else 'exp' | 117 | kwargs['scheduler'] = kwargs['scheduler'] if 'scheduler' in kwargs else 'exp' |
118 | kwargs['batch_size'] = kwargs['batch_size'] if 'batch_size' in kwargs else 128 | 118 | kwargs['batch_size'] = kwargs['batch_size'] if 'batch_size' in kwargs else 128 |
119 | kwargs['start_step'] = kwargs['start_step'] if 'start_step' in kwargs else 0 | 119 | kwargs['start_step'] = kwargs['start_step'] if 'start_step' in kwargs else 0 |
120 | - kwargs['max_step'] = kwargs['max_step'] if 'max_step' in kwargs else 64000 | 120 | + kwargs['max_step'] = kwargs['max_step'] if 'max_step' in kwargs else 6500 |
121 | kwargs['fast_auto_augment'] = kwargs['fast_auto_augment'] if 'fast_auto_augment' in kwargs else False | 121 | kwargs['fast_auto_augment'] = kwargs['fast_auto_augment'] if 'fast_auto_augment' in kwargs else False |
122 | kwargs['augment_path'] = kwargs['augment_path'] if 'augment_path' in kwargs else None | 122 | kwargs['augment_path'] = kwargs['augment_path'] if 'augment_path' in kwargs else None |
123 | 123 | ... | ... |
-
Please register or login to post a comment