조현아

rm a few aug policies

......@@ -17,14 +17,14 @@ from utils import *
DEFALUT_CANDIDATES = [
ShearXY,
TranslateXY,
Rotate,
AutoContrast,
Invert,
# Rotate,
# AutoContrast,
# Invert,
Equalize,
Solarize,
Posterize,
Contrast,
Color,
# Color,
Brightness,
Sharpness,
Cutout,
......@@ -87,7 +87,7 @@ def validate_child(args, model, dataset, subset_indx, transform, device=None):
dataset.transform = transform
subset = Subset(dataset, subset_indx)
data_loader = get_dataloader(args, subset, pin_memory=False)
data_loader = get_dataloader(args, subset, pin_memory=False) ##
return validate(args, model, criterion, data_loader, 0, None, device)
......
{"use_cuda": true, "network": "resnet50", "dataset": "BraTS", "optimizer": "adam", "fast_auto_augment": true, "learning_rate": 0.01, "seed": null, "num_workers": 4, "print_step": 500, "val_step": 500, "scheduler": "exp", "batch_size": 128, "start_step": 0, "max_step": 10000, "augment_path": null}
\ No newline at end of file
04:28
\ No newline at end of file
{"use_cuda": true, "network": "resnet50", "dataset": "BraTS", "optimizer": "adam", "fast_auto_augment": true, "learning_rate": 0.0001, "seed": null, "num_workers": 4, "print_step": 500, "val_step": 500, "scheduler": "exp", "batch_size": 128, "start_step": 0, "max_step": 10000, "augment_path": null}
\ No newline at end of file
{"use_cuda": true, "network": "resnet50", "dataset": "BraTS", "optimizer": "adam", "fast_auto_augment": true, "print_step": 300, "batch_size": 4, "val_step": 300, "max_step": 300, "learning_rate": 0.0001, "seed": null, "num_workers": 4, "scheduler": "exp", "start_step": 0, "augment_path": null}
\ No newline at end of file
max step = 5000
step = 500
lr = 0.0001
batch_size = 128
DEFALUT_CANDIDATES = [
ShearXY,
TranslateXY,
Rotate,
AutoContrast,
Invert,
Equalize,
Solarize,
Posterize,
Contrast,
Color,
Brightness,
Sharpness,
Cutout
]
[+] Parse arguments
Args(augment_path=None, batch_size=64, dataset='BraTS', fast_auto_augment=True, learning_rate=0.0001, max_step=5000, network='resnet50', num_workers=4, optimizer='adam', print_step=500, scheduler='exp', seed=None, start_step=0, use_cuda=True, val_step=500)
[+] Create log dir
2020-04-06 10:55:55.010279: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
[+] Create network
[+] Load dataset
[+] Child 0 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.11min Learning rate: 9.999283e-05 Device name: Tesla P4
Acc@1 : 0.000%
Acc@5 : 1.562%
Loss : 6.452464580535889
[+] Training step: 500/5000 Elapsed time: 4.94min Learning rate: 9.647145853624023e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0003164634108543396
[+] Training step: 1000/5000 Elapsed time: 9.78min Learning rate: 9.307409653381692e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00015767663717269897
[+] Training step: 1500/5000 Elapsed time: 14.55min Learning rate: 8.979637684582141e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.193535566329956e-05
[+] Training step: 2000/5000 Elapsed time: 19.42min Learning rate: 8.663408611983758e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 3.548711538314819e-05
[+] Training step: 2500/5000 Elapsed time: 24.18min Learning rate: 8.358315938187757e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.549588680267334e-05
[+] Training step: 3000/5000 Elapsed time: 29.06min Learning rate: 8.063967481105164e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.321600914001465e-05
[+] Training step: 3500/5000 Elapsed time: 33.86min Learning rate: 7.779984869825457e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.5473142159171402e-05
[+] Training step: 4000/5000 Elapsed time: 38.75min Learning rate: 7.506003058238717e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 8.58306884765625e-06
[+] Training step: 4500/5000 Elapsed time: 43.64min Learning rate: 7.24166985578635e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.780028343200684e-06
100% 1/1 [00:06<00:00, 6.08s/it, best loss: 5.96450536249904e-06]
100% 1/1 [00:04<00:00, 4.25s/it, best loss: 8.08198547019856e-06]
[+] Child 1 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.06min Learning rate: 9.999283e-05 Device name: Tesla P4
Acc@1 : 0.000%
Acc@5 : 1.562%
Loss : 6.547057628631592
[+] Training step: 500/5000 Elapsed time: 4.90min Learning rate: 9.647145853624023e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.000509507954120636
[+] Training step: 1000/5000 Elapsed time: 9.79min Learning rate: 9.307409653381692e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0001100301742553711
[+] Training step: 1500/5000 Elapsed time: 14.60min Learning rate: 8.979637684582141e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.142126560211182e-05
[+] Training step: 2000/5000 Elapsed time: 19.46min Learning rate: 8.663408611983758e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 5.066394805908203e-05
[+] Training step: 2500/5000 Elapsed time: 24.26min Learning rate: 8.358315938187757e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.6144087314605713e-05
[+] Training step: 3000/5000 Elapsed time: 29.14min Learning rate: 8.063967481105164e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.6264617443084717e-05
[+] Training step: 3500/5000 Elapsed time: 33.96min Learning rate: 7.779984869825457e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.374147152295336e-05
[+] Training step: 4000/5000 Elapsed time: 38.83min Learning rate: 7.506003058238717e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.138448715209961e-05
[+] Training step: 4500/5000 Elapsed time: 43.67min Learning rate: 7.24166985578635e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.288290023803711e-06
100% 1/1 [00:04<00:00, 4.13s/it, best loss: 4.1864686863846146e-06]
100% 1/1 [00:04<00:00, 4.07s/it, best loss: 8.486084880132694e-06]
[+] Child 2 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.07min Learning rate: 9.999283e-05 Device name: Tesla P4
Acc@1 : 1.562%
Acc@5 : 1.562%
Loss : 6.490279674530029
[+] Training step: 500/5000 Elapsed time: 4.82min Learning rate: 9.647145853624023e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0005068182945251465
[+] Training step: 1000/5000 Elapsed time: 9.63min Learning rate: 9.307409653381692e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00012455880641937256
[+] Training step: 1500/5000 Elapsed time: 14.36min Learning rate: 8.979637684582141e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.882846355438232e-05
[+] Training step: 2000/5000 Elapsed time: 19.16min Learning rate: 8.663408611983758e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.9802322387695312e-05
[+] Training step: 2500/5000 Elapsed time: 23.87min Learning rate: 8.358315938187757e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.917034387588501e-05
[+] Training step: 3000/5000 Elapsed time: 28.66min Learning rate: 8.063967481105164e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.6361474990844727e-05
[+] Training step: 3500/5000 Elapsed time: 33.37min Learning rate: 7.779984869825457e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.0741384357970674e-05
[+] Training step: 4000/5000 Elapsed time: 38.21min Learning rate: 7.506003058238717e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.048249244689941e-06
[+] Training step: 4500/5000 Elapsed time: 43.05min Learning rate: 7.24166985578635e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.450580596923828e-06
100% 1/1 [00:04<00:00, 4.30s/it, best loss: 3.3297781101282453e-06]
100% 1/1 [00:04<00:00, 4.30s/it, best loss: 7.823362466297112e-06]
[+] Child 3 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.06min Learning rate: 9.999283e-05 Device name: Tesla P4
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 6.425505638122559
[+] Training step: 500/5000 Elapsed time: 4.89min Learning rate: 9.647145853624023e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0004970133304595947
[+] Training step: 1000/5000 Elapsed time: 9.81min Learning rate: 9.307409653381692e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00017832964658737183
[+] Training step: 1500/5000 Elapsed time: 14.64min Learning rate: 8.979637684582141e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.403028964996338e-05
[+] Training step: 2000/5000 Elapsed time: 19.53min Learning rate: 8.663408611983758e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.484853267669678e-05
[+] Training step: 2500/5000 Elapsed time: 24.35min Learning rate: 8.358315938187757e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 3.053247928619385e-05
[+] Training step: 3000/5000 Elapsed time: 29.26min Learning rate: 8.063967481105164e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.741945743560791e-05
[+] Training step: 3500/5000 Elapsed time: 34.08min Learning rate: 7.779984869825457e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.042870801233221e-05
[+] Training step: 4000/5000 Elapsed time: 38.94min Learning rate: 7.506003058238717e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.957220077514648e-06
[+] Training step: 4500/5000 Elapsed time: 43.80min Learning rate: 7.24166985578635e-05 Device name: Tesla P4
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.332993507385254e-06
100% 1/1 [00:04<00:00, 4.14s/it, best loss: 6.594900241907453e-06]
100% 1/1 [00:04<00:00, 4.14s/it, best loss: 2.6993832307198318e-06]
RandomChoice(
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
ShearXY(prob=0.67, magnitude=0.71)
Posterize(prob=0.38, magnitude=0.90)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Color(prob=0.90, magnitude=0.30)
Rotate(prob=0.41, magnitude=0.51)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Sharpness(prob=0.84, magnitude=0.21)
Contrast(prob=0.88, magnitude=0.16)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
ShearXY(prob=0.24, magnitude=0.39)
TranslateXY(prob=0.47, magnitude=0.55)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Sharpness(prob=0.38, magnitude=0.48)
Equalize(prob=0.72, magnitude=0.25)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Rotate(prob=0.84, magnitude=0.36)
AutoContrast(prob=0.12, magnitude=0.05)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Contrast(prob=0.26, magnitude=0.12)
ShearXY(prob=0.32, magnitude=0.13)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Solarize(prob=0.05, magnitude=0.03)
Sharpness(prob=0.97, magnitude=0.83)
ToTensor()
)
)
[+] Start training
[+] Use 1 GPUs
[+] Using GPU: Tesla P4
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:2457: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:2539: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
[+] Training step: 0/5000 Training epoch: 0/31 Elapsed time: 0.62min Learning rate: 9.999283e-05
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 6.816585063934326
FW Time : 33.351ms
BW Time : 10.075ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 5.762917498941533e-05
[+] Model saved
[+] Training step: 500/5000 Training epoch: 0/31 Elapsed time: 6.52min Learning rate: 9.647145853624023e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00011359900236129761
FW Time : 19.469ms
BW Time : 14.039ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 1000/5000 Training epoch: 0/31 Elapsed time: 8.88min Learning rate: 9.307409653381692e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 8.489564061164856e-05
FW Time : 23.165ms
BW Time : 13.944ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 1500/5000 Training epoch: 0/31 Elapsed time: 11.14min Learning rate: 8.979637684582141e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.42240047454834e-06
FW Time : 14.039ms
BW Time : 8.235ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 2000/5000 Training epoch: 0/31 Elapsed time: 13.49min Learning rate: 8.663408611983758e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.175569534301758e-06
FW Time : 20.693ms
BW Time : 14.328ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 2500/5000 Training epoch: 0/31 Elapsed time: 15.84min Learning rate: 8.358315938187757e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 21.502ms
BW Time : 11.221ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 3000/5000 Training epoch: 0/31 Elapsed time: 18.10min Learning rate: 8.063967481105164e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 24.350ms
BW Time : 13.500ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 3500/5000 Training epoch: 0/31 Elapsed time: 20.44min Learning rate: 7.779984869825457e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 24.146ms
BW Time : 12.905ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 4000/5000 Training epoch: 0/31 Elapsed time: 22.77min Learning rate: 7.506003058238717e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 64.314ms
BW Time : 17.536ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 4500/5000 Training epoch: 0/31 Elapsed time: 25.01min Learning rate: 7.24166985578635e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 17.300ms
BW Time : 12.326ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
\ No newline at end of file
max step = 5000
step = 500
lr = 0.0001
batch_size = 128
DEFALUT_CANDIDATES = [
ShearXY,
TranslateXY,
# Rotate,
AutoContrast,
# Invert,
Equalize,
Solarize,
Posterize,
Contrast,
# Color,
Brightness,
Sharpness,
Cutout,
# SamplePairing,
]
[+] Parse arguments
Args(augment_path=None, batch_size=64, dataset='BraTS', fast_auto_augment=True, learning_rate=0.0001, max_step=5000, network='resnet50', num_workers=4, optimizer='adam', print_step=500, scheduler='exp', seed=None, start_step=0, use_cuda=True, val_step=500)
[+] Create log dir
2020-04-13 06:56:00.492033: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
[+] Create network
[+] Load dataset
[+] Child 0 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.55min Learning rate: 9.999283e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 7.331308841705322
[+] Training step: 500/5000 Elapsed time: 7.61min Learning rate: 9.647145853624023e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0003173351287841797
[+] Training step: 1000/5000 Elapsed time: 13.69min Learning rate: 9.307409653381692e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00012065470218658447
[+] Training step: 1500/5000 Elapsed time: 19.60min Learning rate: 8.979637684582141e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 8.422136306762695e-05
[+] Training step: 2000/5000 Elapsed time: 25.56min Learning rate: 8.663408611983758e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 5.1371753215789795e-05
[+] Training step: 2500/5000 Elapsed time: 31.51min Learning rate: 8.358315938187757e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.7231872081756592e-05
[+] Training step: 3000/5000 Elapsed time: 37.30min Learning rate: 8.063967481105164e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.662224531173706e-05
[+] Training step: 3500/5000 Elapsed time: 42.91min Learning rate: 7.779984869825457e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.1795445061579812e-05
[+] Training step: 4000/5000 Elapsed time: 48.72min Learning rate: 7.506003058238717e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.079673767089844e-06
[+] Training step: 4500/5000 Elapsed time: 54.77min Learning rate: 7.24166985578635e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.3053417205810547e-05
100% 1/1 [00:31<00:00, 31.34s/it, best loss: 2.456923766658292e-06]
100% 1/1 [00:05<00:00, 5.32s/it, best loss: 6.659556220256491e-06]
[+] Child 1 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.08min Learning rate: 9.999283e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 7.408554553985596
[+] Training step: 500/5000 Elapsed time: 6.04min Learning rate: 9.647145853624023e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0002929195761680603
[+] Training step: 1000/5000 Elapsed time: 12.01min Learning rate: 9.307409653381692e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00017809122800827026
[+] Training step: 1500/5000 Elapsed time: 17.93min Learning rate: 8.979637684582141e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 9.942799806594849e-05
[+] Training step: 2000/5000 Elapsed time: 23.73min Learning rate: 8.663408611983758e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 4.045665264129639e-05
[+] Training step: 2500/5000 Elapsed time: 29.59min Learning rate: 8.358315938187757e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.6069581508636475e-05
[+] Training step: 3000/5000 Elapsed time: 35.49min Learning rate: 8.063967481105164e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.197176218032837e-05
[+] Training step: 3500/5000 Elapsed time: 41.35min Learning rate: 7.779984869825457e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.2278476181963924e-06
[+] Training step: 4000/5000 Elapsed time: 47.20min Learning rate: 7.506003058238717e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 8.530914783477783e-06
[+] Training step: 4500/5000 Elapsed time: 52.98min Learning rate: 7.24166985578635e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 5.826354026794434e-06
100% 1/1 [00:05<00:00, 5.11s/it, best loss: 8.13047790870769e-06]
100% 1/1 [00:05<00:00, 5.03s/it, best loss: 6.885851689730771e-06]
[+] Child 2 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.08min Learning rate: 9.999283e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 7.380028247833252
[+] Training step: 500/5000 Elapsed time: 5.62min Learning rate: 9.647145853624023e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0003273114562034607
[+] Training step: 1000/5000 Elapsed time: 11.24min Learning rate: 9.307409653381692e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00010266900062561035
[+] Training step: 1500/5000 Elapsed time: 16.86min Learning rate: 8.979637684582141e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 6.0267746448516846e-05
[+] Training step: 2000/5000 Elapsed time: 22.77min Learning rate: 8.663408611983758e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 3.4943222999572754e-05
[+] Training step: 2500/5000 Elapsed time: 28.61min Learning rate: 8.358315938187757e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 3.550201654434204e-05
[+] Training step: 3000/5000 Elapsed time: 34.66min Learning rate: 8.063967481105164e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.2232532501220703e-05
[+] Training step: 3500/5000 Elapsed time: 40.65min Learning rate: 7.779984869825457e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.436888826196082e-05
[+] Training step: 4000/5000 Elapsed time: 46.78min Learning rate: 7.506003058238717e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 8.17328691482544e-06
[+] Training step: 4500/5000 Elapsed time: 52.87min Learning rate: 7.24166985578635e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 8.38935375213623e-06
100% 1/1 [00:05<00:00, 5.43s/it, best loss: 9.423595656699035e-06]
100% 1/1 [00:05<00:00, 5.42s/it, best loss: 8.001165952009615e-06]
[+] Child 3 training started (GPU: 0)
[+] Training step: 0/5000 Elapsed time: 0.09min Learning rate: 9.999283e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 7.353156566619873
[+] Training step: 500/5000 Elapsed time: 6.07min Learning rate: 9.647145853624023e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0005485564470291138
[+] Training step: 1000/5000 Elapsed time: 12.12min Learning rate: 9.307409653381692e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00013493746519088745
[+] Training step: 1500/5000 Elapsed time: 18.06min Learning rate: 8.979637684582141e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 5.833059549331665e-05
[+] Training step: 2000/5000 Elapsed time: 24.09min Learning rate: 8.663408611983758e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 4.260987043380737e-05
[+] Training step: 2500/5000 Elapsed time: 30.12min Learning rate: 8.358315938187757e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.2239983081817627e-05
[+] Training step: 3000/5000 Elapsed time: 36.35min Learning rate: 8.063967481105164e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.6763806343078613e-05
[+] Training step: 3500/5000 Elapsed time: 42.52min Learning rate: 7.779984869825457e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.4556081623595674e-05
[+] Training step: 4000/5000 Elapsed time: 48.95min Learning rate: 7.506003058238717e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.1704862117767334e-05
[+] Training step: 4500/5000 Elapsed time: 55.31min Learning rate: 7.24166985578635e-05 Device name: Tesla P100-PCIE-16GB
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 1.0773539543151855e-05
100% 1/1 [00:05<00:00, 5.62s/it, best loss: 6.91817967890529e-06]
100% 1/1 [00:05<00:00, 5.63s/it, best loss: 6.578736247320194e-06]
RandomChoice(
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Solarize(prob=0.91, magnitude=0.02)
Equalize(prob=0.79, magnitude=0.88)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
TranslateXY(prob=0.63, magnitude=0.78)
Cutout(prob=0.31, magnitude=0.73)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
TranslateXY(prob=0.26, magnitude=0.37)
AutoContrast(prob=0.78, magnitude=0.81)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Posterize(prob=0.71, magnitude=0.48)
AutoContrast(prob=0.25, magnitude=0.62)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Cutout(prob=0.78, magnitude=0.30)
TranslateXY(prob=0.72, magnitude=0.50)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
AutoContrast(prob=0.53, magnitude=0.95)
Contrast(prob=0.08, magnitude=0.43)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Cutout(prob=0.38, magnitude=0.47)
Cutout(prob=0.98, magnitude=0.07)
ToTensor()
)
Compose(
Pad(padding=4, fill=0, padding_mode=constant)
RandomCrop(size=(32, 32), padding=None)
RandomHorizontalFlip(p=0.5)
Brightness(prob=0.13, magnitude=0.42)
Brightness(prob=0.88, magnitude=0.09)
ToTensor()
)
)
[+] Start training
[+] Use 1 GPUs
[+] Using GPU: Tesla P100-PCIE-16GB
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:2457: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:2539: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
[+] Training step: 0/5000 Training epoch: 0/31 Elapsed time: 0.54min Learning rate: 9.999283e-05
Acc@1 : 0.000%
Acc@5 : 0.000%
Loss : 7.482730388641357
FW Time : 27.781ms
BW Time : 11.731ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 500/5000 Training epoch: 0/31 Elapsed time: 6.91min Learning rate: 9.647145853624023e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 7.505388930439949e-05
FW Time : 30.267ms
BW Time : 30.651ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 1000/5000 Training epoch: 0/31 Elapsed time: 10.06min Learning rate: 9.307409653381692e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.00013676658272743225
FW Time : 40.501ms
BW Time : 34.972ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 1500/5000 Training epoch: 0/31 Elapsed time: 13.08min Learning rate: 8.979637684582141e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 4.213303327560425e-06
FW Time : 35.585ms
BW Time : 30.589ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 2000/5000 Training epoch: 0/31 Elapsed time: 16.21min Learning rate: 8.663408611983758e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 5.885958671569824e-07
FW Time : 29.106ms
BW Time : 28.138ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 2500/5000 Training epoch: 0/31 Elapsed time: 19.30min Learning rate: 8.358315938187757e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 2.130866050720215e-06
FW Time : 30.433ms
BW Time : 32.247ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 3000/5000 Training epoch: 0/31 Elapsed time: 22.28min Learning rate: 8.063967481105164e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 16.860ms
BW Time : 13.823ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 3500/5000 Training epoch: 0/31 Elapsed time: 25.33min Learning rate: 7.779984869825457e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 28.149ms
BW Time : 25.686ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 4000/5000 Training epoch: 0/31 Elapsed time: 28.45min Learning rate: 7.506003058238717e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 38.845ms
BW Time : 32.935ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
[+] Training step: 4500/5000 Training epoch: 0/31 Elapsed time: 31.40min Learning rate: 7.24166985578635e-05
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
FW Time : 34.974ms
BW Time : 27.569ms
[+] Valid results
Acc@1 : 100.000%
Acc@5 : 100.000%
Loss : 0.0
[+] Model saved
\ No newline at end of file
max step = 3000
step = 500
lr = 0.0001
batch_size = 64
DEFALUT_CANDIDATES = [
ShearXY,
TranslateXY,
# Rotate,
# AutoContrast, #߰
# Invert,
Equalize,
Solarize,
Posterize,
Contrast,
# Color,
Brightness,
Sharpness,
Cutout,
# SamplePairing,
]
\ No newline at end of file