Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-1-capstone-design2
/
2016104167
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
조현아
2020-04-24 15:13:10 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
efe770b239fa69d7db081b4c9d2f2fc4d931368c
efe770b2
1 parent
d3bf0a48
get normal frames
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
389 additions
and
0 deletions
code/classifier/networks/grayResNet2.py
code/getNormalFrames.m
code/classifier/networks/grayResNet2.py
0 → 100644
View file @
efe770b
import
torch
import
torch.nn
as
nn
#from .utils import load_state_dict_from_url
__all__
=
[
'ResNet'
,
'resnet18'
,
'resnet34'
,
'resnet50'
,
'resnet101'
,
'resnet152'
,
'resnext50_32x4d'
,
'resnext101_32x8d'
,
'wide_resnet50_2'
,
'wide_resnet101_2'
]
model_urls
=
{
'resnet18'
:
'https://download.pytorch.org/models/resnet18-5c106cde.pth'
,
'resnet34'
:
'https://download.pytorch.org/models/resnet34-333f7ec4.pth'
,
'resnet50'
:
'https://download.pytorch.org/models/resnet50-19c8e357.pth'
,
'resnet101'
:
'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'
,
'resnet152'
:
'https://download.pytorch.org/models/resnet152-b121ed2d.pth'
,
'resnext50_32x4d'
:
'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth'
,
'resnext101_32x8d'
:
'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth'
,
'wide_resnet50_2'
:
'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth'
,
'wide_resnet101_2'
:
'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'
,
}
def
conv3x3
(
in_planes
,
out_planes
,
stride
=
1
,
groups
=
1
,
dilation
=
1
):
"""3x3 convolution with padding"""
return
nn
.
Conv2d
(
in_planes
,
out_planes
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
dilation
,
groups
=
groups
,
bias
=
False
,
dilation
=
dilation
)
def
conv1x1
(
in_planes
,
out_planes
,
stride
=
1
):
"""1x1 convolution"""
return
nn
.
Conv2d
(
in_planes
,
out_planes
,
kernel_size
=
1
,
stride
=
stride
,
bias
=
False
)
class
BasicBlock
(
nn
.
Module
):
expansion
=
1
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
,
downsample
=
None
,
groups
=
1
,
base_width
=
64
,
dilation
=
1
,
norm_layer
=
None
):
super
(
BasicBlock
,
self
)
.
__init__
()
if
norm_layer
is
None
:
norm_layer
=
nn
.
BatchNorm2d
if
groups
!=
1
or
base_width
!=
64
:
raise
ValueError
(
'BasicBlock only supports groups=1 and base_width=64'
)
if
dilation
>
1
:
raise
NotImplementedError
(
"Dilation > 1 not supported in BasicBlock"
)
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self
.
conv1
=
conv3x3
(
inplanes
,
planes
,
stride
)
self
.
bn1
=
norm_layer
(
planes
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
conv2
=
conv3x3
(
planes
,
planes
)
self
.
bn2
=
norm_layer
(
planes
)
self
.
downsample
=
downsample
self
.
stride
=
stride
def
forward
(
self
,
x
):
identity
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
if
self
.
downsample
is
not
None
:
identity
=
self
.
downsample
(
x
)
out
+=
identity
out
=
self
.
relu
(
out
)
return
out
class
Bottleneck
(
nn
.
Module
):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion
=
4
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
,
downsample
=
None
,
groups
=
1
,
base_width
=
64
,
dilation
=
1
,
norm_layer
=
None
):
super
(
Bottleneck
,
self
)
.
__init__
()
if
norm_layer
is
None
:
norm_layer
=
nn
.
BatchNorm2d
width
=
int
(
planes
*
(
base_width
/
64.
))
*
groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self
.
conv1
=
conv1x1
(
inplanes
,
width
)
self
.
bn1
=
norm_layer
(
width
)
self
.
conv2
=
conv3x3
(
width
,
width
,
stride
,
groups
,
dilation
)
self
.
bn2
=
norm_layer
(
width
)
self
.
conv3
=
conv1x1
(
width
,
planes
*
self
.
expansion
)
self
.
bn3
=
norm_layer
(
planes
*
self
.
expansion
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
downsample
=
downsample
self
.
stride
=
stride
def
forward
(
self
,
x
):
identity
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv3
(
out
)
out
=
self
.
bn3
(
out
)
if
self
.
downsample
is
not
None
:
identity
=
self
.
downsample
(
x
)
out
+=
identity
out
=
self
.
relu
(
out
)
return
out
class
ResNet
(
nn
.
Module
):
def
__init__
(
self
,
block
,
layers
,
num_classes
=
1000
,
zero_init_residual
=
False
,
groups
=
1
,
width_per_group
=
64
,
replace_stride_with_dilation
=
None
,
norm_layer
=
None
):
super
(
ResNet
,
self
)
.
__init__
()
if
norm_layer
is
None
:
norm_layer
=
nn
.
BatchNorm2d
self
.
_norm_layer
=
norm_layer
self
.
inplanes
=
64
self
.
dilation
=
1
if
replace_stride_with_dilation
is
None
:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation
=
[
False
,
False
,
False
]
if
len
(
replace_stride_with_dilation
)
!=
3
:
raise
ValueError
(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}"
.
format
(
replace_stride_with_dilation
))
self
.
groups
=
groups
self
.
base_width
=
width_per_group
# change dimension 3->1 for grayscale input
self
.
conv1
=
nn
.
Conv2d
(
1
,
self
.
inplanes
,
kernel_size
=
7
,
stride
=
2
,
padding
=
3
,
bias
=
False
)
self
.
bn1
=
norm_layer
(
self
.
inplanes
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
layer1
=
self
.
_make_layer
(
block
,
64
,
layers
[
0
])
self
.
layer2
=
self
.
_make_layer
(
block
,
128
,
layers
[
1
],
stride
=
2
,
dilate
=
replace_stride_with_dilation
[
0
])
self
.
layer3
=
self
.
_make_layer
(
block
,
256
,
layers
[
2
],
stride
=
2
,
dilate
=
replace_stride_with_dilation
[
1
])
self
.
layer4
=
self
.
_make_layer
(
block
,
512
,
layers
[
3
],
stride
=
2
,
dilate
=
replace_stride_with_dilation
[
2
])
self
.
avgpool
=
nn
.
AdaptiveAvgPool2d
((
1
,
1
))
self
.
fc
=
nn
.
Linear
(
512
*
block
.
expansion
,
num_classes
)
for
m
in
self
.
modules
():
if
isinstance
(
m
,
nn
.
Conv2d
):
nn
.
init
.
kaiming_normal_
(
m
.
weight
,
mode
=
'fan_out'
,
nonlinearity
=
'relu'
)
elif
isinstance
(
m
,
(
nn
.
BatchNorm2d
,
nn
.
GroupNorm
)):
nn
.
init
.
constant_
(
m
.
weight
,
1
)
nn
.
init
.
constant_
(
m
.
bias
,
0
)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if
zero_init_residual
:
for
m
in
self
.
modules
():
if
isinstance
(
m
,
Bottleneck
):
nn
.
init
.
constant_
(
m
.
bn3
.
weight
,
0
)
elif
isinstance
(
m
,
BasicBlock
):
nn
.
init
.
constant_
(
m
.
bn2
.
weight
,
0
)
def
_make_layer
(
self
,
block
,
planes
,
blocks
,
stride
=
1
,
dilate
=
False
):
norm_layer
=
self
.
_norm_layer
downsample
=
None
previous_dilation
=
self
.
dilation
if
dilate
:
self
.
dilation
*=
stride
stride
=
1
if
stride
!=
1
or
self
.
inplanes
!=
planes
*
block
.
expansion
:
downsample
=
nn
.
Sequential
(
conv1x1
(
self
.
inplanes
,
planes
*
block
.
expansion
,
stride
),
norm_layer
(
planes
*
block
.
expansion
),
)
layers
=
[]
layers
.
append
(
block
(
self
.
inplanes
,
planes
,
stride
,
downsample
,
self
.
groups
,
self
.
base_width
,
previous_dilation
,
norm_layer
))
self
.
inplanes
=
planes
*
block
.
expansion
for
_
in
range
(
1
,
blocks
):
layers
.
append
(
block
(
self
.
inplanes
,
planes
,
groups
=
self
.
groups
,
base_width
=
self
.
base_width
,
dilation
=
self
.
dilation
,
norm_layer
=
norm_layer
))
return
nn
.
Sequential
(
*
layers
)
def
_forward_impl
(
self
,
x
):
# See note [TorchScript super()]
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
maxpool
(
x
)
x
=
self
.
layer1
(
x
)
x
=
self
.
layer2
(
x
)
x
=
self
.
layer3
(
x
)
x
=
self
.
layer4
(
x
)
x
=
self
.
avgpool
(
x
)
x
=
torch
.
flatten
(
x
,
1
)
x
=
self
.
fc
(
x
)
return
x
def
forward
(
self
,
x
):
return
self
.
_forward_impl
(
x
)
def
_resnet
(
arch
,
block
,
layers
,
pretrained
,
progress
,
**
kwargs
):
model
=
ResNet
(
block
,
layers
,
**
kwargs
)
# if pretrained:
# state_dict = load_state_dict_from_url(model_urls[arch],
# progress=progress)
# model.load_state_dict(state_dict)
return
model
def
resnet18
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return
_resnet
(
'resnet18'
,
BasicBlock
,
[
2
,
2
,
2
,
2
],
pretrained
,
progress
,
**
kwargs
)
def
resnet34
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return
_resnet
(
'resnet34'
,
BasicBlock
,
[
3
,
4
,
6
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
resnet50
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return
_resnet
(
'resnet50'
,
Bottleneck
,
[
3
,
4
,
6
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
resnet101
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return
_resnet
(
'resnet101'
,
Bottleneck
,
[
3
,
4
,
23
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
resnet152
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return
_resnet
(
'resnet152'
,
Bottleneck
,
[
3
,
8
,
36
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
resnext50_32x4d
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width_per_group'
]
=
4
return
_resnet
(
'resnext50_32x4d'
,
Bottleneck
,
[
3
,
4
,
6
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
resnext101_32x8d
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width_per_group'
]
=
8
return
_resnet
(
'resnext101_32x8d'
,
Bottleneck
,
[
3
,
4
,
23
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
wide_resnet50_2
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs
[
'width_per_group'
]
=
64
*
2
return
_resnet
(
'wide_resnet50_2'
,
Bottleneck
,
[
3
,
4
,
6
,
3
],
pretrained
,
progress
,
**
kwargs
)
def
wide_resnet101_2
(
pretrained
=
False
,
progress
=
True
,
**
kwargs
):
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs
[
'width_per_group'
]
=
64
*
2
return
_resnet
(
'wide_resnet101_2'
,
Bottleneck
,
[
3
,
4
,
23
,
3
],
pretrained
,
progress
,
**
kwargs
)
code/getNormalFrames.m
0 → 100644
View file @
efe770b
inputheader
=
'..\data\Normal_all\'
;
outfolder
=
'..\data\Normal_frames\'
;
files
=
dir
(
inputheader
);
id
=
{
files
.
name
};
% files + dir file
flag
=
~
strcmp
(
id
,
'.'
)
&
~
strcmp
(
id
,
'..'
);
files
=
files
(
flag
);
for
i
=
1
:
length
(
files
)
id
=
split
(
files
(
i
)
.
name
,
'.nii'
);
id
=
char
(
id
(
1
));
fprintf
(
'ID #%d = %s\n'
,
i
,
id
);
filename
=
id
;
% BraTS19_2013_2_1_seg_flair.nii
data_path
=
strcat
(
inputheader
,
'\'
,
filename
);
data
=
niftiread
(
data_path
);
%size 240x240x155
[
x
,
y
,
z
]
=
size
(
data
);
c
=
0
;
for
k
=
18
:
24
type
=
'.png'
;
filename
=
strcat
(
id
,
'_'
,
int2str
(
c
),
type
);
% BraTS19_2013_2_1_seg_flair_c.png
outpath
=
strcat
(
outfolder
,
filename
);
% typecase int16 to double, range[0, 1], rotate 90 and filp updown
% range [0, 1]
%cp_data = flipud(rot90(mat2gray(double(data(:,:,k)))));
cp_data
=
flipud
(
rot90
(
mat2gray
(
double
(
data
(:,:,
k
)))));
% M = max(cp_data(:));
% disp(M);
imwrite
(
cp_data
,
outpath
);
c
=
c
+
1
;
end
end
% p = 'st: %d\n';
% fprintf(p, st);
% p = 'en: %d\n';
% fprintf(p, en);
Please
register
or
login
to post a comment