조현아

get normal frames

1 +import torch
2 +import torch.nn as nn
3 +#from .utils import load_state_dict_from_url
4 +
5 +
6 +__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
7 + 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
8 + 'wide_resnet50_2', 'wide_resnet101_2']
9 +
10 +
11 +model_urls = {
12 + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
13 + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
14 + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
15 + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
16 + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
17 + 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
18 + 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
19 + 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
20 + 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
21 +}
22 +
23 +
24 +def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
25 + """3x3 convolution with padding"""
26 + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
27 + padding=dilation, groups=groups, bias=False, dilation=dilation)
28 +
29 +
30 +def conv1x1(in_planes, out_planes, stride=1):
31 + """1x1 convolution"""
32 + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
33 +
34 +
35 +class BasicBlock(nn.Module):
36 + expansion = 1
37 +
38 + def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
39 + base_width=64, dilation=1, norm_layer=None):
40 + super(BasicBlock, self).__init__()
41 + if norm_layer is None:
42 + norm_layer = nn.BatchNorm2d
43 + if groups != 1 or base_width != 64:
44 + raise ValueError('BasicBlock only supports groups=1 and base_width=64')
45 + if dilation > 1:
46 + raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
47 + # Both self.conv1 and self.downsample layers downsample the input when stride != 1
48 + self.conv1 = conv3x3(inplanes, planes, stride)
49 + self.bn1 = norm_layer(planes)
50 + self.relu = nn.ReLU(inplace=True)
51 + self.conv2 = conv3x3(planes, planes)
52 + self.bn2 = norm_layer(planes)
53 + self.downsample = downsample
54 + self.stride = stride
55 +
56 + def forward(self, x):
57 + identity = x
58 +
59 + out = self.conv1(x)
60 + out = self.bn1(out)
61 + out = self.relu(out)
62 +
63 + out = self.conv2(out)
64 + out = self.bn2(out)
65 +
66 + if self.downsample is not None:
67 + identity = self.downsample(x)
68 +
69 + out += identity
70 + out = self.relu(out)
71 +
72 + return out
73 +
74 +
75 +class Bottleneck(nn.Module):
76 + # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
77 + # while original implementation places the stride at the first 1x1 convolution(self.conv1)
78 + # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
79 + # This variant is also known as ResNet V1.5 and improves accuracy according to
80 + # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
81 +
82 + expansion = 4
83 +
84 + def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
85 + base_width=64, dilation=1, norm_layer=None):
86 + super(Bottleneck, self).__init__()
87 + if norm_layer is None:
88 + norm_layer = nn.BatchNorm2d
89 + width = int(planes * (base_width / 64.)) * groups
90 + # Both self.conv2 and self.downsample layers downsample the input when stride != 1
91 + self.conv1 = conv1x1(inplanes, width)
92 + self.bn1 = norm_layer(width)
93 + self.conv2 = conv3x3(width, width, stride, groups, dilation)
94 + self.bn2 = norm_layer(width)
95 + self.conv3 = conv1x1(width, planes * self.expansion)
96 + self.bn3 = norm_layer(planes * self.expansion)
97 + self.relu = nn.ReLU(inplace=True)
98 + self.downsample = downsample
99 + self.stride = stride
100 +
101 + def forward(self, x):
102 + identity = x
103 +
104 + out = self.conv1(x)
105 + out = self.bn1(out)
106 + out = self.relu(out)
107 +
108 + out = self.conv2(out)
109 + out = self.bn2(out)
110 + out = self.relu(out)
111 +
112 + out = self.conv3(out)
113 + out = self.bn3(out)
114 +
115 + if self.downsample is not None:
116 + identity = self.downsample(x)
117 +
118 + out += identity
119 + out = self.relu(out)
120 +
121 + return out
122 +
123 +
124 +class ResNet(nn.Module):
125 +
126 + def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
127 + groups=1, width_per_group=64, replace_stride_with_dilation=None,
128 + norm_layer=None):
129 + super(ResNet, self).__init__()
130 + if norm_layer is None:
131 + norm_layer = nn.BatchNorm2d
132 + self._norm_layer = norm_layer
133 +
134 + self.inplanes = 64
135 + self.dilation = 1
136 + if replace_stride_with_dilation is None:
137 + # each element in the tuple indicates if we should replace
138 + # the 2x2 stride with a dilated convolution instead
139 + replace_stride_with_dilation = [False, False, False]
140 + if len(replace_stride_with_dilation) != 3:
141 + raise ValueError("replace_stride_with_dilation should be None "
142 + "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
143 + self.groups = groups
144 + self.base_width = width_per_group
145 + # change dimension 3->1 for grayscale input
146 + self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3,
147 + bias=False)
148 + self.bn1 = norm_layer(self.inplanes)
149 + self.relu = nn.ReLU(inplace=True)
150 + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
151 + self.layer1 = self._make_layer(block, 64, layers[0])
152 + self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
153 + dilate=replace_stride_with_dilation[0])
154 + self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
155 + dilate=replace_stride_with_dilation[1])
156 + self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
157 + dilate=replace_stride_with_dilation[2])
158 + self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
159 + self.fc = nn.Linear(512 * block.expansion, num_classes)
160 +
161 + for m in self.modules():
162 + if isinstance(m, nn.Conv2d):
163 + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
164 + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
165 + nn.init.constant_(m.weight, 1)
166 + nn.init.constant_(m.bias, 0)
167 +
168 + # Zero-initialize the last BN in each residual branch,
169 + # so that the residual branch starts with zeros, and each residual block behaves like an identity.
170 + # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
171 + if zero_init_residual:
172 + for m in self.modules():
173 + if isinstance(m, Bottleneck):
174 + nn.init.constant_(m.bn3.weight, 0)
175 + elif isinstance(m, BasicBlock):
176 + nn.init.constant_(m.bn2.weight, 0)
177 +
178 + def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
179 + norm_layer = self._norm_layer
180 + downsample = None
181 + previous_dilation = self.dilation
182 + if dilate:
183 + self.dilation *= stride
184 + stride = 1
185 + if stride != 1 or self.inplanes != planes * block.expansion:
186 + downsample = nn.Sequential(
187 + conv1x1(self.inplanes, planes * block.expansion, stride),
188 + norm_layer(planes * block.expansion),
189 + )
190 +
191 + layers = []
192 + layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
193 + self.base_width, previous_dilation, norm_layer))
194 + self.inplanes = planes * block.expansion
195 + for _ in range(1, blocks):
196 + layers.append(block(self.inplanes, planes, groups=self.groups,
197 + base_width=self.base_width, dilation=self.dilation,
198 + norm_layer=norm_layer))
199 +
200 + return nn.Sequential(*layers)
201 +
202 + def _forward_impl(self, x):
203 + # See note [TorchScript super()]
204 + x = self.conv1(x)
205 + x = self.bn1(x)
206 + x = self.relu(x)
207 + x = self.maxpool(x)
208 +
209 + x = self.layer1(x)
210 + x = self.layer2(x)
211 + x = self.layer3(x)
212 + x = self.layer4(x)
213 +
214 + x = self.avgpool(x)
215 + x = torch.flatten(x, 1)
216 + x = self.fc(x)
217 +
218 + return x
219 +
220 + def forward(self, x):
221 + return self._forward_impl(x)
222 +
223 +
224 +def _resnet(arch, block, layers, pretrained, progress, **kwargs):
225 + model = ResNet(block, layers, **kwargs)
226 + # if pretrained:
227 + # state_dict = load_state_dict_from_url(model_urls[arch],
228 + # progress=progress)
229 + # model.load_state_dict(state_dict)
230 + return model
231 +
232 +
233 +def resnet18(pretrained=False, progress=True, **kwargs):
234 + r"""ResNet-18 model from
235 + `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
236 + Args:
237 + pretrained (bool): If True, returns a model pre-trained on ImageNet
238 + progress (bool): If True, displays a progress bar of the download to stderr
239 + """
240 + return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
241 + **kwargs)
242 +
243 +
244 +def resnet34(pretrained=False, progress=True, **kwargs):
245 + r"""ResNet-34 model from
246 + `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
247 + Args:
248 + pretrained (bool): If True, returns a model pre-trained on ImageNet
249 + progress (bool): If True, displays a progress bar of the download to stderr
250 + """
251 + return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
252 + **kwargs)
253 +
254 +
255 +def resnet50(pretrained=False, progress=True, **kwargs):
256 + r"""ResNet-50 model from
257 + `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
258 + Args:
259 + pretrained (bool): If True, returns a model pre-trained on ImageNet
260 + progress (bool): If True, displays a progress bar of the download to stderr
261 + """
262 + return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
263 + **kwargs)
264 +
265 +
266 +def resnet101(pretrained=False, progress=True, **kwargs):
267 + r"""ResNet-101 model from
268 + `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
269 + Args:
270 + pretrained (bool): If True, returns a model pre-trained on ImageNet
271 + progress (bool): If True, displays a progress bar of the download to stderr
272 + """
273 + return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
274 + **kwargs)
275 +
276 +
277 +def resnet152(pretrained=False, progress=True, **kwargs):
278 + r"""ResNet-152 model from
279 + `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
280 + Args:
281 + pretrained (bool): If True, returns a model pre-trained on ImageNet
282 + progress (bool): If True, displays a progress bar of the download to stderr
283 + """
284 + return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
285 + **kwargs)
286 +
287 +
288 +def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
289 + r"""ResNeXt-50 32x4d model from
290 + `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
291 + Args:
292 + pretrained (bool): If True, returns a model pre-trained on ImageNet
293 + progress (bool): If True, displays a progress bar of the download to stderr
294 + """
295 + kwargs['groups'] = 32
296 + kwargs['width_per_group'] = 4
297 + return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
298 + pretrained, progress, **kwargs)
299 +
300 +
301 +def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
302 + r"""ResNeXt-101 32x8d model from
303 + `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
304 + Args:
305 + pretrained (bool): If True, returns a model pre-trained on ImageNet
306 + progress (bool): If True, displays a progress bar of the download to stderr
307 + """
308 + kwargs['groups'] = 32
309 + kwargs['width_per_group'] = 8
310 + return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
311 + pretrained, progress, **kwargs)
312 +
313 +
314 +def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
315 + r"""Wide ResNet-50-2 model from
316 + `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
317 + The model is the same as ResNet except for the bottleneck number of channels
318 + which is twice larger in every block. The number of channels in outer 1x1
319 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
320 + channels, and in Wide ResNet-50-2 has 2048-1024-2048.
321 + Args:
322 + pretrained (bool): If True, returns a model pre-trained on ImageNet
323 + progress (bool): If True, displays a progress bar of the download to stderr
324 + """
325 + kwargs['width_per_group'] = 64 * 2
326 + return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
327 + pretrained, progress, **kwargs)
328 +
329 +
330 +def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
331 + r"""Wide ResNet-101-2 model from
332 + `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
333 + The model is the same as ResNet except for the bottleneck number of channels
334 + which is twice larger in every block. The number of channels in outer 1x1
335 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
336 + channels, and in Wide ResNet-50-2 has 2048-1024-2048.
337 + Args:
338 + pretrained (bool): If True, returns a model pre-trained on ImageNet
339 + progress (bool): If True, displays a progress bar of the download to stderr
340 + """
341 + kwargs['width_per_group'] = 64 * 2
342 + return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
343 + pretrained, progress, **kwargs)
1 +inputheader = '..\data\Normal_all\';
2 +outfolder = '..\data\Normal_frames\';
3 +
4 +files = dir(inputheader);
5 +id = {files.name};
6 +% files + dir file
7 +flag = ~strcmp(id, '.') & ~strcmp(id, '..');
8 +files = files(flag);
9 +
10 +
11 +for i = 1 : length(files)
12 +
13 + id = split(files(i).name, '.nii');
14 + id = char(id(1));
15 + fprintf('ID #%d = %s\n', i, id);
16 + filename = id; % BraTS19_2013_2_1_seg_flair.nii
17 + data_path = strcat(inputheader,'\', filename);
18 + data = niftiread(data_path); %size 240x240x155
19 +
20 + [x,y,z] = size(data);
21 +
22 + c = 0;
23 +
24 + for k = 18:24
25 + type = '.png';
26 + filename = strcat(id, '_', int2str(c), type); % BraTS19_2013_2_1_seg_flair_c.png
27 + outpath = strcat(outfolder, filename);
28 + % typecase int16 to double, range[0, 1], rotate 90 and filp updown
29 + % range [0, 1]
30 + %cp_data = flipud(rot90(mat2gray(double(data(:,:,k)))));
31 + cp_data = flipud(rot90(mat2gray(double(data(:,:,k)))));
32 +% M = max(cp_data(:));
33 +% disp(M);
34 + imwrite(cp_data, outpath);
35 +
36 + c = c+ 1;
37 + end
38 +
39 +end
40 +
41 +
42 +% p = 'st: %d\n';
43 +% fprintf(p, st);
44 +% p = 'en: %d\n';
45 +% fprintf(p, en);
46 +