_linprog_simplex.py
24.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
"""Simplex method for linear programming
The *simplex* method uses a traditional, full-tableau implementation of
Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex).
This algorithm is included for backwards compatibility and educational
purposes.
.. versionadded:: 0.15.0
Warnings
--------
The simplex method may encounter numerical difficulties when pivot
values are close to the specified tolerance. If encountered try
remove any redundant constraints, change the pivot strategy to Bland's
rule or increase the tolerance value.
Alternatively, more robust methods maybe be used. See
:ref:`'interior-point' <optimize.linprog-interior-point>` and
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`.
References
----------
.. [1] Dantzig, George B., Linear programming and extensions. Rand
Corporation Research Study Princeton Univ. Press, Princeton, NJ,
1963
.. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
Mathematical Programming", McGraw-Hill, Chapter 4.
"""
import numpy as np
from warnings import warn
from .optimize import OptimizeResult, OptimizeWarning, _check_unknown_options
from ._linprog_util import _postsolve
def _pivot_col(T, tol=1e-9, bland=False):
"""
Given a linear programming simplex tableau, determine the column
of the variable to enter the basis.
Parameters
----------
T : 2-D array
A 2-D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
tol : float
Elements in the objective row larger than -tol will not be considered
for pivoting. Nominally this value is zero, but numerical issues
cause a tolerance about zero to be necessary.
bland : bool
If True, use Bland's rule for selection of the column (select the
first column with a negative coefficient in the objective row,
regardless of magnitude).
Returns
-------
status: bool
True if a suitable pivot column was found, otherwise False.
A return of False indicates that the linear programming simplex
algorithm is complete.
col: int
The index of the column of the pivot element.
If status is False, col will be returned as nan.
"""
ma = np.ma.masked_where(T[-1, :-1] >= -tol, T[-1, :-1], copy=False)
if ma.count() == 0:
return False, np.nan
if bland:
# ma.mask is sometimes 0d
return True, np.nonzero(np.logical_not(np.atleast_1d(ma.mask)))[0][0]
return True, np.ma.nonzero(ma == ma.min())[0][0]
def _pivot_row(T, basis, pivcol, phase, tol=1e-9, bland=False):
"""
Given a linear programming simplex tableau, determine the row for the
pivot operation.
Parameters
----------
T : 2-D array
A 2-D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a Problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
basis : array
A list of the current basic variables.
pivcol : int
The index of the pivot column.
phase : int
The phase of the simplex algorithm (1 or 2).
tol : float
Elements in the pivot column smaller than tol will not be considered
for pivoting. Nominally this value is zero, but numerical issues
cause a tolerance about zero to be necessary.
bland : bool
If True, use Bland's rule for selection of the row (if more than one
row can be used, choose the one with the lowest variable index).
Returns
-------
status: bool
True if a suitable pivot row was found, otherwise False. A return
of False indicates that the linear programming problem is unbounded.
row: int
The index of the row of the pivot element. If status is False, row
will be returned as nan.
"""
if phase == 1:
k = 2
else:
k = 1
ma = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, pivcol], copy=False)
if ma.count() == 0:
return False, np.nan
mb = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, -1], copy=False)
q = mb / ma
min_rows = np.ma.nonzero(q == q.min())[0]
if bland:
return True, min_rows[np.argmin(np.take(basis, min_rows))]
return True, min_rows[0]
def _apply_pivot(T, basis, pivrow, pivcol, tol=1e-9):
"""
Pivot the simplex tableau inplace on the element given by (pivrow, pivol).
The entering variable corresponds to the column given by pivcol forcing
the variable basis[pivrow] to leave the basis.
Parameters
----------
T : 2-D array
A 2-D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
basis : 1-D array
An array of the indices of the basic variables, such that basis[i]
contains the column corresponding to the basic variable for row i.
Basis is modified in place by _apply_pivot.
pivrow : int
Row index of the pivot.
pivcol : int
Column index of the pivot.
"""
basis[pivrow] = pivcol
pivval = T[pivrow, pivcol]
T[pivrow] = T[pivrow] / pivval
for irow in range(T.shape[0]):
if irow != pivrow:
T[irow] = T[irow] - T[pivrow] * T[irow, pivcol]
# The selected pivot should never lead to a pivot value less than the tol.
if np.isclose(pivval, tol, atol=0, rtol=1e4):
message = (
"The pivot operation produces a pivot value of:{0: .1e}, "
"which is only slightly greater than the specified "
"tolerance{1: .1e}. This may lead to issues regarding the "
"numerical stability of the simplex method. "
"Removing redundant constraints, changing the pivot strategy "
"via Bland's rule or increasing the tolerance may "
"help reduce the issue.".format(pivval, tol))
warn(message, OptimizeWarning, stacklevel=5)
def _solve_simplex(T, n, basis, callback, postsolve_args,
maxiter=1000, tol=1e-9, phase=2, bland=False, nit0=0,
):
"""
Solve a linear programming problem in "standard form" using the Simplex
Method. Linear Programming is intended to solve the following problem form:
Minimize::
c @ x
Subject to::
A @ x == b
x >= 0
Parameters
----------
T : 2-D array
A 2-D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
n : int
The number of true variables in the problem.
basis : 1-D array
An array of the indices of the basic variables, such that basis[i]
contains the column corresponding to the basic variable for row i.
Basis is modified in place by _solve_simplex
callback : callable, optional
If a callback function is provided, it will be called within each
iteration of the algorithm. The callback must accept a
`scipy.optimize.OptimizeResult` consisting of the following fields:
x : 1-D array
Current solution vector
fun : float
Current value of the objective function
success : bool
True only when a phase has completed successfully. This
will be False for most iterations.
slack : 1-D array
The values of the slack variables. Each slack variable
corresponds to an inequality constraint. If the slack is zero,
the corresponding constraint is active.
con : 1-D array
The (nominally zero) residuals of the equality constraints,
that is, ``b - A_eq @ x``
phase : int
The phase of the optimization being executed. In phase 1 a basic
feasible solution is sought and the T has an additional row
representing an alternate objective function.
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
nit : int
The number of iterations performed.
message : str
A string descriptor of the exit status of the optimization.
postsolve_args : tuple
Data needed by _postsolve to convert the solution to the standard-form
problem into the solution to the original problem.
maxiter : int
The maximum number of iterations to perform before aborting the
optimization.
tol : float
The tolerance which determines when a solution is "close enough" to
zero in Phase 1 to be considered a basic feasible solution or close
enough to positive to serve as an optimal solution.
phase : int
The phase of the optimization being executed. In phase 1 a basic
feasible solution is sought and the T has an additional row
representing an alternate objective function.
bland : bool
If True, choose pivots using Bland's rule [3]_. In problems which
fail to converge due to cycling, using Bland's rule can provide
convergence at the expense of a less optimal path about the simplex.
nit0 : int
The initial iteration number used to keep an accurate iteration total
in a two-phase problem.
Returns
-------
nit : int
The number of iterations. Used to keep an accurate iteration total
in the two-phase problem.
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
"""
nit = nit0
status = 0
message = ''
complete = False
if phase == 1:
m = T.shape[1]-2
elif phase == 2:
m = T.shape[1]-1
else:
raise ValueError("Argument 'phase' to _solve_simplex must be 1 or 2")
if phase == 2:
# Check if any artificial variables are still in the basis.
# If yes, check if any coefficients from this row and a column
# corresponding to one of the non-artificial variable is non-zero.
# If found, pivot at this term. If not, start phase 2.
# Do this for all artificial variables in the basis.
# Ref: "An Introduction to Linear Programming and Game Theory"
# by Paul R. Thie, Gerard E. Keough, 3rd Ed,
# Chapter 3.7 Redundant Systems (pag 102)
for pivrow in [row for row in range(basis.size)
if basis[row] > T.shape[1] - 2]:
non_zero_row = [col for col in range(T.shape[1] - 1)
if abs(T[pivrow, col]) > tol]
if len(non_zero_row) > 0:
pivcol = non_zero_row[0]
_apply_pivot(T, basis, pivrow, pivcol, tol)
nit += 1
if len(basis[:m]) == 0:
solution = np.zeros(T.shape[1] - 1, dtype=np.float64)
else:
solution = np.zeros(max(T.shape[1] - 1, max(basis[:m]) + 1),
dtype=np.float64)
while not complete:
# Find the pivot column
pivcol_found, pivcol = _pivot_col(T, tol, bland)
if not pivcol_found:
pivcol = np.nan
pivrow = np.nan
status = 0
complete = True
else:
# Find the pivot row
pivrow_found, pivrow = _pivot_row(T, basis, pivcol, phase, tol, bland)
if not pivrow_found:
status = 3
complete = True
if callback is not None:
solution[:] = 0
solution[basis[:n]] = T[:n, -1]
x = solution[:m]
x, fun, slack, con, _ = _postsolve(
x, postsolve_args, tol=tol
)
res = OptimizeResult({
'x': x,
'fun': fun,
'slack': slack,
'con': con,
'status': status,
'message': message,
'nit': nit,
'success': status == 0 and complete,
'phase': phase,
'complete': complete,
})
callback(res)
if not complete:
if nit >= maxiter:
# Iteration limit exceeded
status = 1
complete = True
else:
_apply_pivot(T, basis, pivrow, pivcol, tol)
nit += 1
return nit, status
def _linprog_simplex(c, c0, A, b, callback, postsolve_args,
maxiter=1000, tol=1e-9, disp=False, bland=False,
**unknown_options):
"""
Minimize a linear objective function subject to linear equality and
non-negativity constraints using the two phase simplex method.
Linear programming is intended to solve problems of the following form:
Minimize::
c @ x
Subject to::
A @ x == b
x >= 0
Parameters
----------
c : 1-D array
Coefficients of the linear objective function to be minimized.
c0 : float
Constant term in objective function due to fixed (and eliminated)
variables. (Purely for display.)
A : 2-D array
2-D array such that ``A @ x``, gives the values of the equality
constraints at ``x``.
b : 1-D array
1-D array of values representing the right hand side of each equality
constraint (row) in ``A``.
callback : callable, optional
If a callback function is provided, it will be called within each
iteration of the algorithm. The callback function must accept a single
`scipy.optimize.OptimizeResult` consisting of the following fields:
x : 1-D array
Current solution vector
fun : float
Current value of the objective function
success : bool
True when an algorithm has completed successfully.
slack : 1-D array
The values of the slack variables. Each slack variable
corresponds to an inequality constraint. If the slack is zero,
the corresponding constraint is active.
con : 1-D array
The (nominally zero) residuals of the equality constraints,
that is, ``b - A_eq @ x``
phase : int
The phase of the algorithm being executed.
status : int
An integer representing the status of the optimization::
0 : Algorithm proceeding nominally
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
nit : int
The number of iterations performed.
message : str
A string descriptor of the exit status of the optimization.
postsolve_args : tuple
Data needed by _postsolve to convert the solution to the standard-form
problem into the solution to the original problem.
Options
-------
maxiter : int
The maximum number of iterations to perform.
disp : bool
If True, print exit status message to sys.stdout
tol : float
The tolerance which determines when a solution is "close enough" to
zero in Phase 1 to be considered a basic feasible solution or close
enough to positive to serve as an optimal solution.
bland : bool
If True, use Bland's anti-cycling rule [3]_ to choose pivots to
prevent cycling. If False, choose pivots which should lead to a
converged solution more quickly. The latter method is subject to
cycling (non-convergence) in rare instances.
unknown_options : dict
Optional arguments not used by this particular solver. If
`unknown_options` is non-empty a warning is issued listing all
unused options.
Returns
-------
x : 1-D array
Solution vector.
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
message : str
A string descriptor of the exit status of the optimization.
iteration : int
The number of iterations taken to solve the problem.
References
----------
.. [1] Dantzig, George B., Linear programming and extensions. Rand
Corporation Research Study Princeton Univ. Press, Princeton, NJ,
1963
.. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
Mathematical Programming", McGraw-Hill, Chapter 4.
.. [3] Bland, Robert G. New finite pivoting rules for the simplex method.
Mathematics of Operations Research (2), 1977: pp. 103-107.
Notes
-----
The expected problem formulation differs between the top level ``linprog``
module and the method specific solvers. The method specific solvers expect a
problem in standard form:
Minimize::
c @ x
Subject to::
A @ x == b
x >= 0
Whereas the top level ``linprog`` module expects a problem of form:
Minimize::
c @ x
Subject to::
A_ub @ x <= b_ub
A_eq @ x == b_eq
lb <= x <= ub
where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.
The original problem contains equality, upper-bound and variable constraints
whereas the method specific solver requires equality constraints and
variable non-negativity.
``linprog`` module converts the original problem to standard form by
converting the simple bounds to upper bound constraints, introducing
non-negative slack variables for inequality constraints, and expressing
unbounded variables as the difference between two non-negative variables.
"""
_check_unknown_options(unknown_options)
status = 0
messages = {0: "Optimization terminated successfully.",
1: "Iteration limit reached.",
2: "Optimization failed. Unable to find a feasible"
" starting point.",
3: "Optimization failed. The problem appears to be unbounded.",
4: "Optimization failed. Singular matrix encountered."}
n, m = A.shape
# All constraints must have b >= 0.
is_negative_constraint = np.less(b, 0)
A[is_negative_constraint] *= -1
b[is_negative_constraint] *= -1
# As all constraints are equality constraints the artificial variables
# will also be basic variables.
av = np.arange(n) + m
basis = av.copy()
# Format the phase one tableau by adding artificial variables and stacking
# the constraints, the objective row and pseudo-objective row.
row_constraints = np.hstack((A, np.eye(n), b[:, np.newaxis]))
row_objective = np.hstack((c, np.zeros(n), c0))
row_pseudo_objective = -row_constraints.sum(axis=0)
row_pseudo_objective[av] = 0
T = np.vstack((row_constraints, row_objective, row_pseudo_objective))
nit1, status = _solve_simplex(T, n, basis, callback=callback,
postsolve_args=postsolve_args,
maxiter=maxiter, tol=tol, phase=1,
bland=bland
)
# if pseudo objective is zero, remove the last row from the tableau and
# proceed to phase 2
nit2 = nit1
if abs(T[-1, -1]) < tol:
# Remove the pseudo-objective row from the tableau
T = T[:-1, :]
# Remove the artificial variable columns from the tableau
T = np.delete(T, av, 1)
else:
# Failure to find a feasible starting point
status = 2
messages[status] = (
"Phase 1 of the simplex method failed to find a feasible "
"solution. The pseudo-objective function evaluates to {0:.1e} "
"which exceeds the required tolerance of {1} for a solution to be "
"considered 'close enough' to zero to be a basic solution. "
"Consider increasing the tolerance to be greater than {0:.1e}. "
"If this tolerance is unacceptably large the problem may be "
"infeasible.".format(abs(T[-1, -1]), tol)
)
if status == 0:
# Phase 2
nit2, status = _solve_simplex(T, n, basis, callback=callback,
postsolve_args=postsolve_args,
maxiter=maxiter, tol=tol, phase=2,
bland=bland, nit0=nit1
)
solution = np.zeros(n + m)
solution[basis[:n]] = T[:n, -1]
x = solution[:m]
return x, status, messages[status], int(nit2)