bvls.py
4.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""Bounded-variable least-squares algorithm."""
import numpy as np
from numpy.linalg import norm, lstsq
from scipy.optimize import OptimizeResult
from .common import print_header_linear, print_iteration_linear
def compute_kkt_optimality(g, on_bound):
"""Compute the maximum violation of KKT conditions."""
g_kkt = g * on_bound
free_set = on_bound == 0
g_kkt[free_set] = np.abs(g[free_set])
return np.max(g_kkt)
def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose):
m, n = A.shape
x = x_lsq.copy()
on_bound = np.zeros(n)
mask = x < lb
x[mask] = lb[mask]
on_bound[mask] = -1
mask = x > ub
x[mask] = ub[mask]
on_bound[mask] = 1
free_set = on_bound == 0
active_set = ~free_set
free_set, = np.nonzero(free_set)
r = A.dot(x) - b
cost = 0.5 * np.dot(r, r)
initial_cost = cost
g = A.T.dot(r)
cost_change = None
step_norm = None
iteration = 0
if verbose == 2:
print_header_linear()
# This is the initialization loop. The requirement is that the
# least-squares solution on free variables is feasible before BVLS starts.
# One possible initialization is to set all variables to lower or upper
# bounds, but many iterations may be required from this state later on.
# The implemented ad-hoc procedure which intuitively should give a better
# initial state: find the least-squares solution on current free variables,
# if its feasible then stop, otherwise, set violating variables to
# corresponding bounds and continue on the reduced set of free variables.
while free_set.size > 0:
if verbose == 2:
optimality = compute_kkt_optimality(g, on_bound)
print_iteration_linear(iteration, cost, cost_change, step_norm,
optimality)
iteration += 1
x_free_old = x[free_set].copy()
A_free = A[:, free_set]
b_free = b - A.dot(x * active_set)
z = lstsq(A_free, b_free, rcond=-1)[0]
lbv = z < lb[free_set]
ubv = z > ub[free_set]
v = lbv | ubv
if np.any(lbv):
ind = free_set[lbv]
x[ind] = lb[ind]
active_set[ind] = True
on_bound[ind] = -1
if np.any(ubv):
ind = free_set[ubv]
x[ind] = ub[ind]
active_set[ind] = True
on_bound[ind] = 1
ind = free_set[~v]
x[ind] = z[~v]
r = A.dot(x) - b
cost_new = 0.5 * np.dot(r, r)
cost_change = cost - cost_new
cost = cost_new
g = A.T.dot(r)
step_norm = norm(x[free_set] - x_free_old)
if np.any(v):
free_set = free_set[~v]
else:
break
if max_iter is None:
max_iter = n
max_iter += iteration
termination_status = None
# Main BVLS loop.
optimality = compute_kkt_optimality(g, on_bound)
for iteration in range(iteration, max_iter):
if verbose == 2:
print_iteration_linear(iteration, cost, cost_change,
step_norm, optimality)
if optimality < tol:
termination_status = 1
if termination_status is not None:
break
move_to_free = np.argmax(g * on_bound)
on_bound[move_to_free] = 0
free_set = on_bound == 0
active_set = ~free_set
free_set, = np.nonzero(free_set)
x_free = x[free_set]
x_free_old = x_free.copy()
lb_free = lb[free_set]
ub_free = ub[free_set]
A_free = A[:, free_set]
b_free = b - A.dot(x * active_set)
z = lstsq(A_free, b_free, rcond=-1)[0]
lbv, = np.nonzero(z < lb_free)
ubv, = np.nonzero(z > ub_free)
v = np.hstack((lbv, ubv))
if v.size > 0:
alphas = np.hstack((
lb_free[lbv] - x_free[lbv],
ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v])
i = np.argmin(alphas)
i_free = v[i]
alpha = alphas[i]
x_free *= 1 - alpha
x_free += alpha * z
if i < lbv.size:
on_bound[free_set[i_free]] = -1
else:
on_bound[free_set[i_free]] = 1
else:
x_free = z
x[free_set] = x_free
step_norm = norm(x_free - x_free_old)
r = A.dot(x) - b
cost_new = 0.5 * np.dot(r, r)
cost_change = cost - cost_new
if cost_change < tol * cost:
termination_status = 2
cost = cost_new
g = A.T.dot(r)
optimality = compute_kkt_optimality(g, on_bound)
if termination_status is None:
termination_status = 0
return OptimizeResult(
x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound,
nit=iteration + 1, status=termination_status,
initial_cost=initial_cost)