_discrete_distns.py
30 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
#
# Author: Travis Oliphant 2002-2011 with contributions from
# SciPy Developers 2004-2011
#
from functools import partial
from scipy import special
from scipy.special import entr, logsumexp, betaln, gammaln as gamln
from scipy._lib._util import _lazywhere, rng_integers
from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh
import numpy as np
from ._distn_infrastructure import (
rv_discrete, _ncx2_pdf, _ncx2_cdf, get_distribution_names)
class binom_gen(rv_discrete):
r"""A binomial discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `binom` is:
.. math::
f(k) = \binom{n}{k} p^k (1-p)^{n-k}
for ``k`` in ``{0, 1,..., n}``.
`binom` takes ``n`` and ``p`` as shape parameters.
%(after_notes)s
%(example)s
"""
def _rvs(self, n, p, size=None, random_state=None):
return random_state.binomial(n, p, size)
def _argcheck(self, n, p):
return (n >= 0) & (p >= 0) & (p <= 1)
def _get_support(self, n, p):
return self.a, n
def _logpmf(self, x, n, p):
k = floor(x)
combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1)))
return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p)
def _pmf(self, x, n, p):
# binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k)
return exp(self._logpmf(x, n, p))
def _cdf(self, x, n, p):
k = floor(x)
vals = special.bdtr(k, n, p)
return vals
def _sf(self, x, n, p):
k = floor(x)
return special.bdtrc(k, n, p)
def _ppf(self, q, n, p):
vals = ceil(special.bdtrik(q, n, p))
vals1 = np.maximum(vals - 1, 0)
temp = special.bdtr(vals1, n, p)
return np.where(temp >= q, vals1, vals)
def _stats(self, n, p, moments='mv'):
q = 1.0 - p
mu = n * p
var = n * p * q
g1, g2 = None, None
if 's' in moments:
g1 = (q - p) / sqrt(var)
if 'k' in moments:
g2 = (1.0 - 6*p*q) / var
return mu, var, g1, g2
def _entropy(self, n, p):
k = np.r_[0:n + 1]
vals = self._pmf(k, n, p)
return np.sum(entr(vals), axis=0)
binom = binom_gen(name='binom')
class bernoulli_gen(binom_gen):
r"""A Bernoulli discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `bernoulli` is:
.. math::
f(k) = \begin{cases}1-p &\text{if } k = 0\\
p &\text{if } k = 1\end{cases}
for :math:`k` in :math:`\{0, 1\}`.
`bernoulli` takes :math:`p` as shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, p, size=None, random_state=None):
return binom_gen._rvs(self, 1, p, size=size, random_state=random_state)
def _argcheck(self, p):
return (p >= 0) & (p <= 1)
def _get_support(self, p):
# Overrides binom_gen._get_support!x
return self.a, self.b
def _logpmf(self, x, p):
return binom._logpmf(x, 1, p)
def _pmf(self, x, p):
# bernoulli.pmf(k) = 1-p if k = 0
# = p if k = 1
return binom._pmf(x, 1, p)
def _cdf(self, x, p):
return binom._cdf(x, 1, p)
def _sf(self, x, p):
return binom._sf(x, 1, p)
def _ppf(self, q, p):
return binom._ppf(q, 1, p)
def _stats(self, p):
return binom._stats(1, p)
def _entropy(self, p):
return entr(p) + entr(1-p)
bernoulli = bernoulli_gen(b=1, name='bernoulli')
class betabinom_gen(rv_discrete):
r"""A beta-binomial discrete random variable.
%(before_notes)s
Notes
-----
The beta-binomial distribution is a binomial distribution with a
probability of success `p` that follows a beta distribution.
The probability mass function for `betabinom` is:
.. math::
f(k) = \binom{n}{k} \frac{B(k + a, n - k + b)}{B(a, b)}
for ``k`` in ``{0, 1,..., n}``, :math:`n \geq 0`, :math:`a > 0`,
:math:`b > 0`, where :math:`B(a, b)` is the beta function.
`betabinom` takes :math:`n`, :math:`a`, and :math:`b` as shape parameters.
References
----------
.. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution
%(after_notes)s
.. versionadded:: 1.4.0
See Also
--------
beta, binom
%(example)s
"""
def _rvs(self, n, a, b, size=None, random_state=None):
p = random_state.beta(a, b, size)
return random_state.binomial(n, p, size)
def _get_support(self, n, a, b):
return 0, n
def _argcheck(self, n, a, b):
return (n >= 0) & (a > 0) & (b > 0)
def _logpmf(self, x, n, a, b):
k = floor(x)
combiln = -log(n + 1) - betaln(n - k + 1, k + 1)
return combiln + betaln(k + a, n - k + b) - betaln(a, b)
def _pmf(self, x, n, a, b):
return exp(self._logpmf(x, n, a, b))
def _stats(self, n, a, b, moments='mv'):
e_p = a / (a + b)
e_q = 1 - e_p
mu = n * e_p
var = n * (a + b + n) * e_p * e_q / (a + b + 1)
g1, g2 = None, None
if 's' in moments:
g1 = 1.0 / sqrt(var)
g1 *= (a + b + 2 * n) * (b - a)
g1 /= (a + b + 2) * (a + b)
if 'k' in moments:
g2 = a + b
g2 *= (a + b - 1 + 6 * n)
g2 += 3 * a * b * (n - 2)
g2 += 6 * n ** 2
g2 -= 3 * e_p * b * n * (6 - n)
g2 -= 18 * e_p * e_q * n ** 2
g2 *= (a + b) ** 2 * (1 + a + b)
g2 /= (n * a * b * (a + b + 2) * (a + b + 3) * (a + b + n))
g2 -= 3
return mu, var, g1, g2
betabinom = betabinom_gen(name='betabinom')
class nbinom_gen(rv_discrete):
r"""A negative binomial discrete random variable.
%(before_notes)s
Notes
-----
Negative binomial distribution describes a sequence of i.i.d. Bernoulli
trials, repeated until a predefined, non-random number of successes occurs.
The probability mass function of the number of failures for `nbinom` is:
.. math::
f(k) = \binom{k+n-1}{n-1} p^n (1-p)^k
for :math:`k \ge 0`.
`nbinom` takes :math:`n` and :math:`p` as shape parameters where n is the
number of successes, whereas p is the probability of a single success.
%(after_notes)s
%(example)s
"""
def _rvs(self, n, p, size=None, random_state=None):
return random_state.negative_binomial(n, p, size)
def _argcheck(self, n, p):
return (n > 0) & (p >= 0) & (p <= 1)
def _pmf(self, x, n, p):
# nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k
return exp(self._logpmf(x, n, p))
def _logpmf(self, x, n, p):
coeff = gamln(n+x) - gamln(x+1) - gamln(n)
return coeff + n*log(p) + special.xlog1py(x, -p)
def _cdf(self, x, n, p):
k = floor(x)
return special.betainc(n, k+1, p)
def _sf_skip(self, x, n, p):
# skip because special.nbdtrc doesn't work for 0<n<1
k = floor(x)
return special.nbdtrc(k, n, p)
def _ppf(self, q, n, p):
vals = ceil(special.nbdtrik(q, n, p))
vals1 = (vals-1).clip(0.0, np.inf)
temp = self._cdf(vals1, n, p)
return np.where(temp >= q, vals1, vals)
def _stats(self, n, p):
Q = 1.0 / p
P = Q - 1.0
mu = n*P
var = n*P*Q
g1 = (Q+P)/sqrt(n*P*Q)
g2 = (1.0 + 6*P*Q) / (n*P*Q)
return mu, var, g1, g2
nbinom = nbinom_gen(name='nbinom')
class geom_gen(rv_discrete):
r"""A geometric discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `geom` is:
.. math::
f(k) = (1-p)^{k-1} p
for :math:`k \ge 1`.
`geom` takes :math:`p` as shape parameter.
%(after_notes)s
See Also
--------
planck
%(example)s
"""
def _rvs(self, p, size=None, random_state=None):
return random_state.geometric(p, size=size)
def _argcheck(self, p):
return (p <= 1) & (p >= 0)
def _pmf(self, k, p):
return np.power(1-p, k-1) * p
def _logpmf(self, k, p):
return special.xlog1py(k - 1, -p) + log(p)
def _cdf(self, x, p):
k = floor(x)
return -expm1(log1p(-p)*k)
def _sf(self, x, p):
return np.exp(self._logsf(x, p))
def _logsf(self, x, p):
k = floor(x)
return k*log1p(-p)
def _ppf(self, q, p):
vals = ceil(log1p(-q) / log1p(-p))
temp = self._cdf(vals-1, p)
return np.where((temp >= q) & (vals > 0), vals-1, vals)
def _stats(self, p):
mu = 1.0/p
qr = 1.0-p
var = qr / p / p
g1 = (2.0-p) / sqrt(qr)
g2 = np.polyval([1, -6, 6], p)/(1.0-p)
return mu, var, g1, g2
geom = geom_gen(a=1, name='geom', longname="A geometric")
class hypergeom_gen(rv_discrete):
r"""A hypergeometric discrete random variable.
The hypergeometric distribution models drawing objects from a bin.
`M` is the total number of objects, `n` is total number of Type I objects.
The random variate represents the number of Type I objects in `N` drawn
without replacement from the total population.
%(before_notes)s
Notes
-----
The symbols used to denote the shape parameters (`M`, `n`, and `N`) are not
universally accepted. See the Examples for a clarification of the
definitions used here.
The probability mass function is defined as,
.. math:: p(k, M, n, N) = \frac{\binom{n}{k} \binom{M - n}{N - k}}
{\binom{M}{N}}
for :math:`k \in [\max(0, N - M + n), \min(n, N)]`, where the binomial
coefficients are defined as,
.. math:: \binom{n}{k} \equiv \frac{n!}{k! (n - k)!}.
%(after_notes)s
Examples
--------
>>> from scipy.stats import hypergeom
>>> import matplotlib.pyplot as plt
Suppose we have a collection of 20 animals, of which 7 are dogs. Then if
we want to know the probability of finding a given number of dogs if we
choose at random 12 of the 20 animals, we can initialize a frozen
distribution and plot the probability mass function:
>>> [M, n, N] = [20, 7, 12]
>>> rv = hypergeom(M, n, N)
>>> x = np.arange(0, n+1)
>>> pmf_dogs = rv.pmf(x)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, pmf_dogs, 'bo')
>>> ax.vlines(x, 0, pmf_dogs, lw=2)
>>> ax.set_xlabel('# of dogs in our group of chosen animals')
>>> ax.set_ylabel('hypergeom PMF')
>>> plt.show()
Instead of using a frozen distribution we can also use `hypergeom`
methods directly. To for example obtain the cumulative distribution
function, use:
>>> prb = hypergeom.cdf(x, M, n, N)
And to generate random numbers:
>>> R = hypergeom.rvs(M, n, N, size=10)
"""
def _rvs(self, M, n, N, size=None, random_state=None):
return random_state.hypergeometric(n, M-n, N, size=size)
def _get_support(self, M, n, N):
return np.maximum(N-(M-n), 0), np.minimum(n, N)
def _argcheck(self, M, n, N):
cond = (M > 0) & (n >= 0) & (N >= 0)
cond &= (n <= M) & (N <= M)
return cond
def _logpmf(self, k, M, n, N):
tot, good = M, n
bad = tot - good
result = (betaln(good+1, 1) + betaln(bad+1, 1) + betaln(tot-N+1, N+1) -
betaln(k+1, good-k+1) - betaln(N-k+1, bad-N+k+1) -
betaln(tot+1, 1))
return result
def _pmf(self, k, M, n, N):
# same as the following but numerically more precise
# return comb(good, k) * comb(bad, N-k) / comb(tot, N)
return exp(self._logpmf(k, M, n, N))
def _stats(self, M, n, N):
# tot, good, sample_size = M, n, N
# "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n')
M, n, N = 1.*M, 1.*n, 1.*N
m = M - n
p = n/M
mu = N*p
var = m*n*N*(M - N)*1.0/(M*M*(M-1))
g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N)))
g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m
g2 *= (M-1)*M*M
g2 += 6.*n*N*(M-N)*m*(5.*M-6)
g2 /= n * N * (M-N) * m * (M-2.) * (M-3.)
return mu, var, g1, g2
def _entropy(self, M, n, N):
k = np.r_[N - (M - n):min(n, N) + 1]
vals = self.pmf(k, M, n, N)
return np.sum(entr(vals), axis=0)
def _sf(self, k, M, n, N):
# This for loop is needed because `k` can be an array. If that's the
# case, the sf() method makes M, n and N arrays of the same shape. We
# therefore unpack all inputs args, so we can do the manual
# integration.
res = []
for quant, tot, good, draw in zip(k, M, n, N):
# Manual integration over probability mass function. More accurate
# than integrate.quad.
k2 = np.arange(quant + 1, draw + 1)
res.append(np.sum(self._pmf(k2, tot, good, draw)))
return np.asarray(res)
def _logsf(self, k, M, n, N):
res = []
for quant, tot, good, draw in zip(k, M, n, N):
if (quant + 0.5) * (tot + 0.5) < (good - 0.5) * (draw - 0.5):
# Less terms to sum if we calculate log(1-cdf)
res.append(log1p(-exp(self.logcdf(quant, tot, good, draw))))
else:
# Integration over probability mass function using logsumexp
k2 = np.arange(quant + 1, draw + 1)
res.append(logsumexp(self._logpmf(k2, tot, good, draw)))
return np.asarray(res)
def _logcdf(self, k, M, n, N):
res = []
for quant, tot, good, draw in zip(k, M, n, N):
if (quant + 0.5) * (tot + 0.5) > (good - 0.5) * (draw - 0.5):
# Less terms to sum if we calculate log(1-sf)
res.append(log1p(-exp(self.logsf(quant, tot, good, draw))))
else:
# Integration over probability mass function using logsumexp
k2 = np.arange(0, quant + 1)
res.append(logsumexp(self._logpmf(k2, tot, good, draw)))
return np.asarray(res)
hypergeom = hypergeom_gen(name='hypergeom')
# FIXME: Fails _cdfvec
class logser_gen(rv_discrete):
r"""A Logarithmic (Log-Series, Series) discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `logser` is:
.. math::
f(k) = - \frac{p^k}{k \log(1-p)}
for :math:`k \ge 1`.
`logser` takes :math:`p` as shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, p, size=None, random_state=None):
# looks wrong for p>0.5, too few k=1
# trying to use generic is worse, no k=1 at all
return random_state.logseries(p, size=size)
def _argcheck(self, p):
return (p > 0) & (p < 1)
def _pmf(self, k, p):
# logser.pmf(k) = - p**k / (k*log(1-p))
return -np.power(p, k) * 1.0 / k / special.log1p(-p)
def _stats(self, p):
r = special.log1p(-p)
mu = p / (p - 1.0) / r
mu2p = -p / r / (p - 1.0)**2
var = mu2p - mu*mu
mu3p = -p / r * (1.0+p) / (1.0 - p)**3
mu3 = mu3p - 3*mu*mu2p + 2*mu**3
g1 = mu3 / np.power(var, 1.5)
mu4p = -p / r * (
1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4)
mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4
g2 = mu4 / var**2 - 3.0
return mu, var, g1, g2
logser = logser_gen(a=1, name='logser', longname='A logarithmic')
class poisson_gen(rv_discrete):
r"""A Poisson discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `poisson` is:
.. math::
f(k) = \exp(-\mu) \frac{\mu^k}{k!}
for :math:`k \ge 0`.
`poisson` takes :math:`\mu` as shape parameter.
%(after_notes)s
%(example)s
"""
# Override rv_discrete._argcheck to allow mu=0.
def _argcheck(self, mu):
return mu >= 0
def _rvs(self, mu, size=None, random_state=None):
return random_state.poisson(mu, size)
def _logpmf(self, k, mu):
Pk = special.xlogy(k, mu) - gamln(k + 1) - mu
return Pk
def _pmf(self, k, mu):
# poisson.pmf(k) = exp(-mu) * mu**k / k!
return exp(self._logpmf(k, mu))
def _cdf(self, x, mu):
k = floor(x)
return special.pdtr(k, mu)
def _sf(self, x, mu):
k = floor(x)
return special.pdtrc(k, mu)
def _ppf(self, q, mu):
vals = ceil(special.pdtrik(q, mu))
vals1 = np.maximum(vals - 1, 0)
temp = special.pdtr(vals1, mu)
return np.where(temp >= q, vals1, vals)
def _stats(self, mu):
var = mu
tmp = np.asarray(mu)
mu_nonzero = tmp > 0
g1 = _lazywhere(mu_nonzero, (tmp,), lambda x: sqrt(1.0/x), np.inf)
g2 = _lazywhere(mu_nonzero, (tmp,), lambda x: 1.0/x, np.inf)
return mu, var, g1, g2
poisson = poisson_gen(name="poisson", longname='A Poisson')
class planck_gen(rv_discrete):
r"""A Planck discrete exponential random variable.
%(before_notes)s
Notes
-----
The probability mass function for `planck` is:
.. math::
f(k) = (1-\exp(-\lambda)) \exp(-\lambda k)
for :math:`k \ge 0` and :math:`\lambda > 0`.
`planck` takes :math:`\lambda` as shape parameter. The Planck distribution
can be written as a geometric distribution (`geom`) with
:math:`p = 1 - \exp(-\lambda)` shifted by `loc = -1`.
%(after_notes)s
See Also
--------
geom
%(example)s
"""
def _argcheck(self, lambda_):
return lambda_ > 0
def _pmf(self, k, lambda_):
return -expm1(-lambda_)*exp(-lambda_*k)
def _cdf(self, x, lambda_):
k = floor(x)
return -expm1(-lambda_*(k+1))
def _sf(self, x, lambda_):
return exp(self._logsf(x, lambda_))
def _logsf(self, x, lambda_):
k = floor(x)
return -lambda_*(k+1)
def _ppf(self, q, lambda_):
vals = ceil(-1.0/lambda_ * log1p(-q)-1)
vals1 = (vals-1).clip(*(self._get_support(lambda_)))
temp = self._cdf(vals1, lambda_)
return np.where(temp >= q, vals1, vals)
def _rvs(self, lambda_, size=None, random_state=None):
# use relation to geometric distribution for sampling
p = -expm1(-lambda_)
return random_state.geometric(p, size=size) - 1.0
def _stats(self, lambda_):
mu = 1/expm1(lambda_)
var = exp(-lambda_)/(expm1(-lambda_))**2
g1 = 2*cosh(lambda_/2.0)
g2 = 4+2*cosh(lambda_)
return mu, var, g1, g2
def _entropy(self, lambda_):
C = -expm1(-lambda_)
return lambda_*exp(-lambda_)/C - log(C)
planck = planck_gen(a=0, name='planck', longname='A discrete exponential ')
class boltzmann_gen(rv_discrete):
r"""A Boltzmann (Truncated Discrete Exponential) random variable.
%(before_notes)s
Notes
-----
The probability mass function for `boltzmann` is:
.. math::
f(k) = (1-\exp(-\lambda)) \exp(-\lambda k) / (1-\exp(-\lambda N))
for :math:`k = 0,..., N-1`.
`boltzmann` takes :math:`\lambda > 0` and :math:`N > 0` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, lambda_, N):
return (lambda_ > 0) & (N > 0)
def _get_support(self, lambda_, N):
return self.a, N - 1
def _pmf(self, k, lambda_, N):
# boltzmann.pmf(k) =
# (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N))
fact = (1-exp(-lambda_))/(1-exp(-lambda_*N))
return fact*exp(-lambda_*k)
def _cdf(self, x, lambda_, N):
k = floor(x)
return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N))
def _ppf(self, q, lambda_, N):
qnew = q*(1-exp(-lambda_*N))
vals = ceil(-1.0/lambda_ * log(1-qnew)-1)
vals1 = (vals-1).clip(0.0, np.inf)
temp = self._cdf(vals1, lambda_, N)
return np.where(temp >= q, vals1, vals)
def _stats(self, lambda_, N):
z = exp(-lambda_)
zN = exp(-lambda_*N)
mu = z/(1.0-z)-N*zN/(1-zN)
var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2
trm = (1-zN)/(1-z)
trm2 = (z*trm**2 - N*N*zN)
g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN)
g1 = g1 / trm2**(1.5)
g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN)
g2 = g2 / trm2 / trm2
return mu, var, g1, g2
boltzmann = boltzmann_gen(name='boltzmann', a=0,
longname='A truncated discrete exponential ')
class randint_gen(rv_discrete):
r"""A uniform discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `randint` is:
.. math::
f(k) = \frac{1}{high - low}
for ``k = low, ..., high - 1``.
`randint` takes ``low`` and ``high`` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, low, high):
return (high > low)
def _get_support(self, low, high):
return low, high-1
def _pmf(self, k, low, high):
# randint.pmf(k) = 1./(high - low)
p = np.ones_like(k) / (high - low)
return np.where((k >= low) & (k < high), p, 0.)
def _cdf(self, x, low, high):
k = floor(x)
return (k - low + 1.) / (high - low)
def _ppf(self, q, low, high):
vals = ceil(q * (high - low) + low) - 1
vals1 = (vals - 1).clip(low, high)
temp = self._cdf(vals1, low, high)
return np.where(temp >= q, vals1, vals)
def _stats(self, low, high):
m2, m1 = np.asarray(high), np.asarray(low)
mu = (m2 + m1 - 1.0) / 2
d = m2 - m1
var = (d*d - 1) / 12.0
g1 = 0.0
g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0)
return mu, var, g1, g2
def _rvs(self, low, high, size=None, random_state=None):
"""An array of *size* random integers >= ``low`` and < ``high``."""
if np.asarray(low).size == 1 and np.asarray(high).size == 1:
# no need to vectorize in that case
return rng_integers(random_state, low, high, size=size)
if size is not None:
# NumPy's RandomState.randint() doesn't broadcast its arguments.
# Use `broadcast_to()` to extend the shapes of low and high
# up to size. Then we can use the numpy.vectorize'd
# randint without needing to pass it a `size` argument.
low = np.broadcast_to(low, size)
high = np.broadcast_to(high, size)
randint = np.vectorize(partial(rng_integers, random_state),
otypes=[np.int_])
return randint(low, high)
def _entropy(self, low, high):
return log(high - low)
randint = randint_gen(name='randint', longname='A discrete uniform '
'(random integer)')
# FIXME: problems sampling.
class zipf_gen(rv_discrete):
r"""A Zipf discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `zipf` is:
.. math::
f(k, a) = \frac{1}{\zeta(a) k^a}
for :math:`k \ge 1`.
`zipf` takes :math:`a` as shape parameter. :math:`\zeta` is the
Riemann zeta function (`scipy.special.zeta`)
%(after_notes)s
%(example)s
"""
def _rvs(self, a, size=None, random_state=None):
return random_state.zipf(a, size=size)
def _argcheck(self, a):
return a > 1
def _pmf(self, k, a):
# zipf.pmf(k, a) = 1/(zeta(a) * k**a)
Pk = 1.0 / special.zeta(a, 1) / k**a
return Pk
def _munp(self, n, a):
return _lazywhere(
a > n + 1, (a, n),
lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1),
np.inf)
zipf = zipf_gen(a=1, name='zipf', longname='A Zipf')
class dlaplace_gen(rv_discrete):
r"""A Laplacian discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `dlaplace` is:
.. math::
f(k) = \tanh(a/2) \exp(-a |k|)
for integers :math:`k` and :math:`a > 0`.
`dlaplace` takes :math:`a` as shape parameter.
%(after_notes)s
%(example)s
"""
def _pmf(self, k, a):
# dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k))
return tanh(a/2.0) * exp(-a * abs(k))
def _cdf(self, x, a):
k = floor(x)
f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1)
f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1)
return _lazywhere(k >= 0, (k, a), f=f, f2=f2)
def _ppf(self, q, a):
const = 1 + exp(a)
vals = ceil(np.where(q < 1.0 / (1 + exp(-a)),
log(q*const) / a - 1,
-log((1-q) * const) / a))
vals1 = vals - 1
return np.where(self._cdf(vals1, a) >= q, vals1, vals)
def _stats(self, a):
ea = exp(a)
mu2 = 2.*ea/(ea-1.)**2
mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4
return 0., mu2, 0., mu4/mu2**2 - 3.
def _entropy(self, a):
return a / sinh(a) - log(tanh(a/2.0))
def _rvs(self, a, size=None, random_state=None):
# The discrete Laplace is equivalent to the two-sided geometric
# distribution with PMF:
# f(k) = (1 - alpha)/(1 + alpha) * alpha^abs(k)
# Reference:
# https://www.sciencedirect.com/science/
# article/abs/pii/S0378375804003519
# Furthermore, the two-sided geometric distribution is
# equivalent to the difference between two iid geometric
# distributions.
# Reference (page 179):
# https://pdfs.semanticscholar.org/61b3/
# b99f466815808fd0d03f5d2791eea8b541a1.pdf
# Thus, we can leverage the following:
# 1) alpha = e^-a
# 2) probability_of_success = 1 - alpha (Bernoulli trial)
probOfSuccess = -np.expm1(-np.asarray(a))
x = random_state.geometric(probOfSuccess, size=size)
y = random_state.geometric(probOfSuccess, size=size)
return x - y
dlaplace = dlaplace_gen(a=-np.inf,
name='dlaplace', longname='A discrete Laplacian')
class skellam_gen(rv_discrete):
r"""A Skellam discrete random variable.
%(before_notes)s
Notes
-----
Probability distribution of the difference of two correlated or
uncorrelated Poisson random variables.
Let :math:`k_1` and :math:`k_2` be two Poisson-distributed r.v. with
expected values :math:`\lambda_1` and :math:`\lambda_2`. Then,
:math:`k_1 - k_2` follows a Skellam distribution with parameters
:math:`\mu_1 = \lambda_1 - \rho \sqrt{\lambda_1 \lambda_2}` and
:math:`\mu_2 = \lambda_2 - \rho \sqrt{\lambda_1 \lambda_2}`, where
:math:`\rho` is the correlation coefficient between :math:`k_1` and
:math:`k_2`. If the two Poisson-distributed r.v. are independent then
:math:`\rho = 0`.
Parameters :math:`\mu_1` and :math:`\mu_2` must be strictly positive.
For details see: https://en.wikipedia.org/wiki/Skellam_distribution
`skellam` takes :math:`\mu_1` and :math:`\mu_2` as shape parameters.
%(after_notes)s
%(example)s
"""
def _rvs(self, mu1, mu2, size=None, random_state=None):
n = size
return (random_state.poisson(mu1, n) -
random_state.poisson(mu2, n))
def _pmf(self, x, mu1, mu2):
px = np.where(x < 0,
_ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2,
_ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2)
# ncx2.pdf() returns nan's for extremely low probabilities
return px
def _cdf(self, x, mu1, mu2):
x = floor(x)
px = np.where(x < 0,
_ncx2_cdf(2*mu2, -2*x, 2*mu1),
1 - _ncx2_cdf(2*mu1, 2*(x+1), 2*mu2))
return px
def _stats(self, mu1, mu2):
mean = mu1 - mu2
var = mu1 + mu2
g1 = mean / sqrt((var)**3)
g2 = 1 / var
return mean, var, g1, g2
skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam')
class yulesimon_gen(rv_discrete):
r"""A Yule-Simon discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for the `yulesimon` is:
.. math::
f(k) = \alpha B(k, \alpha+1)
for :math:`k=1,2,3,...`, where :math:`\alpha>0`.
Here :math:`B` refers to the `scipy.special.beta` function.
The sampling of random variates is based on pg 553, Section 6.3 of [1]_.
Our notation maps to the referenced logic via :math:`\alpha=a-1`.
For details see the wikipedia entry [2]_.
References
----------
.. [1] Devroye, Luc. "Non-uniform Random Variate Generation",
(1986) Springer, New York.
.. [2] https://en.wikipedia.org/wiki/Yule-Simon_distribution
%(after_notes)s
%(example)s
"""
def _rvs(self, alpha, size=None, random_state=None):
E1 = random_state.standard_exponential(size)
E2 = random_state.standard_exponential(size)
ans = ceil(-E1 / log1p(-exp(-E2 / alpha)))
return ans
def _pmf(self, x, alpha):
return alpha * special.beta(x, alpha + 1)
def _argcheck(self, alpha):
return (alpha > 0)
def _logpmf(self, x, alpha):
return log(alpha) + special.betaln(x, alpha + 1)
def _cdf(self, x, alpha):
return 1 - x * special.beta(x, alpha + 1)
def _sf(self, x, alpha):
return x * special.beta(x, alpha + 1)
def _logsf(self, x, alpha):
return log(x) + special.betaln(x, alpha + 1)
def _stats(self, alpha):
mu = np.where(alpha <= 1, np.inf, alpha / (alpha - 1))
mu2 = np.where(alpha > 2,
alpha**2 / ((alpha - 2.0) * (alpha - 1)**2),
np.inf)
mu2 = np.where(alpha <= 1, np.nan, mu2)
g1 = np.where(alpha > 3,
sqrt(alpha - 2) * (alpha + 1)**2 / (alpha * (alpha - 3)),
np.inf)
g1 = np.where(alpha <= 2, np.nan, g1)
g2 = np.where(alpha > 4,
(alpha + 3) + (alpha**3 - 49 * alpha - 22) / (alpha *
(alpha - 4) * (alpha - 3)), np.inf)
g2 = np.where(alpha <= 2, np.nan, g2)
return mu, mu2, g1, g2
yulesimon = yulesimon_gen(name='yulesimon', a=1)
# Collect names of classes and objects in this module.
pairs = list(globals().items())
_distn_names, _distn_gen_names = get_distribution_names(pairs, rv_discrete)
__all__ = _distn_names + _distn_gen_names