test_common.py 52 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

from functools import partial
from itertools import product
from itertools import chain
from itertools import permutations

import numpy as np
import scipy.sparse as sp

import pytest

from sklearn.datasets import make_multilabel_classification
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils.multiclass import type_of_target
from sklearn.utils.validation import _num_samples
from sklearn.utils.validation import check_random_state
from sklearn.utils import shuffle

from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_less
from sklearn.utils._testing import ignore_warnings

from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import brier_score_loss
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import coverage_error
from sklearn.metrics import explained_variance_score
from sklearn.metrics import f1_score
from sklearn.metrics import fbeta_score
from sklearn.metrics import hamming_loss
from sklearn.metrics import hinge_loss
from sklearn.metrics import jaccard_score
from sklearn.metrics import label_ranking_average_precision_score
from sklearn.metrics import label_ranking_loss
from sklearn.metrics import log_loss
from sklearn.metrics import max_error
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_tweedie_deviance
from sklearn.metrics import mean_poisson_deviance
from sklearn.metrics import mean_gamma_deviance
from sklearn.metrics import median_absolute_error
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import precision_score
from sklearn.metrics import r2_score
from sklearn.metrics import recall_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import zero_one_loss
from sklearn.metrics import ndcg_score
from sklearn.metrics import dcg_score

from sklearn.metrics._base import _average_binary_score


# Note toward developers about metric testing
# -------------------------------------------
# It is often possible to write one general test for several metrics:
#
#   - invariance properties, e.g. invariance to sample order
#   - common behavior for an argument, e.g. the "normalize" with value True
#     will return the mean of the metrics and with value False will return
#     the sum of the metrics.
#
# In order to improve the overall metric testing, it is a good idea to write
# first a specific test for the given metric and then add a general test for
# all metrics that have the same behavior.
#
# Two types of datastructures are used in order to implement this system:
# dictionaries of metrics and lists of metrics wit common properties.
#
# Dictionaries of metrics
# ------------------------
# The goal of having those dictionaries is to have an easy way to call a
# particular metric and associate a name to each function:
#
#   - REGRESSION_METRICS: all regression metrics.
#   - CLASSIFICATION_METRICS: all classification metrics
#     which compare a ground truth and the estimated targets as returned by a
#     classifier.
#   - THRESHOLDED_METRICS: all classification metrics which
#     compare a ground truth and a score, e.g. estimated probabilities or
#     decision function (format might vary)
#
# Those dictionaries will be used to test systematically some invariance
# properties, e.g. invariance toward several input layout.
#

REGRESSION_METRICS = {
    "max_error": max_error,
    "mean_absolute_error": mean_absolute_error,
    "mean_squared_error": mean_squared_error,
    "median_absolute_error": median_absolute_error,
    "explained_variance_score": explained_variance_score,
    "r2_score": partial(r2_score, multioutput='variance_weighted'),
    "mean_normal_deviance": partial(mean_tweedie_deviance, power=0),
    "mean_poisson_deviance": mean_poisson_deviance,
    "mean_gamma_deviance": mean_gamma_deviance,
    "mean_compound_poisson_deviance":
    partial(mean_tweedie_deviance, power=1.4),
}

CLASSIFICATION_METRICS = {
    "accuracy_score": accuracy_score,
    "balanced_accuracy_score": balanced_accuracy_score,
    "adjusted_balanced_accuracy_score": partial(balanced_accuracy_score,
                                                adjusted=True),
    "unnormalized_accuracy_score": partial(accuracy_score, normalize=False),

    # `confusion_matrix` returns absolute values and hence behaves unnormalized
    # . Naming it with an unnormalized_ prefix is necessary for this module to
    # skip sample_weight scaling checks which will fail for unnormalized
    # metrics.
    "unnormalized_confusion_matrix": confusion_matrix,
    "normalized_confusion_matrix": lambda *args, **kwargs: (
        confusion_matrix(*args, **kwargs).astype('float') / confusion_matrix(
            *args, **kwargs).sum(axis=1)[:, np.newaxis]
    ),

    "unnormalized_multilabel_confusion_matrix": multilabel_confusion_matrix,
    "unnormalized_multilabel_confusion_matrix_sample":
        partial(multilabel_confusion_matrix, samplewise=True),
    "hamming_loss": hamming_loss,

    "zero_one_loss": zero_one_loss,
    "unnormalized_zero_one_loss": partial(zero_one_loss, normalize=False),

    # These are needed to test averaging
    "jaccard_score": jaccard_score,
    "precision_score": precision_score,
    "recall_score": recall_score,
    "f1_score": f1_score,
    "f2_score": partial(fbeta_score, beta=2),
    "f0.5_score": partial(fbeta_score, beta=0.5),
    "matthews_corrcoef_score": matthews_corrcoef,

    "weighted_f0.5_score": partial(fbeta_score, average="weighted", beta=0.5),
    "weighted_f1_score": partial(f1_score, average="weighted"),
    "weighted_f2_score": partial(fbeta_score, average="weighted", beta=2),
    "weighted_precision_score": partial(precision_score, average="weighted"),
    "weighted_recall_score": partial(recall_score, average="weighted"),
    "weighted_jaccard_score": partial(jaccard_score, average="weighted"),

    "micro_f0.5_score": partial(fbeta_score, average="micro", beta=0.5),
    "micro_f1_score": partial(f1_score, average="micro"),
    "micro_f2_score": partial(fbeta_score, average="micro", beta=2),
    "micro_precision_score": partial(precision_score, average="micro"),
    "micro_recall_score": partial(recall_score, average="micro"),
    "micro_jaccard_score": partial(jaccard_score, average="micro"),

    "macro_f0.5_score": partial(fbeta_score, average="macro", beta=0.5),
    "macro_f1_score": partial(f1_score, average="macro"),
    "macro_f2_score": partial(fbeta_score, average="macro", beta=2),
    "macro_precision_score": partial(precision_score, average="macro"),
    "macro_recall_score": partial(recall_score, average="macro"),
    "macro_jaccard_score": partial(jaccard_score, average="macro"),

    "samples_f0.5_score": partial(fbeta_score, average="samples", beta=0.5),
    "samples_f1_score": partial(f1_score, average="samples"),
    "samples_f2_score": partial(fbeta_score, average="samples", beta=2),
    "samples_precision_score": partial(precision_score, average="samples"),
    "samples_recall_score": partial(recall_score, average="samples"),
    "samples_jaccard_score": partial(jaccard_score, average="samples"),

    "cohen_kappa_score": cohen_kappa_score,
}


def precision_recall_curve_padded_thresholds(*args, **kwargs):
    """
    The dimensions of precision-recall pairs and the threshold array as
    returned by the precision_recall_curve do not match. See
    func:`sklearn.metrics.precision_recall_curve`

    This prevents implicit conversion of return value triple to an higher
    dimensional np.array of dtype('float64') (it will be of dtype('object)
    instead). This again is needed for assert_array_equal to work correctly.

    As a workaround we pad the threshold array with NaN values to match
    the dimension of precision and recall arrays respectively.
    """
    precision, recall, thresholds = precision_recall_curve(*args, **kwargs)

    pad_threshholds = len(precision) - len(thresholds)

    return np.array([
        precision,
        recall,
        np.pad(thresholds,
               pad_width=(0, pad_threshholds),
               mode='constant',
               constant_values=[np.nan])
    ])


CURVE_METRICS = {
    "roc_curve": roc_curve,
    "precision_recall_curve": precision_recall_curve_padded_thresholds,
}

THRESHOLDED_METRICS = {
    "coverage_error": coverage_error,
    "label_ranking_loss": label_ranking_loss,
    "log_loss": log_loss,
    "unnormalized_log_loss": partial(log_loss, normalize=False),

    "hinge_loss": hinge_loss,

    "brier_score_loss": brier_score_loss,

    "roc_auc_score": roc_auc_score,  # default: average="macro"
    "weighted_roc_auc": partial(roc_auc_score, average="weighted"),
    "samples_roc_auc": partial(roc_auc_score, average="samples"),
    "micro_roc_auc": partial(roc_auc_score, average="micro"),
    "ovr_roc_auc": partial(roc_auc_score, average="macro", multi_class='ovr'),
    "weighted_ovr_roc_auc": partial(roc_auc_score, average="weighted",
                                    multi_class='ovr'),
    "ovo_roc_auc": partial(roc_auc_score, average="macro", multi_class='ovo'),
    "weighted_ovo_roc_auc": partial(roc_auc_score, average="weighted",
                                    multi_class='ovo'),
    "partial_roc_auc": partial(roc_auc_score, max_fpr=0.5),

    "average_precision_score":
    average_precision_score,  # default: average="macro"
    "weighted_average_precision_score":
    partial(average_precision_score, average="weighted"),
    "samples_average_precision_score":
    partial(average_precision_score, average="samples"),
    "micro_average_precision_score":
    partial(average_precision_score, average="micro"),
    "label_ranking_average_precision_score":
    label_ranking_average_precision_score,
    "ndcg_score": ndcg_score,
    "dcg_score": dcg_score
}

ALL_METRICS = dict()
ALL_METRICS.update(THRESHOLDED_METRICS)
ALL_METRICS.update(CLASSIFICATION_METRICS)
ALL_METRICS.update(REGRESSION_METRICS)
ALL_METRICS.update(CURVE_METRICS)

# Lists of metrics with common properties
# ---------------------------------------
# Lists of metrics with common properties are used to test systematically some
# functionalities and invariance, e.g. SYMMETRIC_METRICS lists all metrics that
# are symmetric with respect to their input argument y_true and y_pred.
#
# When you add a new metric or functionality, check if a general test
# is already written.

# Those metrics don't support binary inputs
METRIC_UNDEFINED_BINARY = {
    "samples_f0.5_score",
    "samples_f1_score",
    "samples_f2_score",
    "samples_precision_score",
    "samples_recall_score",
    "samples_jaccard_score",
    "coverage_error",
    "unnormalized_multilabel_confusion_matrix_sample",
    "label_ranking_loss",
    "label_ranking_average_precision_score",
    "dcg_score",
    "ndcg_score"
}

# Those metrics don't support multiclass inputs
METRIC_UNDEFINED_MULTICLASS = {
    "brier_score_loss",

    "micro_roc_auc",
    "samples_roc_auc",
    "partial_roc_auc",
    "roc_auc_score",
    "weighted_roc_auc",

    "average_precision_score",
    "weighted_average_precision_score",
    "micro_average_precision_score",
    "samples_average_precision_score",

    "jaccard_score",

    # with default average='binary', multiclass is prohibited
    "precision_score",
    "recall_score",
    "f1_score",
    "f2_score",
    "f0.5_score",

    # curves
    "roc_curve",
    "precision_recall_curve",
}

# Metric undefined with "binary" or "multiclass" input
METRIC_UNDEFINED_BINARY_MULTICLASS = METRIC_UNDEFINED_BINARY.union(
    METRIC_UNDEFINED_MULTICLASS)

# Metrics with an "average" argument
METRICS_WITH_AVERAGING = {
    "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
    "jaccard_score"
}

# Threshold-based metrics with an "average" argument
THRESHOLDED_METRICS_WITH_AVERAGING = {
    "roc_auc_score", "average_precision_score", "partial_roc_auc",
}

# Metrics with a "pos_label" argument
METRICS_WITH_POS_LABEL = {
    "roc_curve",
    "precision_recall_curve",

    "brier_score_loss",

    "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
    "jaccard_score",

    "average_precision_score",
    "weighted_average_precision_score",
    "micro_average_precision_score",
    "samples_average_precision_score",

    # pos_label support deprecated; to be removed in 0.18:
    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_recall_score",

    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",

    "macro_f0.5_score", "macro_f1_score", "macro_f2_score",
    "macro_precision_score", "macro_recall_score",
}

# Metrics with a "labels" argument
# TODO: Handle multi_class metrics that has a labels argument as well as a
# decision function argument. e.g hinge_loss
METRICS_WITH_LABELS = {
    "unnormalized_confusion_matrix",
    "normalized_confusion_matrix",
    "roc_curve",
    "precision_recall_curve",

    "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
    "jaccard_score",

    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_recall_score",
    "weighted_jaccard_score",

    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",
    "micro_jaccard_score",

    "macro_f0.5_score", "macro_f1_score", "macro_f2_score",
    "macro_precision_score", "macro_recall_score",
    "macro_jaccard_score",

    "unnormalized_multilabel_confusion_matrix",
    "unnormalized_multilabel_confusion_matrix_sample",

    "cohen_kappa_score",
}

# Metrics with a "normalize" option
METRICS_WITH_NORMALIZE_OPTION = {
    "accuracy_score",
    "zero_one_loss",
}

# Threshold-based metrics with "multilabel-indicator" format support
THRESHOLDED_MULTILABEL_METRICS = {
    "log_loss",
    "unnormalized_log_loss",

    "roc_auc_score", "weighted_roc_auc", "samples_roc_auc",
    "micro_roc_auc", "partial_roc_auc",

    "average_precision_score", "weighted_average_precision_score",
    "samples_average_precision_score", "micro_average_precision_score",

    "coverage_error", "label_ranking_loss",

    "ndcg_score",
    "dcg_score",

    "label_ranking_average_precision_score",
}

# Classification metrics with  "multilabel-indicator" format
MULTILABELS_METRICS = {
    "accuracy_score", "unnormalized_accuracy_score",
    "hamming_loss",
    "zero_one_loss", "unnormalized_zero_one_loss",

    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_recall_score",
    "weighted_jaccard_score",

    "macro_f0.5_score", "macro_f1_score", "macro_f2_score",
    "macro_precision_score", "macro_recall_score",
    "macro_jaccard_score",

    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",
    "micro_jaccard_score",

    "unnormalized_multilabel_confusion_matrix",

    "samples_f0.5_score", "samples_f1_score", "samples_f2_score",
    "samples_precision_score", "samples_recall_score",
    "samples_jaccard_score",
}

# Regression metrics with "multioutput-continuous" format support
MULTIOUTPUT_METRICS = {
    "mean_absolute_error", "median_absolute_error", "mean_squared_error",
    "r2_score", "explained_variance_score"
}

# Symmetric with respect to their input arguments y_true and y_pred
# metric(y_true, y_pred) == metric(y_pred, y_true).
SYMMETRIC_METRICS = {
    "accuracy_score", "unnormalized_accuracy_score",
    "hamming_loss",
    "zero_one_loss", "unnormalized_zero_one_loss",

    "micro_jaccard_score", "macro_jaccard_score",
    "jaccard_score",
    "samples_jaccard_score",

    "f1_score", "micro_f1_score", "macro_f1_score",
    "weighted_recall_score",
    # P = R = F = accuracy in multiclass case
    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",

    "matthews_corrcoef_score", "mean_absolute_error", "mean_squared_error",
    "median_absolute_error", "max_error",

    "cohen_kappa_score", "mean_normal_deviance"
}

# Asymmetric with respect to their input arguments y_true and y_pred
# metric(y_true, y_pred) != metric(y_pred, y_true).
NOT_SYMMETRIC_METRICS = {
    "balanced_accuracy_score",
    "adjusted_balanced_accuracy_score",
    "explained_variance_score",
    "r2_score",
    "unnormalized_confusion_matrix",
    "normalized_confusion_matrix",
    "roc_curve",
    "precision_recall_curve",

    "precision_score", "recall_score", "f2_score", "f0.5_score",

    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_jaccard_score",
    "unnormalized_multilabel_confusion_matrix",

    "macro_f0.5_score", "macro_f2_score", "macro_precision_score",
    "macro_recall_score", "log_loss", "hinge_loss",
    "mean_gamma_deviance", "mean_poisson_deviance",
    "mean_compound_poisson_deviance"
}


# No Sample weight support
METRICS_WITHOUT_SAMPLE_WEIGHT = {
    "median_absolute_error",
    "max_error",
    "ovo_roc_auc",
    "weighted_ovo_roc_auc"
}

METRICS_REQUIRE_POSITIVE_Y = {
    "mean_poisson_deviance",
    "mean_gamma_deviance",
    "mean_compound_poisson_deviance",
}


def _require_positive_targets(y1, y2):
    """Make targets strictly positive"""
    offset = abs(min(y1.min(), y2.min())) + 1
    y1 += offset
    y2 += offset
    return y1, y2


def test_symmetry_consistency():

    # We shouldn't forget any metrics
    assert (SYMMETRIC_METRICS.union(
        NOT_SYMMETRIC_METRICS, set(THRESHOLDED_METRICS),
        METRIC_UNDEFINED_BINARY_MULTICLASS) ==
        set(ALL_METRICS))

    assert (
        SYMMETRIC_METRICS.intersection(NOT_SYMMETRIC_METRICS) ==
        set())


@pytest.mark.parametrize("name", sorted(SYMMETRIC_METRICS))
def test_symmetric_metric(name):
    # Test the symmetry of score and loss functions
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))

    if name in METRICS_REQUIRE_POSITIVE_Y:
        y_true, y_pred = _require_positive_targets(y_true, y_pred)

    y_true_bin = random_state.randint(0, 2, size=(20, 25))
    y_pred_bin = random_state.randint(0, 2, size=(20, 25))

    metric = ALL_METRICS[name]
    if name in METRIC_UNDEFINED_BINARY:
        if name in MULTILABELS_METRICS:
            assert_allclose(metric(y_true_bin, y_pred_bin),
                            metric(y_pred_bin, y_true_bin),
                            err_msg="%s is not symmetric" % name)
        else:
            assert False, "This case is currently unhandled"
    else:
        assert_allclose(metric(y_true, y_pred),
                        metric(y_pred, y_true),
                        err_msg="%s is not symmetric" % name)


@pytest.mark.parametrize("name", sorted(NOT_SYMMETRIC_METRICS))
def test_not_symmetric_metric(name):
    # Test the symmetry of score and loss functions
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))

    if name in METRICS_REQUIRE_POSITIVE_Y:
        y_true, y_pred = _require_positive_targets(y_true, y_pred)

    metric = ALL_METRICS[name]

    # use context manager to supply custom error message
    with pytest.raises(AssertionError):
        assert_array_equal(metric(y_true, y_pred), metric(y_pred, y_true))
        raise ValueError("%s seems to be symmetric" % name)


@pytest.mark.parametrize(
        'name',
        sorted(set(ALL_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_sample_order_invariance(name):
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))
    if name in METRICS_REQUIRE_POSITIVE_Y:
        y_true, y_pred = _require_positive_targets(y_true, y_pred)

    y_true_shuffle, y_pred_shuffle = shuffle(y_true, y_pred, random_state=0)

    with ignore_warnings():
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_pred),
                        metric(y_true_shuffle, y_pred_shuffle),
                        err_msg="%s is not sample order invariant" % name)


@ignore_warnings
def test_sample_order_invariance_multilabel_and_multioutput():
    random_state = check_random_state(0)

    # Generate some data
    y_true = random_state.randint(0, 2, size=(20, 25))
    y_pred = random_state.randint(0, 2, size=(20, 25))
    y_score = random_state.normal(size=y_true.shape)

    y_true_shuffle, y_pred_shuffle, y_score_shuffle = shuffle(y_true,
                                                              y_pred,
                                                              y_score,
                                                              random_state=0)

    for name in MULTILABELS_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_pred),
                        metric(y_true_shuffle, y_pred_shuffle),
                        err_msg="%s is not sample order invariant" % name)

    for name in THRESHOLDED_MULTILABEL_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_score),
                        metric(y_true_shuffle, y_score_shuffle),
                        err_msg="%s is not sample order invariant" % name)

    for name in MULTIOUTPUT_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_score),
                        metric(y_true_shuffle, y_score_shuffle),
                        err_msg="%s is not sample order invariant" % name)
        assert_allclose(metric(y_true, y_pred),
                        metric(y_true_shuffle, y_pred_shuffle),
                        err_msg="%s is not sample order invariant" % name)


@pytest.mark.parametrize(
        'name',
        sorted(set(ALL_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_format_invariance_with_1d_vectors(name):
    random_state = check_random_state(0)
    y1 = random_state.randint(0, 2, size=(20, ))
    y2 = random_state.randint(0, 2, size=(20, ))

    if name in METRICS_REQUIRE_POSITIVE_Y:
        y1, y2 = _require_positive_targets(y1, y2)

    y1_list = list(y1)
    y2_list = list(y2)

    y1_1d, y2_1d = np.array(y1), np.array(y2)
    assert_array_equal(y1_1d.ndim, 1)
    assert_array_equal(y2_1d.ndim, 1)
    y1_column = np.reshape(y1_1d, (-1, 1))
    y2_column = np.reshape(y2_1d, (-1, 1))
    y1_row = np.reshape(y1_1d, (1, -1))
    y2_row = np.reshape(y2_1d, (1, -1))

    with ignore_warnings():
        metric = ALL_METRICS[name]

        measure = metric(y1, y2)

        assert_allclose(metric(y1_list, y2_list), measure,
                        err_msg="%s is not representation invariant with list"
                                "" % name)

        assert_allclose(metric(y1_1d, y2_1d), measure,
                        err_msg="%s is not representation invariant with "
                                "np-array-1d" % name)

        assert_allclose(metric(y1_column, y2_column), measure,
                        err_msg="%s is not representation invariant with "
                                "np-array-column" % name)

        # Mix format support
        assert_allclose(metric(y1_1d, y2_list), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and list" % name)

        assert_allclose(metric(y1_list, y2_1d), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and list" % name)

        assert_allclose(metric(y1_1d, y2_column), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and np-array-column" % name)

        assert_allclose(metric(y1_column, y2_1d), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and np-array-column" % name)

        assert_allclose(metric(y1_list, y2_column), measure,
                        err_msg="%s is not representation invariant with mix "
                                "list and np-array-column" % name)

        assert_allclose(metric(y1_column, y2_list), measure,
                        err_msg="%s is not representation invariant with mix "
                                "list and np-array-column" % name)

        # These mix representations aren't allowed
        with pytest.raises(ValueError):
            metric(y1_1d, y2_row)
        with pytest.raises(ValueError):
            metric(y1_row, y2_1d)
        with pytest.raises(ValueError):
            metric(y1_list, y2_row)
        with pytest.raises(ValueError):
            metric(y1_row, y2_list)
        with pytest.raises(ValueError):
            metric(y1_column, y2_row)
        with pytest.raises(ValueError):
            metric(y1_row, y2_column)

        # NB: We do not test for y1_row, y2_row as these may be
        # interpreted as multilabel or multioutput data.
        if (name not in (MULTIOUTPUT_METRICS | THRESHOLDED_MULTILABEL_METRICS |
                         MULTILABELS_METRICS)):
            with pytest.raises(ValueError):
                metric(y1_row, y2_row)


@pytest.mark.parametrize(
    'name',
    sorted(set(CLASSIFICATION_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_classification_invariance_string_vs_numbers_labels(name):
    # Ensure that classification metrics with string labels are invariant
    random_state = check_random_state(0)
    y1 = random_state.randint(0, 2, size=(20, ))
    y2 = random_state.randint(0, 2, size=(20, ))

    y1_str = np.array(["eggs", "spam"])[y1]
    y2_str = np.array(["eggs", "spam"])[y2]

    pos_label_str = "spam"
    labels_str = ["eggs", "spam"]

    with ignore_warnings():
        metric = CLASSIFICATION_METRICS[name]
        measure_with_number = metric(y1, y2)

        # Ugly, but handle case with a pos_label and label
        metric_str = metric
        if name in METRICS_WITH_POS_LABEL:
            metric_str = partial(metric_str, pos_label=pos_label_str)

        measure_with_str = metric_str(y1_str, y2_str)

        assert_array_equal(measure_with_number, measure_with_str,
                           err_msg="{0} failed string vs number invariance "
                                   "test".format(name))

        measure_with_strobj = metric_str(y1_str.astype('O'),
                                         y2_str.astype('O'))
        assert_array_equal(measure_with_number, measure_with_strobj,
                           err_msg="{0} failed string object vs number "
                                   "invariance test".format(name))

        if name in METRICS_WITH_LABELS:
            metric_str = partial(metric_str, labels=labels_str)
            measure_with_str = metric_str(y1_str, y2_str)
            assert_array_equal(measure_with_number, measure_with_str,
                               err_msg="{0} failed string vs number  "
                                       "invariance test".format(name))

            measure_with_strobj = metric_str(y1_str.astype('O'),
                                             y2_str.astype('O'))
            assert_array_equal(measure_with_number, measure_with_strobj,
                               err_msg="{0} failed string vs number  "
                                       "invariance test".format(name))


@pytest.mark.parametrize('name', THRESHOLDED_METRICS)
def test_thresholded_invariance_string_vs_numbers_labels(name):
    # Ensure that thresholded metrics with string labels are invariant
    random_state = check_random_state(0)
    y1 = random_state.randint(0, 2, size=(20, ))
    y2 = random_state.randint(0, 2, size=(20, ))

    y1_str = np.array(["eggs", "spam"])[y1]

    pos_label_str = "spam"

    with ignore_warnings():
        metric = THRESHOLDED_METRICS[name]
        if name not in METRIC_UNDEFINED_BINARY:
            # Ugly, but handle case with a pos_label and label
            metric_str = metric
            if name in METRICS_WITH_POS_LABEL:
                metric_str = partial(metric_str, pos_label=pos_label_str)

            measure_with_number = metric(y1, y2)
            measure_with_str = metric_str(y1_str, y2)
            assert_array_equal(measure_with_number, measure_with_str,
                               err_msg="{0} failed string vs number "
                                       "invariance test".format(name))

            measure_with_strobj = metric_str(y1_str.astype('O'), y2)
            assert_array_equal(measure_with_number, measure_with_strobj,
                               err_msg="{0} failed string object vs number "
                                       "invariance test".format(name))
        else:
            # TODO those metrics doesn't support string label yet
            with pytest.raises(ValueError):
                metric(y1_str, y2)
            with pytest.raises(ValueError):
                metric(y1_str.astype('O'), y2)


invalids = [([0, 1], [np.inf, np.inf]),
            ([0, 1], [np.nan, np.nan]),
            ([0, 1], [np.nan, np.inf])]


@pytest.mark.parametrize(
        'metric',
        chain(THRESHOLDED_METRICS.values(), REGRESSION_METRICS.values()))
def test_regression_thresholded_inf_nan_input(metric):

    for y_true, y_score in invalids:
        with pytest.raises(ValueError, match="contains NaN, infinity"):
            metric(y_true, y_score)


@pytest.mark.parametrize('metric', CLASSIFICATION_METRICS.values())
def test_classification_inf_nan_input(metric):
    # Classification metrics all raise a mixed input exception
    for y_true, y_score in invalids:
        err_msg = "Input contains NaN, infinity or a value too large"
        with pytest.raises(ValueError, match=err_msg):
            metric(y_true, y_score)


@ignore_warnings
def check_single_sample(name):
    # Non-regression test: scores should work with a single sample.
    # This is important for leave-one-out cross validation.
    # Score functions tested are those that formerly called np.squeeze,
    # which turns an array of size 1 into a 0-d array (!).
    metric = ALL_METRICS[name]

    # assert that no exception is thrown
    if name in METRICS_REQUIRE_POSITIVE_Y:
        values = [1, 2]
    else:
        values = [0, 1]
    for i, j in product(values, repeat=2):
        metric([i], [j])


@ignore_warnings
def check_single_sample_multioutput(name):
    metric = ALL_METRICS[name]
    for i, j, k, l in product([0, 1], repeat=4):
        metric(np.array([[i, j]]), np.array([[k, l]]))


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS)
        # Those metrics are not always defined with one sample
        # or in multiclass classification
        - METRIC_UNDEFINED_BINARY_MULTICLASS - set(THRESHOLDED_METRICS)))
def test_single_sample(name):
    check_single_sample(name)


@pytest.mark.parametrize('name',
                         sorted(MULTIOUTPUT_METRICS | MULTILABELS_METRICS))
def test_single_sample_multioutput(name):
    check_single_sample_multioutput(name)


@pytest.mark.parametrize('name', sorted(MULTIOUTPUT_METRICS))
def test_multioutput_number_of_output_differ(name):
    y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
    y_pred = np.array([[0, 0], [1, 0], [0, 0]])

    metric = ALL_METRICS[name]
    with pytest.raises(ValueError):
        metric(y_true, y_pred)


@pytest.mark.parametrize('name', sorted(MULTIOUTPUT_METRICS))
def test_multioutput_regression_invariance_to_dimension_shuffling(name):
    # test invariance to dimension shuffling
    random_state = check_random_state(0)
    y_true = random_state.uniform(0, 2, size=(20, 5))
    y_pred = random_state.uniform(0, 2, size=(20, 5))

    metric = ALL_METRICS[name]
    error = metric(y_true, y_pred)

    for _ in range(3):
        perm = random_state.permutation(y_true.shape[1])
        assert_allclose(metric(y_true[:, perm], y_pred[:, perm]),
                        error,
                        err_msg="%s is not dimension shuffling invariant" % (
                            name))


@ignore_warnings
def test_multilabel_representation_invariance():
    # Generate some data
    n_classes = 4
    n_samples = 50

    _, y1 = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                           random_state=0, n_samples=n_samples,
                                           allow_unlabeled=True)
    _, y2 = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                           random_state=1, n_samples=n_samples,
                                           allow_unlabeled=True)

    # To make sure at least one empty label is present
    y1 = np.vstack([y1, [[0] * n_classes]])
    y2 = np.vstack([y2, [[0] * n_classes]])

    y1_sparse_indicator = sp.coo_matrix(y1)
    y2_sparse_indicator = sp.coo_matrix(y2)

    y1_list_array_indicator = list(y1)
    y2_list_array_indicator = list(y2)

    y1_list_list_indicator = [list(a) for a in y1_list_array_indicator]
    y2_list_list_indicator = [list(a) for a in y2_list_array_indicator]

    for name in MULTILABELS_METRICS:
        metric = ALL_METRICS[name]

        # XXX cruel hack to work with partial functions
        if isinstance(metric, partial):
            metric.__module__ = 'tmp'
            metric.__name__ = name

        measure = metric(y1, y2)

        # Check representation invariance
        assert_allclose(metric(y1_sparse_indicator, y2_sparse_indicator),
                        measure,
                        err_msg="%s failed representation invariance between "
                                "dense and sparse indicator formats." % name)
        assert_almost_equal(metric(y1_list_list_indicator,
                                   y2_list_list_indicator),
                            measure,
                            err_msg="%s failed representation invariance  "
                                    "between dense array and list of list "
                                    "indicator formats." % name)
        assert_almost_equal(metric(y1_list_array_indicator,
                                   y2_list_array_indicator),
                            measure,
                            err_msg="%s failed representation invariance  "
                                    "between dense and list of array "
                                    "indicator formats." % name)


@pytest.mark.parametrize('name', sorted(MULTILABELS_METRICS))
def test_raise_value_error_multilabel_sequences(name):
    # make sure the multilabel-sequence format raises ValueError
    multilabel_sequences = [
        [[1], [2], [0, 1]],
        [(), (2), (0, 1)],
        [[]],
        [()],
        np.array([[], [1, 2]], dtype='object')]

    metric = ALL_METRICS[name]
    for seq in multilabel_sequences:
        with pytest.raises(ValueError):
            metric(seq, seq)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_NORMALIZE_OPTION))
def test_normalize_option_binary_classification(name):
    # Test in the binary case
    n_samples = 20
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(n_samples, ))
    y_pred = random_state.randint(0, 2, size=(n_samples, ))

    metrics = ALL_METRICS[name]
    measure = metrics(y_true, y_pred, normalize=True)
    assert_array_less(-1.0 * measure, 0,
                      err_msg="We failed to test correctly the normalize "
                              "option")
    assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                    measure)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_NORMALIZE_OPTION))
def test_normalize_option_multiclass_classification(name):
    # Test in the multiclass case
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 4, size=(20, ))
    y_pred = random_state.randint(0, 4, size=(20, ))
    n_samples = y_true.shape[0]

    metrics = ALL_METRICS[name]
    measure = metrics(y_true, y_pred, normalize=True)
    assert_array_less(-1.0 * measure, 0,
                      err_msg="We failed to test correctly the normalize "
                              "option")
    assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                    measure)


def test_normalize_option_multilabel_classification():
    # Test in the multilabel case
    n_classes = 4
    n_samples = 100

    # for both random_state 0 and 1, y_true and y_pred has at least one
    # unlabelled entry
    _, y_true = make_multilabel_classification(n_features=1,
                                               n_classes=n_classes,
                                               random_state=0,
                                               allow_unlabeled=True,
                                               n_samples=n_samples)
    _, y_pred = make_multilabel_classification(n_features=1,
                                               n_classes=n_classes,
                                               random_state=1,
                                               allow_unlabeled=True,
                                               n_samples=n_samples)

    # To make sure at least one empty label is present
    y_true += [0]*n_classes
    y_pred += [0]*n_classes

    for name in METRICS_WITH_NORMALIZE_OPTION:
        metrics = ALL_METRICS[name]
        measure = metrics(y_true, y_pred, normalize=True)
        assert_array_less(-1.0 * measure, 0,
                          err_msg="We failed to test correctly the normalize "
                                  "option")
        assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                        measure, err_msg="Failed with %s" % name)


@ignore_warnings
def _check_averaging(metric, y_true, y_pred, y_true_binarize, y_pred_binarize,
                     is_multilabel):
    n_samples, n_classes = y_true_binarize.shape

    # No averaging
    label_measure = metric(y_true, y_pred, average=None)
    assert_allclose(label_measure,
                    [metric(y_true_binarize[:, i], y_pred_binarize[:, i])
                     for i in range(n_classes)])

    # Micro measure
    micro_measure = metric(y_true, y_pred, average="micro")
    assert_allclose(micro_measure,
                    metric(y_true_binarize.ravel(), y_pred_binarize.ravel()))

    # Macro measure
    macro_measure = metric(y_true, y_pred, average="macro")
    assert_allclose(macro_measure, np.mean(label_measure))

    # Weighted measure
    weights = np.sum(y_true_binarize, axis=0, dtype=int)

    if np.sum(weights) != 0:
        weighted_measure = metric(y_true, y_pred, average="weighted")
        assert_allclose(weighted_measure,
                        np.average(label_measure, weights=weights))
    else:
        weighted_measure = metric(y_true, y_pred, average="weighted")
        assert_allclose(weighted_measure, 0)

    # Sample measure
    if is_multilabel:
        sample_measure = metric(y_true, y_pred, average="samples")
        assert_allclose(sample_measure,
                        np.mean([metric(y_true_binarize[i], y_pred_binarize[i])
                                 for i in range(n_samples)]))

    with pytest.raises(ValueError):
        metric(y_true, y_pred, average="unknown")
    with pytest.raises(ValueError):
        metric(y_true, y_pred, average="garbage")


def check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize,
                    y_score):
    is_multilabel = type_of_target(y_true).startswith("multilabel")

    metric = ALL_METRICS[name]

    if name in METRICS_WITH_AVERAGING:
        _check_averaging(metric, y_true, y_pred, y_true_binarize,
                         y_pred_binarize, is_multilabel)
    elif name in THRESHOLDED_METRICS_WITH_AVERAGING:
        _check_averaging(metric, y_true, y_score, y_true_binarize,
                         y_score, is_multilabel)
    else:
        raise ValueError("Metric is not recorded as having an average option")


@pytest.mark.parametrize('name', sorted(METRICS_WITH_AVERAGING))
def test_averaging_multiclass(name):
    n_samples, n_classes = 50, 3
    random_state = check_random_state(0)
    y_true = random_state.randint(0, n_classes, size=(n_samples, ))
    y_pred = random_state.randint(0, n_classes, size=(n_samples, ))
    y_score = random_state.uniform(size=(n_samples, n_classes))

    lb = LabelBinarizer().fit(y_true)
    y_true_binarize = lb.transform(y_true)
    y_pred_binarize = lb.transform(y_pred)

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


@pytest.mark.parametrize(
    'name',
    sorted(METRICS_WITH_AVERAGING | THRESHOLDED_METRICS_WITH_AVERAGING))
def test_averaging_multilabel(name):
    n_samples, n_classes = 40, 5
    _, y = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                          random_state=5, n_samples=n_samples,
                                          allow_unlabeled=False)
    y_true = y[:20]
    y_pred = y[20:]
    y_score = check_random_state(0).normal(size=(20, n_classes))
    y_true_binarize = y_true
    y_pred_binarize = y_pred

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_AVERAGING))
def test_averaging_multilabel_all_zeroes(name):
    y_true = np.zeros((20, 3))
    y_pred = np.zeros((20, 3))
    y_score = np.zeros((20, 3))
    y_true_binarize = y_true
    y_pred_binarize = y_pred

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


def test_averaging_binary_multilabel_all_zeroes():
    y_true = np.zeros((20, 3))
    y_pred = np.zeros((20, 3))
    y_true_binarize = y_true
    y_pred_binarize = y_pred
    # Test _average_binary_score for weight.sum() == 0
    binary_metric = (lambda y_true, y_score, average="macro":
                     _average_binary_score(
                         precision_score, y_true, y_score, average))
    _check_averaging(binary_metric, y_true, y_pred, y_true_binarize,
                     y_pred_binarize, is_multilabel=True)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_AVERAGING))
def test_averaging_multilabel_all_ones(name):
    y_true = np.ones((20, 3))
    y_pred = np.ones((20, 3))
    y_score = np.ones((20, 3))
    y_true_binarize = y_true
    y_pred_binarize = y_pred

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


@ignore_warnings
def check_sample_weight_invariance(name, metric, y1, y2):
    rng = np.random.RandomState(0)
    sample_weight = rng.randint(1, 10, size=len(y1))

    # check that unit weights gives the same score as no weight
    unweighted_score = metric(y1, y2, sample_weight=None)

    assert_allclose(
        unweighted_score,
        metric(y1, y2, sample_weight=np.ones(shape=len(y1))),
        err_msg="For %s sample_weight=None is not equivalent to "
                "sample_weight=ones" % name)

    # check that the weighted and unweighted scores are unequal
    weighted_score = metric(y1, y2, sample_weight=sample_weight)

    # use context manager to supply custom error message
    with pytest.raises(AssertionError):
        assert_allclose(unweighted_score, weighted_score)
        raise ValueError("Unweighted and weighted scores are unexpectedly "
                         "almost equal (%s) and (%s) "
                         "for %s" % (unweighted_score, weighted_score, name))

    # check that sample_weight can be a list
    weighted_score_list = metric(y1, y2,
                                 sample_weight=sample_weight.tolist())
    assert_allclose(
        weighted_score, weighted_score_list,
        err_msg=("Weighted scores for array and list "
                 "sample_weight input are not equal (%s != %s) for %s") % (
                     weighted_score, weighted_score_list, name))

    # check that integer weights is the same as repeated samples
    repeat_weighted_score = metric(
        np.repeat(y1, sample_weight, axis=0),
        np.repeat(y2, sample_weight, axis=0), sample_weight=None)
    assert_allclose(
        weighted_score, repeat_weighted_score,
        err_msg="Weighting %s is not equal to repeating samples" % name)

    # check that ignoring a fraction of the samples is equivalent to setting
    # the corresponding weights to zero
    sample_weight_subset = sample_weight[1::2]
    sample_weight_zeroed = np.copy(sample_weight)
    sample_weight_zeroed[::2] = 0
    y1_subset = y1[1::2]
    y2_subset = y2[1::2]
    weighted_score_subset = metric(y1_subset, y2_subset,
                                   sample_weight=sample_weight_subset)
    weighted_score_zeroed = metric(y1, y2,
                                   sample_weight=sample_weight_zeroed)
    assert_allclose(
        weighted_score_subset, weighted_score_zeroed,
        err_msg=("Zeroing weights does not give the same result as "
                 "removing the corresponding samples (%s != %s) for %s" %
                 (weighted_score_zeroed, weighted_score_subset, name)))

    if not name.startswith('unnormalized'):
        # check that the score is invariant under scaling of the weights by a
        # common factor
        for scaling in [2, 0.3]:
            assert_allclose(
                weighted_score,
                metric(y1, y2, sample_weight=sample_weight * scaling),
                err_msg="%s sample_weight is not invariant "
                        "under scaling" % name)

    # Check that if number of samples in y_true and sample_weight are not
    # equal, meaningful error is raised.
    error_message = (r"Found input variables with inconsistent numbers of "
                     r"samples: \[{}, {}, {}\]".format(
                         _num_samples(y1), _num_samples(y2),
                         _num_samples(sample_weight) * 2))
    with pytest.raises(ValueError, match=error_message):
        metric(y1, y2, sample_weight=np.hstack([sample_weight,
                                                sample_weight]))


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS).intersection(set(REGRESSION_METRICS)) -
        METRICS_WITHOUT_SAMPLE_WEIGHT))
def test_regression_sample_weight_invariance(name):
    n_samples = 50
    random_state = check_random_state(0)
    # regression
    y_true = random_state.random_sample(size=(n_samples,))
    y_pred = random_state.random_sample(size=(n_samples,))
    metric = ALL_METRICS[name]
    check_sample_weight_invariance(name, metric, y_true, y_pred)


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS) - set(REGRESSION_METRICS) -
        METRICS_WITHOUT_SAMPLE_WEIGHT - METRIC_UNDEFINED_BINARY))
def test_binary_sample_weight_invariance(name):
    # binary
    n_samples = 50
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(n_samples, ))
    y_pred = random_state.randint(0, 2, size=(n_samples, ))
    y_score = random_state.random_sample(size=(n_samples,))
    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        check_sample_weight_invariance(name, metric, y_true, y_score)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred)


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS) - set(REGRESSION_METRICS) -
        METRICS_WITHOUT_SAMPLE_WEIGHT - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_multiclass_sample_weight_invariance(name):
    # multiclass
    n_samples = 50
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 5, size=(n_samples, ))
    y_pred = random_state.randint(0, 5, size=(n_samples, ))
    y_score = random_state.random_sample(size=(n_samples, 5))
    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        # softmax
        temp = np.exp(-y_score)
        y_score_norm = temp / temp.sum(axis=-1).reshape(-1, 1)
        check_sample_weight_invariance(name, metric, y_true, y_score_norm)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred)


@pytest.mark.parametrize(
    'name',
    sorted((MULTILABELS_METRICS | THRESHOLDED_MULTILABEL_METRICS
            | MULTIOUTPUT_METRICS) - METRICS_WITHOUT_SAMPLE_WEIGHT))
def test_multilabel_sample_weight_invariance(name):
    # multilabel indicator
    random_state = check_random_state(0)
    _, ya = make_multilabel_classification(n_features=1, n_classes=10,
                                           random_state=0, n_samples=50,
                                           allow_unlabeled=False)
    _, yb = make_multilabel_classification(n_features=1, n_classes=10,
                                           random_state=1, n_samples=50,
                                           allow_unlabeled=False)
    y_true = np.vstack([ya, yb])
    y_pred = np.vstack([ya, ya])
    y_score = random_state.randint(1, 4, size=y_true.shape)

    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        check_sample_weight_invariance(name, metric, y_true, y_score)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred)


@ignore_warnings
def test_no_averaging_labels():
    # test labels argument when not using averaging
    # in multi-class and multi-label cases
    y_true_multilabel = np.array([[1, 1, 0, 0], [1, 1, 0, 0]])
    y_pred_multilabel = np.array([[0, 0, 1, 1], [0, 1, 1, 0]])
    y_true_multiclass = np.array([0, 1, 2])
    y_pred_multiclass = np.array([0, 2, 3])
    labels = np.array([3, 0, 1, 2])
    _, inverse_labels = np.unique(labels, return_inverse=True)

    for name in METRICS_WITH_AVERAGING:
        for y_true, y_pred in [[y_true_multiclass, y_pred_multiclass],
                               [y_true_multilabel, y_pred_multilabel]]:
            if name not in MULTILABELS_METRICS and y_pred.ndim > 1:
                continue

            metric = ALL_METRICS[name]

            score_labels = metric(y_true, y_pred, labels=labels, average=None)
            score = metric(y_true, y_pred, average=None)
            assert_array_equal(score_labels, score[inverse_labels])


@pytest.mark.parametrize(
    'name',
    sorted(MULTILABELS_METRICS - {"unnormalized_multilabel_confusion_matrix"}))
def test_multilabel_label_permutations_invariance(name):
    random_state = check_random_state(0)
    n_samples, n_classes = 20, 4

    y_true = random_state.randint(0, 2, size=(n_samples, n_classes))
    y_score = random_state.randint(0, 2, size=(n_samples, n_classes))

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)

    for perm in permutations(range(n_classes), n_classes):
        y_score_perm = y_score[:, perm]
        y_true_perm = y_true[:, perm]

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score)


@pytest.mark.parametrize(
    'name', sorted(THRESHOLDED_MULTILABEL_METRICS | MULTIOUTPUT_METRICS))
def test_thresholded_multilabel_multioutput_permutations_invariance(name):
    random_state = check_random_state(0)
    n_samples, n_classes = 20, 4
    y_true = random_state.randint(0, 2, size=(n_samples, n_classes))
    y_score = random_state.normal(size=y_true.shape)

    # Makes sure all samples have at least one label. This works around errors
    # when running metrics where average="sample"
    y_true[y_true.sum(1) == 4, 0] = 0
    y_true[y_true.sum(1) == 0, 0] = 1

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)

    for perm in permutations(range(n_classes), n_classes):
        y_score_perm = y_score[:, perm]
        y_true_perm = y_true[:, perm]

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score)


@pytest.mark.parametrize(
    'name',
    sorted(set(THRESHOLDED_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_thresholded_metric_permutation_invariance(name):
    n_samples, n_classes = 100, 3
    random_state = check_random_state(0)

    y_score = random_state.rand(n_samples, n_classes)
    temp = np.exp(-y_score)
    y_score = temp / temp.sum(axis=-1).reshape(-1, 1)
    y_true = random_state.randint(0, n_classes, size=n_samples)

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)
    for perm in permutations(range(n_classes), n_classes):
        inverse_perm = np.zeros(n_classes, dtype=int)
        inverse_perm[list(perm)] = np.arange(n_classes)
        y_score_perm = y_score[:, inverse_perm]
        y_true_perm = np.take(perm, y_true)

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score)