_root_scalar.py 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
"""
Unified interfaces to root finding algorithms for real or complex
scalar functions.

Functions
---------
- root : find a root of a scalar function.
"""
import numpy as np

from . import zeros as optzeros

__all__ = ['root_scalar']


class MemoizeDer(object):
    """Decorator that caches the value and derivative(s) of function each
    time it is called.

    This is a simplistic memoizer that calls and caches a single value
    of `f(x, *args)`.
    It assumes that `args` does not change between invocations.
    It supports the use case of a root-finder where `args` is fixed,
    `x` changes, and only rarely, if at all, does x assume the same value
    more than once."""
    def __init__(self, fun):
        self.fun = fun
        self.vals = None
        self.x = None
        self.n_calls = 0

    def __call__(self, x, *args):
        r"""Calculate f or use cached value if available"""
        # Derivative may be requested before the function itself, always check
        if self.vals is None or x != self.x:
            fg = self.fun(x, *args)
            self.x = x
            self.n_calls += 1
            self.vals = fg[:]
        return self.vals[0]

    def fprime(self, x, *args):
        r"""Calculate f' or use a cached value if available"""
        if self.vals is None or x != self.x:
            self(x, *args)
        return self.vals[1]

    def fprime2(self, x, *args):
        r"""Calculate f'' or use a cached value if available"""
        if self.vals is None or x != self.x:
            self(x, *args)
        return self.vals[2]

    def ncalls(self):
        return self.n_calls


def root_scalar(f, args=(), method=None, bracket=None,
                fprime=None, fprime2=None,
                x0=None, x1=None,
                xtol=None, rtol=None, maxiter=None,
                options=None):
    """
    Find a root of a scalar function.

    Parameters
    ----------
    f : callable
        A function to find a root of.
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative(s).
    method : str, optional
        Type of solver.  Should be one of

            - 'bisect'    :ref:`(see here) <optimize.root_scalar-bisect>`
            - 'brentq'    :ref:`(see here) <optimize.root_scalar-brentq>`
            - 'brenth'    :ref:`(see here) <optimize.root_scalar-brenth>`
            - 'ridder'    :ref:`(see here) <optimize.root_scalar-ridder>`
            - 'toms748'    :ref:`(see here) <optimize.root_scalar-toms748>`
            - 'newton'    :ref:`(see here) <optimize.root_scalar-newton>`
            - 'secant'    :ref:`(see here) <optimize.root_scalar-secant>`
            - 'halley'    :ref:`(see here) <optimize.root_scalar-halley>`

    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  `f(x, *args)` must have different
        signs at the two endpoints.
    x0 : float, optional
        Initial guess.
    x1 : float, optional
        A second guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the derivative.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, optional
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the
        first and second derivatives.
        `fprime2` can also be a callable returning the second derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options : dict, optional
        A dictionary of solver options. E.g., ``k``, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : RootResults
        The solution represented as a ``RootResults`` object.
        Important attributes are: ``root`` the solution , ``converged`` a
        boolean flag indicating if the algorithm exited successfully and
        ``flag`` which describes the cause of the termination. See
        `RootResults` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers
    root : Find a root of a vector function.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter.

    The default is to use the best method available for the situation
    presented.
    If a bracket is provided, it may use one of the bracketing methods.
    If a derivative and an initial value are specified, it may
    select one of the derivative-based methods.
    If no method is judged applicable, it will raise an Exception.


    Examples
    --------

    Find the root of a simple cubic

    >>> from scipy import optimize
    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    >>> def fprime(x):
    ...     return 3*x**2

    The `brentq` method takes as input a bracket

    >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 10, 11)

    The `newton` method takes as input a single point and uses the derivative(s)

    >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 22)

    The function can provide the value and derivative(s) in a single call.

    >>> def f_p_pp(x):
    ...     return (x**3 - 1), 3*x**2, 6*x

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 11)

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 7, 8)


    """
    if not isinstance(args, tuple):
        args = (args,)

    if options is None:
        options = {}

    # fun also returns the derivative(s)
    is_memoized = False
    if fprime2 is not None and not callable(fprime2):
        if bool(fprime2):
            f = MemoizeDer(f)
            is_memoized = True
            fprime2 = f.fprime2
            fprime = f.fprime
        else:
            fprime2 = None
    if fprime is not None and not callable(fprime):
        if bool(fprime):
            f = MemoizeDer(f)
            is_memoized = True
            fprime = f.fprime
        else:
            fprime = None

    # respect solver-specific default tolerances - only pass in if actually set
    kwargs = {}
    for k in ['xtol', 'rtol', 'maxiter']:
        v = locals().get(k)
        if v is not None:
            kwargs[k] = v

    # Set any solver-specific options
    if options:
        kwargs.update(options)
    # Always request full_output from the underlying method as _root_scalar
    # always returns a RootResults object
    kwargs.update(full_output=True, disp=False)

    # Pick a method if not specified.
    # Use the "best" method available for the situation.
    if not method:
        if bracket:
            method = 'brentq'
        elif x0 is not None:
            if fprime:
                if fprime2:
                    method = 'halley'
                else:
                    method = 'newton'
            else:
                method = 'secant'
    if not method:
        raise ValueError('Unable to select a solver as neither bracket '
                         'nor starting point provided.')

    meth = method.lower()
    map2underlying = {'halley': 'newton', 'secant': 'newton'}

    try:
        methodc = getattr(optzeros, map2underlying.get(meth, meth))
    except AttributeError:
        raise ValueError('Unknown solver %s' % meth)

    if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']:
        if not isinstance(bracket, (list, tuple, np.ndarray)):
            raise ValueError('Bracket needed for %s' % method)

        a, b = bracket[:2]
        r, sol = methodc(f, a, b, args=args, **kwargs)
    elif meth in ['secant']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if x1 is None:
            raise ValueError('x1 must not be None for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f, x0, args=args, fprime=None, fprime2=None,
                         x1=x1, **kwargs)
    elif meth in ['newton']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if not fprime:
            raise ValueError('fprime must be specified for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=None,
                         **kwargs)
    elif meth in ['halley']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if not fprime:
            raise ValueError('fprime must be specified for %s' % method)
        if not fprime2:
            raise ValueError('fprime2 must be specified for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=fprime2, **kwargs)
    else:
        raise ValueError('Unknown solver %s' % method)

    if is_memoized:
        # Replace the function_calls count with the memoized count.
        # Avoids double and triple-counting.
        n_calls = f.n_calls
        sol.function_calls = n_calls

    return sol


def _root_scalar_brentq_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above

    """
    pass


def _root_scalar_brenth_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass

def _root_scalar_toms748_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass


def _root_scalar_secant_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    x1 : float, required
        A second guess.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass


def _root_scalar_newton_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass


def _root_scalar_halley_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function and its derivatives.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    fprime : bool or callable, required
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, required
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of 1st and 2nd derivatives along with the objective function.
        `fprime2` can also be a callable returning the 2nd derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass


def _root_scalar_ridder_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass


def _root_scalar_bisect_doc():
    r"""
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above.

    """
    pass