linsolve.py 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
from warnings import warn

import numpy as np
from numpy import asarray
from scipy.sparse import (isspmatrix_csc, isspmatrix_csr, isspmatrix,
                          SparseEfficiencyWarning, csc_matrix, csr_matrix)
from scipy.sparse.sputils import is_pydata_spmatrix
from scipy.linalg import LinAlgError
import copy

from . import _superlu

noScikit = False
try:
    import scikits.umfpack as umfpack
except ImportError:
    noScikit = True

useUmfpack = not noScikit

__all__ = ['use_solver', 'spsolve', 'splu', 'spilu', 'factorized',
           'MatrixRankWarning', 'spsolve_triangular']


class MatrixRankWarning(UserWarning):
    pass


def use_solver(**kwargs):
    """
    Select default sparse direct solver to be used.

    Parameters
    ----------
    useUmfpack : bool, optional
        Use UMFPACK over SuperLU. Has effect only if scikits.umfpack is
        installed. Default: True
    assumeSortedIndices : bool, optional
        Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix.
        Has effect only if useUmfpack is True and scikits.umfpack is installed.
        Default: False

    Notes
    -----
    The default sparse solver is umfpack when available
    (scikits.umfpack is installed). This can be changed by passing
    useUmfpack = False, which then causes the always present SuperLU
    based solver to be used.

    Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If
    sure that the matrix fulfills this, pass ``assumeSortedIndices=True``
    to gain some speed.

    """
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']
    if useUmfpack and 'assumeSortedIndices' in kwargs:
        umfpack.configure(assumeSortedIndices=kwargs['assumeSortedIndices'])

def _get_umf_family(A):
    """Get umfpack family string given the sparse matrix dtype."""
    _families = {
        (np.float64, np.int32): 'di',
        (np.complex128, np.int32): 'zi',
        (np.float64, np.int64): 'dl',
        (np.complex128, np.int64): 'zl'
    }

    f_type = np.sctypeDict[A.dtype.name]
    i_type = np.sctypeDict[A.indices.dtype.name]

    try:
        family = _families[(f_type, i_type)]

    except KeyError:
        msg = 'only float64 or complex128 matrices with int32 or int64' \
            ' indices are supported! (got: matrix: %s, indices: %s)' \
            % (f_type, i_type)
        raise ValueError(msg)

    # See gh-8278. Considered converting only if
    # A.shape[0]*A.shape[1] > np.iinfo(np.int32).max,
    # but that didn't always fix the issue.
    family = family[0] + "l"
    A_new = copy.copy(A)
    A_new.indptr = np.array(A.indptr, copy=False, dtype=np.int64)
    A_new.indices = np.array(A.indices, copy=False, dtype=np.int64)

    return family, A_new

def spsolve(A, b, permc_spec=None, use_umfpack=True):
    """Solve the sparse linear system Ax=b, where b may be a vector or a matrix.

    Parameters
    ----------
    A : ndarray or sparse matrix
        The square matrix A will be converted into CSC or CSR form
    b : ndarray or sparse matrix
        The matrix or vector representing the right hand side of the equation.
        If a vector, b.shape must be (n,) or (n, 1).
    permc_spec : str, optional
        How to permute the columns of the matrix for sparsity preservation.
        (default: 'COLAMD')

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering
    use_umfpack : bool, optional
        if True (default) then use umfpack for the solution.  This is
        only referenced if b is a vector and ``scikit-umfpack`` is installed.

    Returns
    -------
    x : ndarray or sparse matrix
        the solution of the sparse linear equation.
        If b is a vector, then x is a vector of size A.shape[1]
        If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1])

    Notes
    -----
    For solving the matrix expression AX = B, this solver assumes the resulting
    matrix X is sparse, as is often the case for very sparse inputs.  If the
    resulting X is dense, the construction of this sparse result will be
    relatively expensive.  In that case, consider converting A to a dense
    matrix and using scipy.linalg.solve or its variants.

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import spsolve
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> B = csc_matrix([[2, 0], [-1, 0], [2, 0]], dtype=float)
    >>> x = spsolve(A, B)
    >>> np.allclose(A.dot(x).todense(), B.todense())
    True
    """

    if is_pydata_spmatrix(A):
        A = A.to_scipy_sparse().tocsc()

    if not (isspmatrix_csc(A) or isspmatrix_csr(A)):
        A = csc_matrix(A)
        warn('spsolve requires A be CSC or CSR matrix format',
                SparseEfficiencyWarning)

    # b is a vector only if b have shape (n,) or (n, 1)
    b_is_sparse = isspmatrix(b) or is_pydata_spmatrix(b)
    if not b_is_sparse:
        b = asarray(b)
    b_is_vector = ((b.ndim == 1) or (b.ndim == 2 and b.shape[1] == 1))

    # sum duplicates for non-canonical format
    A.sum_duplicates()
    A = A.asfptype()  # upcast to a floating point format
    result_dtype = np.promote_types(A.dtype, b.dtype)
    if A.dtype != result_dtype:
        A = A.astype(result_dtype)
    if b.dtype != result_dtype:
        b = b.astype(result_dtype)

    # validate input shapes
    M, N = A.shape
    if (M != N):
        raise ValueError("matrix must be square (has shape %s)" % ((M, N),))

    if M != b.shape[0]:
        raise ValueError("matrix - rhs dimension mismatch (%s - %s)"
                         % (A.shape, b.shape[0]))

    use_umfpack = use_umfpack and useUmfpack

    if b_is_vector and use_umfpack:
        if b_is_sparse:
            b_vec = b.toarray()
        else:
            b_vec = b
        b_vec = asarray(b_vec, dtype=A.dtype).ravel()

        if noScikit:
            raise RuntimeError('Scikits.umfpack not installed.')

        if A.dtype.char not in 'dD':
            raise ValueError("convert matrix data to double, please, using"
                  " .astype(), or set linsolve.useUmfpack = False")

        umf_family, A = _get_umf_family(A)
        umf = umfpack.UmfpackContext(umf_family)
        x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
                         autoTranspose=True)
    else:
        if b_is_vector and b_is_sparse:
            b = b.toarray()
            b_is_sparse = False

        if not b_is_sparse:
            if isspmatrix_csc(A):
                flag = 1  # CSC format
            else:
                flag = 0  # CSR format

            options = dict(ColPerm=permc_spec)
            x, info = _superlu.gssv(N, A.nnz, A.data, A.indices, A.indptr,
                                    b, flag, options=options)
            if info != 0:
                warn("Matrix is exactly singular", MatrixRankWarning)
                x.fill(np.nan)
            if b_is_vector:
                x = x.ravel()
        else:
            # b is sparse
            Afactsolve = factorized(A)

            if not (isspmatrix_csc(b) or is_pydata_spmatrix(b)):
                warn('spsolve is more efficient when sparse b '
                     'is in the CSC matrix format', SparseEfficiencyWarning)
                b = csc_matrix(b)

            # Create a sparse output matrix by repeatedly applying
            # the sparse factorization to solve columns of b.
            data_segs = []
            row_segs = []
            col_segs = []
            for j in range(b.shape[1]):
                bj = np.asarray(b[:, j].todense()).ravel()
                xj = Afactsolve(bj)
                w = np.flatnonzero(xj)
                segment_length = w.shape[0]
                row_segs.append(w)
                col_segs.append(np.full(segment_length, j, dtype=int))
                data_segs.append(np.asarray(xj[w], dtype=A.dtype))
            sparse_data = np.concatenate(data_segs)
            sparse_row = np.concatenate(row_segs)
            sparse_col = np.concatenate(col_segs)
            x = A.__class__((sparse_data, (sparse_row, sparse_col)),
                           shape=b.shape, dtype=A.dtype)

            if is_pydata_spmatrix(b):
                x = b.__class__(x)

    return x


def splu(A, permc_spec=None, diag_pivot_thresh=None,
         relax=None, panel_size=None, options=dict()):
    """
    Compute the LU decomposition of a sparse, square matrix.

    Parameters
    ----------
    A : sparse matrix
        Sparse matrix to factorize. Should be in CSR or CSC format.
    permc_spec : str, optional
        How to permute the columns of the matrix for sparsity preservation.
        (default: 'COLAMD')

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering

    diag_pivot_thresh : float, optional
        Threshold used for a diagonal entry to be an acceptable pivot.
        See SuperLU user's guide for details [1]_
    relax : int, optional
        Expert option for customizing the degree of relaxing supernodes.
        See SuperLU user's guide for details [1]_
    panel_size : int, optional
        Expert option for customizing the panel size.
        See SuperLU user's guide for details [1]_
    options : dict, optional
        Dictionary containing additional expert options to SuperLU.
        See SuperLU user guide [1]_ (section 2.4 on the 'Options' argument)
        for more details. For example, you can specify
        ``options=dict(Equil=False, IterRefine='SINGLE'))``
        to turn equilibration off and perform a single iterative refinement.

    Returns
    -------
    invA : scipy.sparse.linalg.SuperLU
        Object, which has a ``solve`` method.

    See also
    --------
    spilu : incomplete LU decomposition

    Notes
    -----
    This function uses the SuperLU library.

    References
    ----------
    .. [1] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import splu
    >>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float)
    >>> B = splu(A)
    >>> x = np.array([1., 2., 3.], dtype=float)
    >>> B.solve(x)
    array([ 1. , -3. , -1.5])
    >>> A.dot(B.solve(x))
    array([ 1.,  2.,  3.])
    >>> B.solve(A.dot(x))
    array([ 1.,  2.,  3.])
    """

    if is_pydata_spmatrix(A):
        csc_construct_func = lambda *a, cls=type(A): cls(csc_matrix(*a))
        A = A.to_scipy_sparse().tocsc()
    else:
        csc_construct_func = csc_matrix

    if not isspmatrix_csc(A):
        A = csc_matrix(A)
        warn('splu requires CSC matrix format', SparseEfficiencyWarning)

    # sum duplicates for non-canonical format
    A.sum_duplicates()
    A = A.asfptype()  # upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("can only factor square matrices")  # is this true?

    _options = dict(DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
                    PanelSize=panel_size, Relax=relax)
    if options is not None:
        _options.update(options)

    # Ensure that no column permutations are applied
    if (_options["ColPerm"] == "NATURAL"):
        _options["SymmetricMode"] = True

    return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr,
                          csc_construct_func=csc_construct_func,
                          ilu=False, options=_options)


def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None,
          diag_pivot_thresh=None, relax=None, panel_size=None, options=None):
    """
    Compute an incomplete LU decomposition for a sparse, square matrix.

    The resulting object is an approximation to the inverse of `A`.

    Parameters
    ----------
    A : (N, N) array_like
        Sparse matrix to factorize
    drop_tol : float, optional
        Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition.
        (default: 1e-4)
    fill_factor : float, optional
        Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)
    drop_rule : str, optional
        Comma-separated string of drop rules to use.
        Available rules: ``basic``, ``prows``, ``column``, ``area``,
        ``secondary``, ``dynamic``, ``interp``. (Default: ``basic,area``)

        See SuperLU documentation for details.

    Remaining other options
        Same as for `splu`

    Returns
    -------
    invA_approx : scipy.sparse.linalg.SuperLU
        Object, which has a ``solve`` method.

    See also
    --------
    splu : complete LU decomposition

    Notes
    -----
    To improve the better approximation to the inverse, you may need to
    increase `fill_factor` AND decrease `drop_tol`.

    This function uses the SuperLU library.

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import spilu
    >>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float)
    >>> B = spilu(A)
    >>> x = np.array([1., 2., 3.], dtype=float)
    >>> B.solve(x)
    array([ 1. , -3. , -1.5])
    >>> A.dot(B.solve(x))
    array([ 1.,  2.,  3.])
    >>> B.solve(A.dot(x))
    array([ 1.,  2.,  3.])
    """

    if is_pydata_spmatrix(A):
        csc_construct_func = lambda *a, cls=type(A): cls(csc_matrix(*a))
        A = A.to_scipy_sparse().tocsc()
    else:
        csc_construct_func = csc_matrix

    if not isspmatrix_csc(A):
        A = csc_matrix(A)
        warn('splu requires CSC matrix format', SparseEfficiencyWarning)

    # sum duplicates for non-canonical format
    A.sum_duplicates()
    A = A.asfptype()  # upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("can only factor square matrices")  # is this true?

    _options = dict(ILU_DropRule=drop_rule, ILU_DropTol=drop_tol,
                    ILU_FillFactor=fill_factor,
                    DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
                    PanelSize=panel_size, Relax=relax)
    if options is not None:
        _options.update(options)

    # Ensure that no column permutations are applied
    if (_options["ColPerm"] == "NATURAL"):
        _options["SymmetricMode"] = True

    return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr,
                          csc_construct_func=csc_construct_func,
                          ilu=True, options=_options)


def factorized(A):
    """
    Return a function for solving a sparse linear system, with A pre-factorized.

    Parameters
    ----------
    A : (N, N) array_like
        Input.

    Returns
    -------
    solve : callable
        To solve the linear system of equations given in `A`, the `solve`
        callable should be passed an ndarray of shape (N,).

    Examples
    --------
    >>> from scipy.sparse.linalg import factorized
    >>> A = np.array([[ 3. ,  2. , -1. ],
    ...               [ 2. , -2. ,  4. ],
    ...               [-1. ,  0.5, -1. ]])
    >>> solve = factorized(A) # Makes LU decomposition.
    >>> rhs1 = np.array([1, -2, 0])
    >>> solve(rhs1) # Uses the LU factors.
    array([ 1., -2., -2.])

    """
    if is_pydata_spmatrix(A):
        A = A.to_scipy_sparse().tocsc()

    if useUmfpack:
        if noScikit:
            raise RuntimeError('Scikits.umfpack not installed.')

        if not isspmatrix_csc(A):
            A = csc_matrix(A)
            warn('splu requires CSC matrix format', SparseEfficiencyWarning)

        A = A.asfptype()  # upcast to a floating point format

        if A.dtype.char not in 'dD':
            raise ValueError("convert matrix data to double, please, using"
                  " .astype(), or set linsolve.useUmfpack = False")

        umf_family, A = _get_umf_family(A)
        umf = umfpack.UmfpackContext(umf_family)

        # Make LU decomposition.
        umf.numeric(A)

        def solve(b):
            return umf.solve(umfpack.UMFPACK_A, A, b, autoTranspose=True)

        return solve
    else:
        return splu(A).solve


def spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False,
                       unit_diagonal=False):
    """
    Solve the equation `A x = b` for `x`, assuming A is a triangular matrix.

    Parameters
    ----------
    A : (M, M) sparse matrix
        A sparse square triangular matrix. Should be in CSR format.
    b : (M,) or (M, N) array_like
        Right-hand side matrix in `A x = b`
    lower : bool, optional
        Whether `A` is a lower or upper triangular matrix.
        Default is lower triangular matrix.
    overwrite_A : bool, optional
        Allow changing `A`. The indices of `A` are going to be sorted and zero
        entries are going to be removed.
        Enabling gives a performance gain. Default is False.
    overwrite_b : bool, optional
        Allow overwriting data in `b`.
        Enabling gives a performance gain. Default is False.
        If `overwrite_b` is True, it should be ensured that
        `b` has an appropriate dtype to be able to store the result.
    unit_diagonal : bool, optional
        If True, diagonal elements of `a` are assumed to be 1 and will not be
        referenced.

        .. versionadded:: 1.4.0

    Returns
    -------
    x : (M,) or (M, N) ndarray
        Solution to the system `A x = b`. Shape of return matches shape of `b`.

    Raises
    ------
    LinAlgError
        If `A` is singular or not triangular.
    ValueError
        If shape of `A` or shape of `b` do not match the requirements.

    Notes
    -----
    .. versionadded:: 0.19.0

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.linalg import spsolve_triangular
    >>> A = csr_matrix([[3, 0, 0], [1, -1, 0], [2, 0, 1]], dtype=float)
    >>> B = np.array([[2, 0], [-1, 0], [2, 0]], dtype=float)
    >>> x = spsolve_triangular(A, B)
    >>> np.allclose(A.dot(x), B)
    True
    """

    if is_pydata_spmatrix(A):
        A = A.to_scipy_sparse().tocsr()

    # Check the input for correct type and format.
    if not isspmatrix_csr(A):
        warn('CSR matrix format is required. Converting to CSR matrix.',
             SparseEfficiencyWarning)
        A = csr_matrix(A)
    elif not overwrite_A:
        A = A.copy()

    if A.shape[0] != A.shape[1]:
        raise ValueError(
            'A must be a square matrix but its shape is {}.'.format(A.shape))

    # sum duplicates for non-canonical format
    A.sum_duplicates()

    b = np.asanyarray(b)

    if b.ndim not in [1, 2]:
        raise ValueError(
            'b must have 1 or 2 dims but its shape is {}.'.format(b.shape))
    if A.shape[0] != b.shape[0]:
        raise ValueError(
            'The size of the dimensions of A must be equal to '
            'the size of the first dimension of b but the shape of A is '
            '{} and the shape of b is {}.'.format(A.shape, b.shape))

    # Init x as (a copy of) b.
    x_dtype = np.result_type(A.data, b, np.float64)
    if overwrite_b:
        if np.can_cast(b.dtype, x_dtype, casting='same_kind'):
            x = b
        else:
            raise ValueError(
                'Cannot overwrite b (dtype {}) with result '
                'of type {}.'.format(b.dtype, x_dtype))
    else:
        x = b.astype(x_dtype, copy=True)

    # Choose forward or backward order.
    if lower:
        row_indices = range(len(b))
    else:
        row_indices = range(len(b) - 1, -1, -1)

    # Fill x iteratively.
    for i in row_indices:

        # Get indices for i-th row.
        indptr_start = A.indptr[i]
        indptr_stop = A.indptr[i + 1]
        if lower:
            A_diagonal_index_row_i = indptr_stop - 1
            A_off_diagonal_indices_row_i = slice(indptr_start, indptr_stop - 1)
        else:
            A_diagonal_index_row_i = indptr_start
            A_off_diagonal_indices_row_i = slice(indptr_start + 1, indptr_stop)

        # Check regularity and triangularity of A.
        if not unit_diagonal and (indptr_stop <= indptr_start
                                  or A.indices[A_diagonal_index_row_i] < i):
            raise LinAlgError(
                'A is singular: diagonal {} is zero.'.format(i))
        if A.indices[A_diagonal_index_row_i] > i:
            raise LinAlgError(
                'A is not triangular: A[{}, {}] is nonzero.'
                ''.format(i, A.indices[A_diagonal_index_row_i]))

        # Incorporate off-diagonal entries.
        A_column_indices_in_row_i = A.indices[A_off_diagonal_indices_row_i]
        A_values_in_row_i = A.data[A_off_diagonal_indices_row_i]
        x[i] -= np.dot(x[A_column_indices_in_row_i].T, A_values_in_row_i)

        # Compute i-th entry of x.
        if not unit_diagonal:
            x[i] /= A.data[A_diagonal_index_row_i]

    return x