lsmr.py 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
"""
Copyright (C) 2010 David Fong and Michael Saunders

LSMR uses an iterative method.

07 Jun 2010: Documentation updated
03 Jun 2010: First release version in Python

David Chin-lung Fong            clfong@stanford.edu
Institute for Computational and Mathematical Engineering
Stanford University

Michael Saunders                saunders@stanford.edu
Systems Optimization Laboratory
Dept of MS&E, Stanford University.

"""

__all__ = ['lsmr']

from numpy import zeros, infty, atleast_1d, result_type
from numpy.linalg import norm
from math import sqrt
from scipy.sparse.linalg.interface import aslinearoperator

from .lsqr import _sym_ortho


def lsmr(A, b, damp=0.0, atol=1e-6, btol=1e-6, conlim=1e8,
         maxiter=None, show=False, x0=None):
    """Iterative solver for least-squares problems.

    lsmr solves the system of linear equations ``Ax = b``. If the system
    is inconsistent, it solves the least-squares problem ``min ||b - Ax||_2``.
    A is a rectangular matrix of dimension m-by-n, where all cases are
    allowed: m = n, m > n, or m < n. B is a vector of length m.
    The matrix A may be dense or sparse (usually sparse).

    Parameters
    ----------
    A : {matrix, sparse matrix, ndarray, LinearOperator}
        Matrix A in the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` and ``A^H x`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : array_like, shape (m,)
        Vector b in the linear system.
    damp : float
        Damping factor for regularized least-squares. `lsmr` solves
        the regularized least-squares problem::

         min ||(b) - (  A   )x||
             ||(0)   (damp*I) ||_2

        where damp is a scalar.  If damp is None or 0, the system
        is solved without regularization.
    atol, btol : float, optional
        Stopping tolerances. `lsmr` continues iterations until a
        certain backward error estimate is smaller than some quantity
        depending on atol and btol.  Let ``r = b - Ax`` be the
        residual vector for the current approximate solution ``x``.
        If ``Ax = b`` seems to be consistent, ``lsmr`` terminates
        when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
        Otherwise, lsmr terminates when ``norm(A^H r) <=
        atol * norm(A) * norm(r)``.  If both tolerances are 1.0e-6 (say),
        the final ``norm(r)`` should be accurate to about 6
        digits. (The final x will usually have fewer correct digits,
        depending on ``cond(A)`` and the size of LAMBDA.)  If `atol`
        or `btol` is None, a default value of 1.0e-6 will be used.
        Ideally, they should be estimates of the relative error in the
        entries of A and B respectively.  For example, if the entries
        of `A` have 7 correct digits, set atol = 1e-7. This prevents
        the algorithm from doing unnecessary work beyond the
        uncertainty of the input data.
    conlim : float, optional
        `lsmr` terminates if an estimate of ``cond(A)`` exceeds
        `conlim`.  For compatible systems ``Ax = b``, conlim could be
        as large as 1.0e+12 (say).  For least-squares problems,
        `conlim` should be less than 1.0e+8. If `conlim` is None, the
        default value is 1e+8.  Maximum precision can be obtained by
        setting ``atol = btol = conlim = 0``, but the number of
        iterations may then be excessive.
    maxiter : int, optional
        `lsmr` terminates if the number of iterations reaches
        `maxiter`.  The default is ``maxiter = min(m, n)``.  For
        ill-conditioned systems, a larger value of `maxiter` may be
        needed.
    show : bool, optional
        Print iterations logs if ``show=True``.
    x0 : array_like, shape (n,), optional
        Initial guess of x, if None zeros are used.

        .. versionadded:: 1.0.0
    Returns
    -------
    x : ndarray of float
        Least-square solution returned.
    istop : int
        istop gives the reason for stopping::

          istop   = 0 means x=0 is a solution.  If x0 was given, then x=x0 is a
                      solution.
                  = 1 means x is an approximate solution to A*x = B,
                      according to atol and btol.
                  = 2 means x approximately solves the least-squares problem
                      according to atol.
                  = 3 means COND(A) seems to be greater than CONLIM.
                  = 4 is the same as 1 with atol = btol = eps (machine
                      precision)
                  = 5 is the same as 2 with atol = eps.
                  = 6 is the same as 3 with CONLIM = 1/eps.
                  = 7 means ITN reached maxiter before the other stopping
                      conditions were satisfied.

    itn : int
        Number of iterations used.
    normr : float
        ``norm(b-Ax)``
    normar : float
        ``norm(A^H (b - Ax))``
    norma : float
        ``norm(A)``
    conda : float
        Condition number of A.
    normx : float
        ``norm(x)``

    Notes
    -----

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] D. C.-L. Fong and M. A. Saunders,
           "LSMR: An iterative algorithm for sparse least-squares problems",
           SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011.
           https://arxiv.org/abs/1006.0758
    .. [2] LSMR Software, https://web.stanford.edu/group/SOL/software/lsmr/

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import lsmr
    >>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

    The first example has the trivial solution `[0, 0]`

    >>> b = np.array([0., 0., 0.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    0
    >>> x
    array([ 0.,  0.])

    The stopping code `istop=0` returned indicates that a vector of zeros was
    found as a solution. The returned solution `x` indeed contains `[0., 0.]`.
    The next example has a non-trivial solution:

    >>> b = np.array([1., 0., -1.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    1
    >>> x
    array([ 1., -1.])
    >>> itn
    1
    >>> normr
    4.440892098500627e-16

    As indicated by `istop=1`, `lsmr` found a solution obeying the tolerance
    limits. The given solution `[1., -1.]` obviously solves the equation. The
    remaining return values include information about the number of iterations
    (`itn=1`) and the remaining difference of left and right side of the solved
    equation.
    The final example demonstrates the behavior in the case where there is no
    solution for the equation:

    >>> b = np.array([1., 0.01, -1.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    2
    >>> x
    array([ 1.00333333, -0.99666667])
    >>> A.dot(x)-b
    array([ 0.00333333, -0.00333333,  0.00333333])
    >>> normr
    0.005773502691896255

    `istop` indicates that the system is inconsistent and thus `x` is rather an
    approximate solution to the corresponding least-squares problem. `normr`
    contains the minimal distance that was found.
    """

    A = aslinearoperator(A)
    b = atleast_1d(b)
    if b.ndim > 1:
        b = b.squeeze()

    msg = ('The exact solution is x = 0, or x = x0, if x0 was given  ',
         'Ax - b is small enough, given atol, btol                  ',
         'The least-squares solution is good enough, given atol     ',
         'The estimate of cond(Abar) has exceeded conlim            ',
         'Ax - b is small enough for this machine                   ',
         'The least-squares solution is good enough for this machine',
         'Cond(Abar) seems to be too large for this machine         ',
         'The iteration limit has been reached                      ')

    hdg1 = '   itn      x(1)       norm r    norm Ar'
    hdg2 = ' compatible   LS      norm A   cond A'
    pfreq = 20   # print frequency (for repeating the heading)
    pcount = 0   # print counter

    m, n = A.shape

    # stores the num of singular values
    minDim = min([m, n])

    if maxiter is None:
        maxiter = minDim

    if x0 is None:
        dtype = result_type(A, b, float)
    else:
        dtype = result_type(A, b, x0, float)

    if show:
        print(' ')
        print('LSMR            Least-squares solution of  Ax = b\n')
        print(f'The matrix A has {m} rows and {n} columns')
        print('damp = %20.14e\n' % (damp))
        print('atol = %8.2e                 conlim = %8.2e\n' % (atol, conlim))
        print('btol = %8.2e             maxiter = %8g\n' % (btol, maxiter))

    u = b
    normb = norm(b)
    if x0 is None:
        x = zeros(n, dtype)
        beta = normb.copy()
    else:
        x = atleast_1d(x0)
        u = u - A.matvec(x)
        beta = norm(u)

    if beta > 0:
        u = (1 / beta) * u
        v = A.rmatvec(u)
        alpha = norm(v)
    else:
        v = zeros(n, dtype)
        alpha = 0

    if alpha > 0:
        v = (1 / alpha) * v

    # Initialize variables for 1st iteration.

    itn = 0
    zetabar = alpha * beta
    alphabar = alpha
    rho = 1
    rhobar = 1
    cbar = 1
    sbar = 0

    h = v.copy()
    hbar = zeros(n, dtype)

    # Initialize variables for estimation of ||r||.

    betadd = beta
    betad = 0
    rhodold = 1
    tautildeold = 0
    thetatilde = 0
    zeta = 0
    d = 0

    # Initialize variables for estimation of ||A|| and cond(A)

    normA2 = alpha * alpha
    maxrbar = 0
    minrbar = 1e+100
    normA = sqrt(normA2)
    condA = 1
    normx = 0

    # Items for use in stopping rules, normb set earlier
    istop = 0
    ctol = 0
    if conlim > 0:
        ctol = 1 / conlim
    normr = beta

    # Reverse the order here from the original matlab code because
    # there was an error on return when arnorm==0
    normar = alpha * beta
    if normar == 0:
        if show:
            print(msg[0])
        return x, istop, itn, normr, normar, normA, condA, normx

    if show:
        print(' ')
        print(hdg1, hdg2)
        test1 = 1
        test2 = alpha / beta
        str1 = '%6g %12.5e' % (itn, x[0])
        str2 = ' %10.3e %10.3e' % (normr, normar)
        str3 = '  %8.1e %8.1e' % (test1, test2)
        print(''.join([str1, str2, str3]))

    # Main iteration loop.
    while itn < maxiter:
        itn = itn + 1

        # Perform the next step of the bidiagonalization to obtain the
        # next  beta, u, alpha, v.  These satisfy the relations
        #         beta*u  =  a*v   -  alpha*u,
        #        alpha*v  =  A'*u  -  beta*v.

        u *= -alpha
        u += A.matvec(v)
        beta = norm(u)

        if beta > 0:
            u *= (1 / beta)
            v *= -beta
            v += A.rmatvec(u)
            alpha = norm(v)
            if alpha > 0:
                v *= (1 / alpha)

        # At this point, beta = beta_{k+1}, alpha = alpha_{k+1}.

        # Construct rotation Qhat_{k,2k+1}.

        chat, shat, alphahat = _sym_ortho(alphabar, damp)

        # Use a plane rotation (Q_i) to turn B_i to R_i

        rhoold = rho
        c, s, rho = _sym_ortho(alphahat, beta)
        thetanew = s*alpha
        alphabar = c*alpha

        # Use a plane rotation (Qbar_i) to turn R_i^T to R_i^bar

        rhobarold = rhobar
        zetaold = zeta
        thetabar = sbar * rho
        rhotemp = cbar * rho
        cbar, sbar, rhobar = _sym_ortho(cbar * rho, thetanew)
        zeta = cbar * zetabar
        zetabar = - sbar * zetabar

        # Update h, h_hat, x.

        hbar *= - (thetabar * rho / (rhoold * rhobarold))
        hbar += h
        x += (zeta / (rho * rhobar)) * hbar
        h *= - (thetanew / rho)
        h += v

        # Estimate of ||r||.

        # Apply rotation Qhat_{k,2k+1}.
        betaacute = chat * betadd
        betacheck = -shat * betadd

        # Apply rotation Q_{k,k+1}.
        betahat = c * betaacute
        betadd = -s * betaacute

        # Apply rotation Qtilde_{k-1}.
        # betad = betad_{k-1} here.

        thetatildeold = thetatilde
        ctildeold, stildeold, rhotildeold = _sym_ortho(rhodold, thetabar)
        thetatilde = stildeold * rhobar
        rhodold = ctildeold * rhobar
        betad = - stildeold * betad + ctildeold * betahat

        # betad   = betad_k here.
        # rhodold = rhod_k  here.

        tautildeold = (zetaold - thetatildeold * tautildeold) / rhotildeold
        taud = (zeta - thetatilde * tautildeold) / rhodold
        d = d + betacheck * betacheck
        normr = sqrt(d + (betad - taud)**2 + betadd * betadd)

        # Estimate ||A||.
        normA2 = normA2 + beta * beta
        normA = sqrt(normA2)
        normA2 = normA2 + alpha * alpha

        # Estimate cond(A).
        maxrbar = max(maxrbar, rhobarold)
        if itn > 1:
            minrbar = min(minrbar, rhobarold)
        condA = max(maxrbar, rhotemp) / min(minrbar, rhotemp)

        # Test for convergence.

        # Compute norms for convergence testing.
        normar = abs(zetabar)
        normx = norm(x)

        # Now use these norms to estimate certain other quantities,
        # some of which will be small near a solution.

        test1 = normr / normb
        if (normA * normr) != 0:
            test2 = normar / (normA * normr)
        else:
            test2 = infty
        test3 = 1 / condA
        t1 = test1 / (1 + normA * normx / normb)
        rtol = btol + atol * normA * normx / normb

        # The following tests guard against extremely small values of
        # atol, btol or ctol.  (The user may have set any or all of
        # the parameters atol, btol, conlim  to 0.)
        # The effect is equivalent to the normAl tests using
        # atol = eps,  btol = eps,  conlim = 1/eps.

        if itn >= maxiter:
            istop = 7
        if 1 + test3 <= 1:
            istop = 6
        if 1 + test2 <= 1:
            istop = 5
        if 1 + t1 <= 1:
            istop = 4

        # Allow for tolerances set by the user.

        if test3 <= ctol:
            istop = 3
        if test2 <= atol:
            istop = 2
        if test1 <= rtol:
            istop = 1

        # See if it is time to print something.

        if show:
            if (n <= 40) or (itn <= 10) or (itn >= maxiter - 10) or \
               (itn % 10 == 0) or (test3 <= 1.1 * ctol) or \
               (test2 <= 1.1 * atol) or (test1 <= 1.1 * rtol) or \
               (istop != 0):

                if pcount >= pfreq:
                    pcount = 0
                    print(' ')
                    print(hdg1, hdg2)
                pcount = pcount + 1
                str1 = '%6g %12.5e' % (itn, x[0])
                str2 = ' %10.3e %10.3e' % (normr, normar)
                str3 = '  %8.1e %8.1e' % (test1, test2)
                str4 = ' %8.1e %8.1e' % (normA, condA)
                print(''.join([str1, str2, str3, str4]))

        if istop > 0:
            break

    # Print the stopping condition.

    if show:
        print(' ')
        print('LSMR finished')
        print(msg[istop])
        print('istop =%8g    normr =%8.1e' % (istop, normr))
        print('    normA =%8.1e    normAr =%8.1e' % (normA, normar))
        print('itn   =%8g    condA =%8.1e' % (itn, condA))
        print('    normx =%8.1e' % (normx))
        print(str1, str2)
        print(str3, str4)

    return x, istop, itn, normr, normar, normA, condA, normx