test_construct.py 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
"""test sparse matrix construction functions"""

import numpy as np
from numpy import array
from numpy.testing import (assert_equal, assert_,
        assert_array_equal, assert_array_almost_equal_nulp)
import pytest
from pytest import raises as assert_raises
from scipy._lib._testutils import check_free_memory
from scipy._lib._util import check_random_state

from scipy.sparse import csr_matrix, coo_matrix, construct
from scipy.sparse.construct import rand as sprand
from scipy.sparse.sputils import matrix

sparse_formats = ['csr','csc','coo','bsr','dia','lil','dok']

#TODO check whether format=XXX is respected


def _sprandn(m, n, density=0.01, format="coo", dtype=None, random_state=None):
    # Helper function for testing.
    random_state = check_random_state(random_state)
    data_rvs = random_state.standard_normal
    return construct.random(m, n, density, format, dtype,
                            random_state, data_rvs)


class TestConstructUtils(object):
    def test_spdiags(self):
        diags1 = array([[1, 2, 3, 4, 5]])
        diags2 = array([[1, 2, 3, 4, 5],
                         [6, 7, 8, 9,10]])
        diags3 = array([[1, 2, 3, 4, 5],
                         [6, 7, 8, 9,10],
                         [11,12,13,14,15]])

        cases = []
        cases.append((diags1, 0, 1, 1, [[1]]))
        cases.append((diags1, [0], 1, 1, [[1]]))
        cases.append((diags1, [0], 2, 1, [[1],[0]]))
        cases.append((diags1, [0], 1, 2, [[1,0]]))
        cases.append((diags1, [1], 1, 2, [[0,2]]))
        cases.append((diags1,[-1], 1, 2, [[0,0]]))
        cases.append((diags1, [0], 2, 2, [[1,0],[0,2]]))
        cases.append((diags1,[-1], 2, 2, [[0,0],[1,0]]))
        cases.append((diags1, [3], 2, 2, [[0,0],[0,0]]))
        cases.append((diags1, [0], 3, 4, [[1,0,0,0],[0,2,0,0],[0,0,3,0]]))
        cases.append((diags1, [1], 3, 4, [[0,2,0,0],[0,0,3,0],[0,0,0,4]]))
        cases.append((diags1, [2], 3, 5, [[0,0,3,0,0],[0,0,0,4,0],[0,0,0,0,5]]))

        cases.append((diags2, [0,2], 3, 3, [[1,0,8],[0,2,0],[0,0,3]]))
        cases.append((diags2, [-1,0], 3, 4, [[6,0,0,0],[1,7,0,0],[0,2,8,0]]))
        cases.append((diags2, [2,-3], 6, 6, [[0,0,3,0,0,0],
                                              [0,0,0,4,0,0],
                                              [0,0,0,0,5,0],
                                              [6,0,0,0,0,0],
                                              [0,7,0,0,0,0],
                                              [0,0,8,0,0,0]]))

        cases.append((diags3, [-1,0,1], 6, 6, [[6,12, 0, 0, 0, 0],
                                                [1, 7,13, 0, 0, 0],
                                                [0, 2, 8,14, 0, 0],
                                                [0, 0, 3, 9,15, 0],
                                                [0, 0, 0, 4,10, 0],
                                                [0, 0, 0, 0, 5, 0]]))
        cases.append((diags3, [-4,2,-1], 6, 5, [[0, 0, 8, 0, 0],
                                                 [11, 0, 0, 9, 0],
                                                 [0,12, 0, 0,10],
                                                 [0, 0,13, 0, 0],
                                                 [1, 0, 0,14, 0],
                                                 [0, 2, 0, 0,15]]))

        for d,o,m,n,result in cases:
            assert_equal(construct.spdiags(d,o,m,n).todense(), result)

    def test_diags(self):
        a = array([1, 2, 3, 4, 5])
        b = array([6, 7, 8, 9, 10])
        c = array([11, 12, 13, 14, 15])

        cases = []
        cases.append((a[:1], 0, (1, 1), [[1]]))
        cases.append(([a[:1]], [0], (1, 1), [[1]]))
        cases.append(([a[:1]], [0], (2, 1), [[1],[0]]))
        cases.append(([a[:1]], [0], (1, 2), [[1,0]]))
        cases.append(([a[:1]], [1], (1, 2), [[0,1]]))
        cases.append(([a[:2]], [0], (2, 2), [[1,0],[0,2]]))
        cases.append(([a[:1]],[-1], (2, 2), [[0,0],[1,0]]))
        cases.append(([a[:3]], [0], (3, 4), [[1,0,0,0],[0,2,0,0],[0,0,3,0]]))
        cases.append(([a[:3]], [1], (3, 4), [[0,1,0,0],[0,0,2,0],[0,0,0,3]]))
        cases.append(([a[:1]], [-2], (3, 5), [[0,0,0,0,0],[0,0,0,0,0],[1,0,0,0,0]]))
        cases.append(([a[:2]], [-1], (3, 5), [[0,0,0,0,0],[1,0,0,0,0],[0,2,0,0,0]]))
        cases.append(([a[:3]], [0], (3, 5), [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0]]))
        cases.append(([a[:3]], [1], (3, 5), [[0,1,0,0,0],[0,0,2,0,0],[0,0,0,3,0]]))
        cases.append(([a[:3]], [2], (3, 5), [[0,0,1,0,0],[0,0,0,2,0],[0,0,0,0,3]]))
        cases.append(([a[:2]], [3], (3, 5), [[0,0,0,1,0],[0,0,0,0,2],[0,0,0,0,0]]))
        cases.append(([a[:1]], [4], (3, 5), [[0,0,0,0,1],[0,0,0,0,0],[0,0,0,0,0]]))
        cases.append(([a[:1]], [-4], (5, 3), [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[1,0,0]]))
        cases.append(([a[:2]], [-3], (5, 3), [[0,0,0],[0,0,0],[0,0,0],[1,0,0],[0,2,0]]))
        cases.append(([a[:3]], [-2], (5, 3), [[0,0,0],[0,0,0],[1,0,0],[0,2,0],[0,0,3]]))
        cases.append(([a[:3]], [-1], (5, 3), [[0,0,0],[1,0,0],[0,2,0],[0,0,3],[0,0,0]]))
        cases.append(([a[:3]], [0], (5, 3), [[1,0,0],[0,2,0],[0,0,3],[0,0,0],[0,0,0]]))
        cases.append(([a[:2]], [1], (5, 3), [[0,1,0],[0,0,2],[0,0,0],[0,0,0],[0,0,0]]))
        cases.append(([a[:1]], [2], (5, 3), [[0,0,1],[0,0,0],[0,0,0],[0,0,0],[0,0,0]]))

        cases.append(([a[:3],b[:1]], [0,2], (3, 3), [[1,0,6],[0,2,0],[0,0,3]]))
        cases.append(([a[:2],b[:3]], [-1,0], (3, 4), [[6,0,0,0],[1,7,0,0],[0,2,8,0]]))
        cases.append(([a[:4],b[:3]], [2,-3], (6, 6), [[0,0,1,0,0,0],
                                                     [0,0,0,2,0,0],
                                                     [0,0,0,0,3,0],
                                                     [6,0,0,0,0,4],
                                                     [0,7,0,0,0,0],
                                                     [0,0,8,0,0,0]]))

        cases.append(([a[:4],b,c[:4]], [-1,0,1], (5, 5), [[6,11, 0, 0, 0],
                                                            [1, 7,12, 0, 0],
                                                            [0, 2, 8,13, 0],
                                                            [0, 0, 3, 9,14],
                                                            [0, 0, 0, 4,10]]))
        cases.append(([a[:2],b[:3],c], [-4,2,-1], (6, 5), [[0, 0, 6, 0, 0],
                                                          [11, 0, 0, 7, 0],
                                                          [0,12, 0, 0, 8],
                                                          [0, 0,13, 0, 0],
                                                          [1, 0, 0,14, 0],
                                                          [0, 2, 0, 0,15]]))

        # too long arrays are OK
        cases.append(([a], [0], (1, 1), [[1]]))
        cases.append(([a[:3],b], [0,2], (3, 3), [[1, 0, 6], [0, 2, 0], [0, 0, 3]]))
        cases.append((np.array([[1, 2, 3], [4, 5, 6]]), [0,-1], (3, 3), [[1, 0, 0], [4, 2, 0], [0, 5, 3]]))

        # scalar case: broadcasting
        cases.append(([1,-2,1], [1,0,-1], (3, 3), [[-2, 1, 0],
                                                    [1, -2, 1],
                                                    [0, 1, -2]]))

        for d, o, shape, result in cases:
            err_msg = "%r %r %r %r" % (d, o, shape, result)
            assert_equal(construct.diags(d, o, shape=shape).todense(),
                         result, err_msg=err_msg)

            if shape[0] == shape[1] and hasattr(d[0], '__len__') and len(d[0]) <= max(shape):
                # should be able to find the shape automatically
                assert_equal(construct.diags(d, o).todense(), result,
                             err_msg=err_msg)

    def test_diags_default(self):
        a = array([1, 2, 3, 4, 5])
        assert_equal(construct.diags(a).todense(), np.diag(a))

    def test_diags_default_bad(self):
        a = array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6]])
        assert_raises(ValueError, construct.diags, a)

    def test_diags_bad(self):
        a = array([1, 2, 3, 4, 5])
        b = array([6, 7, 8, 9, 10])
        c = array([11, 12, 13, 14, 15])

        cases = []
        cases.append(([a[:0]], 0, (1, 1)))
        cases.append(([a[:4],b,c[:3]], [-1,0,1], (5, 5)))
        cases.append(([a[:2],c,b[:3]], [-4,2,-1], (6, 5)))
        cases.append(([a[:2],c,b[:3]], [-4,2,-1], None))
        cases.append(([], [-4,2,-1], None))
        cases.append(([1], [-5], (4, 4)))
        cases.append(([a], 0, None))

        for d, o, shape in cases:
            assert_raises(ValueError, construct.diags, d, o, shape)

        assert_raises(TypeError, construct.diags, [[None]], [0])

    def test_diags_vs_diag(self):
        # Check that
        #
        #    diags([a, b, ...], [i, j, ...]) == diag(a, i) + diag(b, j) + ...
        #

        np.random.seed(1234)

        for n_diags in [1, 2, 3, 4, 5, 10]:
            n = 1 + n_diags//2 + np.random.randint(0, 10)

            offsets = np.arange(-n+1, n-1)
            np.random.shuffle(offsets)
            offsets = offsets[:n_diags]

            diagonals = [np.random.rand(n - abs(q)) for q in offsets]

            mat = construct.diags(diagonals, offsets)
            dense_mat = sum([np.diag(x, j) for x, j in zip(diagonals, offsets)])

            assert_array_almost_equal_nulp(mat.todense(), dense_mat)

            if len(offsets) == 1:
                mat = construct.diags(diagonals[0], offsets[0])
                dense_mat = np.diag(diagonals[0], offsets[0])
                assert_array_almost_equal_nulp(mat.todense(), dense_mat)

    def test_diags_dtype(self):
        x = construct.diags([2.2], [0], shape=(2, 2), dtype=int)
        assert_equal(x.dtype, int)
        assert_equal(x.todense(), [[2, 0], [0, 2]])

    def test_diags_one_diagonal(self):
        d = list(range(5))
        for k in range(-5, 6):
            assert_equal(construct.diags(d, k).toarray(),
                         construct.diags([d], [k]).toarray())

    def test_diags_empty(self):
        x = construct.diags([])
        assert_equal(x.shape, (0, 0))

    def test_identity(self):
        assert_equal(construct.identity(1).toarray(), [[1]])
        assert_equal(construct.identity(2).toarray(), [[1,0],[0,1]])

        I = construct.identity(3, dtype='int8', format='dia')
        assert_equal(I.dtype, np.dtype('int8'))
        assert_equal(I.format, 'dia')

        for fmt in sparse_formats:
            I = construct.identity(3, format=fmt)
            assert_equal(I.format, fmt)
            assert_equal(I.toarray(), [[1,0,0],[0,1,0],[0,0,1]])

    def test_eye(self):
        assert_equal(construct.eye(1,1).toarray(), [[1]])
        assert_equal(construct.eye(2,3).toarray(), [[1,0,0],[0,1,0]])
        assert_equal(construct.eye(3,2).toarray(), [[1,0],[0,1],[0,0]])
        assert_equal(construct.eye(3,3).toarray(), [[1,0,0],[0,1,0],[0,0,1]])

        assert_equal(construct.eye(3,3,dtype='int16').dtype, np.dtype('int16'))

        for m in [3, 5]:
            for n in [3, 5]:
                for k in range(-5,6):
                    assert_equal(construct.eye(m, n, k=k).toarray(), np.eye(m, n, k=k))
                    if m == n:
                        assert_equal(construct.eye(m, k=k).toarray(), np.eye(m, n, k=k))

    def test_eye_one(self):
        assert_equal(construct.eye(1).toarray(), [[1]])
        assert_equal(construct.eye(2).toarray(), [[1,0],[0,1]])

        I = construct.eye(3, dtype='int8', format='dia')
        assert_equal(I.dtype, np.dtype('int8'))
        assert_equal(I.format, 'dia')

        for fmt in sparse_formats:
            I = construct.eye(3, format=fmt)
            assert_equal(I.format, fmt)
            assert_equal(I.toarray(), [[1,0,0],[0,1,0],[0,0,1]])

    def test_kron(self):
        cases = []

        cases.append(array([[0]]))
        cases.append(array([[-1]]))
        cases.append(array([[4]]))
        cases.append(array([[10]]))
        cases.append(array([[0],[0]]))
        cases.append(array([[0,0]]))
        cases.append(array([[1,2],[3,4]]))
        cases.append(array([[0,2],[5,0]]))
        cases.append(array([[0,2,-6],[8,0,14]]))
        cases.append(array([[5,4],[0,0],[6,0]]))
        cases.append(array([[5,4,4],[1,0,0],[6,0,8]]))
        cases.append(array([[0,1,0,2,0,5,8]]))
        cases.append(array([[0.5,0.125,0,3.25],[0,2.5,0,0]]))

        for a in cases:
            for b in cases:
                result = construct.kron(csr_matrix(a),csr_matrix(b)).todense()
                expected = np.kron(a,b)
                assert_array_equal(result,expected)

    def test_kron_large(self):
        n = 2**16
        a = construct.eye(1, n, n-1)
        b = construct.eye(n, 1, 1-n)

        construct.kron(a, a)
        construct.kron(b, b)

    def test_kronsum(self):
        cases = []

        cases.append(array([[0]]))
        cases.append(array([[-1]]))
        cases.append(array([[4]]))
        cases.append(array([[10]]))
        cases.append(array([[1,2],[3,4]]))
        cases.append(array([[0,2],[5,0]]))
        cases.append(array([[0,2,-6],[8,0,14],[0,3,0]]))
        cases.append(array([[1,0,0],[0,5,-1],[4,-2,8]]))

        for a in cases:
            for b in cases:
                result = construct.kronsum(csr_matrix(a),csr_matrix(b)).todense()
                expected = np.kron(np.eye(len(b)), a) + \
                        np.kron(b, np.eye(len(a)))
                assert_array_equal(result,expected)

    def test_vstack(self):

        A = coo_matrix([[1,2],[3,4]])
        B = coo_matrix([[5,6]])

        expected = matrix([[1, 2],
                           [3, 4],
                           [5, 6]])
        assert_equal(construct.vstack([A,B]).todense(), expected)
        assert_equal(construct.vstack([A,B], dtype=np.float32).dtype, np.float32)
        assert_equal(construct.vstack([A.tocsr(),B.tocsr()]).todense(),
                     expected)
        assert_equal(construct.vstack([A.tocsr(),B.tocsr()], dtype=np.float32).dtype,
                     np.float32)
        assert_equal(construct.vstack([A.tocsr(),B.tocsr()],
                                      dtype=np.float32).indices.dtype, np.int32)
        assert_equal(construct.vstack([A.tocsr(),B.tocsr()],
                                      dtype=np.float32).indptr.dtype, np.int32)

    def test_hstack(self):

        A = coo_matrix([[1,2],[3,4]])
        B = coo_matrix([[5],[6]])

        expected = matrix([[1, 2, 5],
                           [3, 4, 6]])
        assert_equal(construct.hstack([A,B]).todense(), expected)
        assert_equal(construct.hstack([A,B], dtype=np.float32).dtype, np.float32)
        assert_equal(construct.hstack([A.tocsc(),B.tocsc()]).todense(),
                     expected)
        assert_equal(construct.hstack([A.tocsc(),B.tocsc()], dtype=np.float32).dtype,
                     np.float32)

    def test_bmat(self):

        A = coo_matrix([[1,2],[3,4]])
        B = coo_matrix([[5],[6]])
        C = coo_matrix([[7]])
        D = coo_matrix((0,0))

        expected = matrix([[1, 2, 5],
                           [3, 4, 6],
                           [0, 0, 7]])
        assert_equal(construct.bmat([[A,B],[None,C]]).todense(), expected)

        expected = matrix([[1, 2, 0],
                           [3, 4, 0],
                           [0, 0, 7]])
        assert_equal(construct.bmat([[A,None],[None,C]]).todense(), expected)

        expected = matrix([[0, 5],
                           [0, 6],
                           [7, 0]])
        assert_equal(construct.bmat([[None,B],[C,None]]).todense(), expected)

        expected = matrix(np.empty((0,0)))
        assert_equal(construct.bmat([[None,None]]).todense(), expected)
        assert_equal(construct.bmat([[None,D],[D,None]]).todense(), expected)

        # test bug reported in gh-5976
        expected = matrix([[7]])
        assert_equal(construct.bmat([[None,D],[C,None]]).todense(), expected)

        # test failure cases
        with assert_raises(ValueError) as excinfo:
            construct.bmat([[A], [B]])
        excinfo.match(r'Got blocks\[1,0\]\.shape\[1\] == 1, expected 2')

        with assert_raises(ValueError) as excinfo:
            construct.bmat([[A, C]])
        excinfo.match(r'Got blocks\[0,1\]\.shape\[0\] == 1, expected 2')

    @pytest.mark.slow
    def test_concatenate_int32_overflow(self):
        """ test for indptr overflow when concatenating matrices """
        check_free_memory(30000)

        n = 33000
        A = csr_matrix(np.ones((n, n), dtype=bool))
        B = A.copy()
        C = construct._compressed_sparse_stack((A,B), 0)

        assert_(np.all(np.equal(np.diff(C.indptr), n)))
        assert_equal(C.indices.dtype, np.int64)
        assert_equal(C.indptr.dtype, np.int64)

    def test_block_diag_basic(self):
        """ basic test for block_diag """
        A = coo_matrix([[1,2],[3,4]])
        B = coo_matrix([[5],[6]])
        C = coo_matrix([[7]])

        expected = matrix([[1, 2, 0, 0],
                           [3, 4, 0, 0],
                           [0, 0, 5, 0],
                           [0, 0, 6, 0],
                           [0, 0, 0, 7]])

        assert_equal(construct.block_diag((A, B, C)).todense(), expected)

    def test_block_diag_scalar_1d_args(self):
        """ block_diag with scalar and 1d arguments """
        # one 1d matrix and a scalar
        assert_array_equal(construct.block_diag([[2,3], 4]).toarray(),
                           [[2, 3, 0], [0, 0, 4]])

    def test_block_diag_1(self):
        """ block_diag with one matrix """
        assert_equal(construct.block_diag([[1, 0]]).todense(),
                     matrix([[1, 0]]))
        assert_equal(construct.block_diag([[[1, 0]]]).todense(),
                     matrix([[1, 0]]))
        assert_equal(construct.block_diag([[[1], [0]]]).todense(),
                     matrix([[1], [0]]))
        # just on scalar
        assert_equal(construct.block_diag([1]).todense(),
                     matrix([[1]]))

    def test_random_sampling(self):
        # Simple sanity checks for sparse random sampling.
        for f in sprand, _sprandn:
            for t in [np.float32, np.float64, np.longdouble,
                      np.int32, np.int64, np.complex64, np.complex128]:
                x = f(5, 10, density=0.1, dtype=t)
                assert_equal(x.dtype, t)
                assert_equal(x.shape, (5, 10))
                assert_equal(x.nnz, 5)

            x1 = f(5, 10, density=0.1, random_state=4321)
            assert_equal(x1.dtype, np.double)

            x2 = f(5, 10, density=0.1,
                   random_state=np.random.RandomState(4321))

            assert_array_equal(x1.data, x2.data)
            assert_array_equal(x1.row, x2.row)
            assert_array_equal(x1.col, x2.col)

            for density in [0.0, 0.1, 0.5, 1.0]:
                x = f(5, 10, density=density)
                assert_equal(x.nnz, int(density * np.prod(x.shape)))

            for fmt in ['coo', 'csc', 'csr', 'lil']:
                x = f(5, 10, format=fmt)
                assert_equal(x.format, fmt)

            assert_raises(ValueError, lambda: f(5, 10, 1.1))
            assert_raises(ValueError, lambda: f(5, 10, -0.1))

    def test_rand(self):
        # Simple distributional checks for sparse.rand.
        random_states = [None, 4321, np.random.RandomState()]
        try:
            gen = np.random.default_rng()
            random_states.append(gen)
        except AttributeError:
            pass

        for random_state in random_states:
            x = sprand(10, 20, density=0.5, dtype=np.float64,
                       random_state=random_state)
            assert_(np.all(np.less_equal(0, x.data)))
            assert_(np.all(np.less_equal(x.data, 1)))

    def test_randn(self):
        # Simple distributional checks for sparse.randn.
        # Statistically, some of these should be negative
        # and some should be greater than 1.
        random_states = [None, 4321, np.random.RandomState()]
        try:
            gen = np.random.default_rng()
            random_states.append(gen)
        except AttributeError:
            pass

        for random_state in random_states:
            x = _sprandn(10, 20, density=0.5, dtype=np.float64,
                         random_state=random_state)
            assert_(np.any(np.less(x.data, 0)))
            assert_(np.any(np.less(1, x.data)))

    def test_random_accept_str_dtype(self):
        # anything that np.dtype can convert to a dtype should be accepted
        # for the dtype
        construct.random(10, 10, dtype='d')

    def test_random_sparse_matrix_returns_correct_number_of_non_zero_elements(self):
        # A 10 x 10 matrix, with density of 12.65%, should have 13 nonzero elements.
        # 10 x 10 x 0.1265 = 12.65, which should be rounded up to 13, not 12.
        sparse_matrix = construct.random(10, 10, density=0.1265)
        assert_equal(sparse_matrix.count_nonzero(),13)