common_tests.py
11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pickle
import numpy as np
import numpy.testing as npt
from numpy.testing import assert_allclose, assert_equal, suppress_warnings
from pytest import raises as assert_raises
import numpy.ma.testutils as ma_npt
from scipy._lib._util import getfullargspec_no_self as _getfullargspec
from scipy import stats
def check_named_results(res, attributes, ma=False):
for i, attr in enumerate(attributes):
if ma:
ma_npt.assert_equal(res[i], getattr(res, attr))
else:
npt.assert_equal(res[i], getattr(res, attr))
def check_normalization(distfn, args, distname):
norm_moment = distfn.moment(0, *args)
npt.assert_allclose(norm_moment, 1.0)
# this is a temporary plug: either ncf or expect is problematic;
# best be marked as a knownfail, but I've no clue how to do it.
if distname == "ncf":
atol, rtol = 1e-5, 0
else:
atol, rtol = 1e-7, 1e-7
normalization_expect = distfn.expect(lambda x: 1, args=args)
npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol,
err_msg=distname, verbose=True)
_a, _b = distfn.support(*args)
normalization_cdf = distfn.cdf(_b, *args)
npt.assert_allclose(normalization_cdf, 1.0)
def check_moment(distfn, arg, m, v, msg):
m1 = distfn.moment(1, *arg)
m2 = distfn.moment(2, *arg)
if not np.isinf(m):
npt.assert_almost_equal(m1, m, decimal=10, err_msg=msg +
' - 1st moment')
else: # or np.isnan(m1),
npt.assert_(np.isinf(m1),
msg + ' - 1st moment -infinite, m1=%s' % str(m1))
if not np.isinf(v):
npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10, err_msg=msg +
' - 2ndt moment')
else: # or np.isnan(m2),
npt.assert_(np.isinf(m2),
msg + ' - 2nd moment -infinite, m2=%s' % str(m2))
def check_mean_expect(distfn, arg, m, msg):
if np.isfinite(m):
m1 = distfn.expect(lambda x: x, arg)
npt.assert_almost_equal(m1, m, decimal=5, err_msg=msg +
' - 1st moment (expect)')
def check_var_expect(distfn, arg, m, v, msg):
if np.isfinite(v):
m2 = distfn.expect(lambda x: x*x, arg)
npt.assert_almost_equal(m2, v + m*m, decimal=5, err_msg=msg +
' - 2st moment (expect)')
def check_skew_expect(distfn, arg, m, v, s, msg):
if np.isfinite(s):
m3e = distfn.expect(lambda x: np.power(x-m, 3), arg)
npt.assert_almost_equal(m3e, s * np.power(v, 1.5),
decimal=5, err_msg=msg + ' - skew')
else:
npt.assert_(np.isnan(s))
def check_kurt_expect(distfn, arg, m, v, k, msg):
if np.isfinite(k):
m4e = distfn.expect(lambda x: np.power(x-m, 4), arg)
npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2), atol=1e-5, rtol=1e-5,
err_msg=msg + ' - kurtosis')
elif not np.isposinf(k):
npt.assert_(np.isnan(k))
def check_entropy(distfn, arg, msg):
ent = distfn.entropy(*arg)
npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
def check_private_entropy(distfn, args, superclass):
# compare a generic _entropy with the distribution-specific implementation
npt.assert_allclose(distfn._entropy(*args),
superclass._entropy(distfn, *args))
def check_entropy_vect_scale(distfn, arg):
# check 2-d
sc = np.asarray([[1, 2], [3, 4]])
v_ent = distfn.entropy(*arg, scale=sc)
s_ent = [distfn.entropy(*arg, scale=s) for s in sc.ravel()]
s_ent = np.asarray(s_ent).reshape(v_ent.shape)
assert_allclose(v_ent, s_ent, atol=1e-14)
# check invalid value, check cast
sc = [1, 2, -3]
v_ent = distfn.entropy(*arg, scale=sc)
s_ent = [distfn.entropy(*arg, scale=s) for s in sc]
s_ent = np.asarray(s_ent).reshape(v_ent.shape)
assert_allclose(v_ent, s_ent, atol=1e-14)
def check_edge_support(distfn, args):
# Make sure that x=self.a and self.b are handled correctly.
x = distfn.support(*args)
if isinstance(distfn, stats.rv_discrete):
x = x[0]-1, x[1]
npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
if distfn.name not in ('skellam', 'dlaplace'):
# with a = -inf, log(0) generates warnings
npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
# out-of-bounds for isf & ppf
npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all())
def check_named_args(distfn, x, shape_args, defaults, meths):
## Check calling w/ named arguments.
# check consistency of shapes, numargs and _parse signature
signature = _getfullargspec(distfn._parse_args)
npt.assert_(signature.varargs is None)
npt.assert_(signature.varkw is None)
npt.assert_(not signature.kwonlyargs)
npt.assert_(list(signature.defaults) == list(defaults))
shape_argnames = signature.args[:-len(defaults)] # a, b, loc=0, scale=1
if distfn.shapes:
shapes_ = distfn.shapes.replace(',', ' ').split()
else:
shapes_ = ''
npt.assert_(len(shapes_) == distfn.numargs)
npt.assert_(len(shapes_) == len(shape_argnames))
# check calling w/ named arguments
shape_args = list(shape_args)
vals = [meth(x, *shape_args) for meth in meths]
npt.assert_(np.all(np.isfinite(vals)))
names, a, k = shape_argnames[:], shape_args[:], {}
while names:
k.update({names.pop(): a.pop()})
v = [meth(x, *a, **k) for meth in meths]
npt.assert_array_equal(vals, v)
if 'n' not in k.keys():
# `n` is first parameter of moment(), so can't be used as named arg
npt.assert_equal(distfn.moment(1, *a, **k),
distfn.moment(1, *shape_args))
# unknown arguments should not go through:
k.update({'kaboom': 42})
assert_raises(TypeError, distfn.cdf, x, **k)
def check_random_state_property(distfn, args):
# check the random_state attribute of a distribution *instance*
# This test fiddles with distfn.random_state. This breaks other tests,
# hence need to save it and then restore.
rndm = distfn.random_state
# baseline: this relies on the global state
np.random.seed(1234)
distfn.random_state = None
r0 = distfn.rvs(*args, size=8)
# use an explicit instance-level random_state
distfn.random_state = 1234
r1 = distfn.rvs(*args, size=8)
npt.assert_equal(r0, r1)
distfn.random_state = np.random.RandomState(1234)
r2 = distfn.rvs(*args, size=8)
npt.assert_equal(r0, r2)
# check that np.random.Generator can be used (numpy >= 1.17)
if hasattr(np.random, 'default_rng'):
# obtain a np.random.Generator object
rng = np.random.default_rng(1234)
distfn.rvs(*args, size=1, random_state=rng)
# can override the instance-level random_state for an individual .rvs call
distfn.random_state = 2
orig_state = distfn.random_state.get_state()
r3 = distfn.rvs(*args, size=8, random_state=np.random.RandomState(1234))
npt.assert_equal(r0, r3)
# ... and that does not alter the instance-level random_state!
npt.assert_equal(distfn.random_state.get_state(), orig_state)
# finally, restore the random_state
distfn.random_state = rndm
def check_meth_dtype(distfn, arg, meths):
q0 = [0.25, 0.5, 0.75]
x0 = distfn.ppf(q0, *arg)
x_cast = [x0.astype(tp) for tp in
(np.int_, np.float16, np.float32, np.float64)]
for x in x_cast:
# casting may have clipped the values, exclude those
distfn._argcheck(*arg)
x = x[(distfn.a < x) & (x < distfn.b)]
for meth in meths:
val = meth(x, *arg)
npt.assert_(val.dtype == np.float_)
def check_ppf_dtype(distfn, arg):
q0 = np.asarray([0.25, 0.5, 0.75])
q_cast = [q0.astype(tp) for tp in (np.float16, np.float32, np.float64)]
for q in q_cast:
for meth in [distfn.ppf, distfn.isf]:
val = meth(q, *arg)
npt.assert_(val.dtype == np.float_)
def check_cmplx_deriv(distfn, arg):
# Distributions allow complex arguments.
def deriv(f, x, *arg):
x = np.asarray(x)
h = 1e-10
return (f(x + h*1j, *arg)/h).imag
x0 = distfn.ppf([0.25, 0.51, 0.75], *arg)
x_cast = [x0.astype(tp) for tp in
(np.int_, np.float16, np.float32, np.float64)]
for x in x_cast:
# casting may have clipped the values, exclude those
distfn._argcheck(*arg)
x = x[(distfn.a < x) & (x < distfn.b)]
pdf, cdf, sf = distfn.pdf(x, *arg), distfn.cdf(x, *arg), distfn.sf(x, *arg)
assert_allclose(deriv(distfn.cdf, x, *arg), pdf, rtol=1e-5)
assert_allclose(deriv(distfn.logcdf, x, *arg), pdf/cdf, rtol=1e-5)
assert_allclose(deriv(distfn.sf, x, *arg), -pdf, rtol=1e-5)
assert_allclose(deriv(distfn.logsf, x, *arg), -pdf/sf, rtol=1e-5)
assert_allclose(deriv(distfn.logpdf, x, *arg),
deriv(distfn.pdf, x, *arg) / distfn.pdf(x, *arg),
rtol=1e-5)
def check_pickling(distfn, args):
# check that a distribution instance pickles and unpickles
# pay special attention to the random_state property
# save the random_state (restore later)
rndm = distfn.random_state
distfn.random_state = 1234
distfn.rvs(*args, size=8)
s = pickle.dumps(distfn)
r0 = distfn.rvs(*args, size=8)
unpickled = pickle.loads(s)
r1 = unpickled.rvs(*args, size=8)
npt.assert_equal(r0, r1)
# also smoke test some methods
medians = [distfn.ppf(0.5, *args), unpickled.ppf(0.5, *args)]
npt.assert_equal(medians[0], medians[1])
npt.assert_equal(distfn.cdf(medians[0], *args),
unpickled.cdf(medians[1], *args))
# restore the random_state
distfn.random_state = rndm
def check_freezing(distfn, args):
# regression test for gh-11089: freezing a distribution fails
# if loc and/or scale are specified
if isinstance(distfn, stats.rv_continuous):
locscale = {'loc': 1, 'scale': 2}
else:
locscale = {'loc': 1}
rv = distfn(*args, **locscale)
assert rv.a == distfn(*args).a
assert rv.b == distfn(*args).b
def check_rvs_broadcast(distfunc, distname, allargs, shape, shape_only, otype):
np.random.seed(123)
with suppress_warnings() as sup:
# frechet_l and frechet_r are deprecated, so all their
# methods generate DeprecationWarnings.
sup.filter(category=DeprecationWarning, message=".*frechet_")
sample = distfunc.rvs(*allargs)
assert_equal(sample.shape, shape, "%s: rvs failed to broadcast" % distname)
if not shape_only:
rvs = np.vectorize(lambda *allargs: distfunc.rvs(*allargs), otypes=otype)
np.random.seed(123)
expected = rvs(*allargs)
assert_allclose(sample, expected, rtol=1e-13)