Showing
9 changed files
with
319 additions
and
24 deletions
This diff is collapsed. Click to expand it.
코드/연합학습/deprecated.py
0 → 100644
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
1 | import torch.nn as nn | 1 | import torch.nn as nn |
2 | -import torch.nn.functional as F | ||
3 | import torch | 2 | import torch |
4 | import const | 3 | import const |
5 | 4 | ||
6 | -class Net(nn.Module): | ||
7 | - def __init__(self): | ||
8 | - super(Net, self).__init__() | ||
9 | 5 | ||
10 | - self.f1 = nn.Sequential( | 6 | +STATE_DIM = 8 * 32 |
11 | - nn.Conv2d(1, 2, 3), | 7 | +class OneNet(nn.Module): |
12 | - nn.ReLU(True), | 8 | + def __init__(self, packet_num): |
13 | - ) | 9 | + super(OneNet, self).__init__() |
14 | - self.f2 = nn.Sequential( | 10 | + IN_DIM = 8 * packet_num # byte |
15 | - nn.Conv2d(2, 4, 3), | 11 | + FEATURE_DIM = 32 |
16 | - nn.ReLU(True), | 12 | + |
13 | + # transform the given packet into a tensor which is in a good feature space | ||
14 | + self.feature_layer = nn.Sequential( | ||
15 | + nn.Linear(IN_DIM, 32), | ||
16 | + nn.ReLU(), | ||
17 | + nn.Linear(32, FEATURE_DIM), | ||
18 | + nn.ReLU() | ||
17 | ) | 19 | ) |
18 | - self.f3 = nn.Sequential( | 20 | + |
19 | - nn.Conv2d(4, 8, 3), | 21 | + # generates the current state 's' |
20 | - nn.ReLU(True), | 22 | + self.f = nn.Sequential( |
23 | + nn.Linear(STATE_DIM + FEATURE_DIM, STATE_DIM), | ||
24 | + nn.ReLU(), | ||
25 | + nn.Linear(STATE_DIM, STATE_DIM), | ||
26 | + nn.ReLU() | ||
21 | ) | 27 | ) |
22 | - self.f4 = nn.Sequential( | 28 | + |
23 | - nn.Linear(8 * 23 * 23, 2), | 29 | + # check whether the given packet is malicious |
30 | + self.g = nn.Sequential( | ||
31 | + nn.Linear(STATE_DIM + FEATURE_DIM, 64), | ||
32 | + nn.ReLU(), | ||
33 | + nn.Linear(64, 64), | ||
34 | + nn.ReLU(), | ||
35 | + nn.Linear(64, 2), | ||
24 | ) | 36 | ) |
25 | 37 | ||
26 | - def forward(self, x): | ||
27 | - x = self.f1(x) | ||
28 | - x = self.f2(x) | ||
29 | - x = self.f3(x) | ||
30 | - x = torch.flatten(x, 1) | ||
31 | - x = self.f4(x) | ||
32 | - return x | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
38 | + def forward(self, x, s): | ||
39 | + x = self.feature_layer(x) | ||
40 | + x = torch.cat((x, s), 1) | ||
41 | + s2 = self.f(x) | ||
42 | + x2 = self.g(x) | ||
43 | + | ||
44 | + return x2, s2 | ||
... | \ No newline at end of file | ... | \ No newline at end of file | ... | ... |
코드/연합학습/quantization/onnx2tensorRT.py
0 → 100644
1 | +import tensorrt as trt | ||
2 | + | ||
3 | +onnx_file_name = 'bert.onnx' | ||
4 | +tensorrt_file_name = 'bert.plan' | ||
5 | +fp16_mode = True | ||
6 | +# int8_mode = True | ||
7 | +TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | ||
8 | +EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) | ||
9 | + | ||
10 | +builder = trt.Builder(TRT_LOGGER) | ||
11 | +network = builder.create_network(EXPLICIT_BATCH) | ||
12 | +parser = trt.OnnxParser(network, TRT_LOGGER) | ||
13 | + | ||
14 | +builder.max_workspace_size = (1 << 30) | ||
15 | +builder.fp16_mode = fp16_mode | ||
16 | +# builder.int8_mode = int8_mode | ||
17 | + | ||
18 | +with open(onnx_file_name, 'rb') as model: | ||
19 | + if not parser.parse(model.read()): | ||
20 | + for error in range(parser.num_errors): | ||
21 | + print (parser.get_error(error)) | ||
22 | + | ||
23 | +# for int8 mode | ||
24 | +# print(network.num_layers, network.num_inputs , network.num_outputs) | ||
25 | +# for layer_index in range(network.num_layers): | ||
26 | +# layer = network[layer_index] | ||
27 | +# print(layer.name) | ||
28 | +# tensor = layer.get_output(0) | ||
29 | +# print(tensor.name) | ||
30 | +# tensor.dynamic_range = (0, 255) | ||
31 | + | ||
32 | + # input_tensor = layer.get_input(0) | ||
33 | + # print(input_tensor) | ||
34 | + # input_tensor.dynamic_range = (0, 255) | ||
35 | + | ||
36 | +engine = builder.build_cuda_engine(network) | ||
37 | +buf = engine.serialize() | ||
38 | +with open(tensorrt_file_name, 'wb') as f: | ||
39 | + f.write(buf) | ||
40 | + | ||
41 | +print('done, trt model') | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
코드/연합학습/quantization/tensorRT_test.py
0 → 100644
1 | +import tensorrt as trt | ||
2 | +import pycuda.driver as cuda | ||
3 | +import numpy as np | ||
4 | +import torch | ||
5 | +import pycuda.autoinit | ||
6 | +import dataset | ||
7 | +import model | ||
8 | +import time | ||
9 | +# print(dir(trt)) | ||
10 | + | ||
11 | +tensorrt_file_name = 'bert.plan' | ||
12 | +TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | ||
13 | +trt_runtime = trt.Runtime(TRT_LOGGER) | ||
14 | + | ||
15 | +with open(tensorrt_file_name, 'rb') as f: | ||
16 | + engine_data = f.read() | ||
17 | +engine = trt_runtime.deserialize_cuda_engine(engine_data) | ||
18 | +context = engine.create_execution_context() | ||
19 | + | ||
20 | +# class HostDeviceMem(object): | ||
21 | +# def __init__(self, host_mem, device_mem): | ||
22 | +# self.host = host_mem | ||
23 | +# self.device = device_mem | ||
24 | + | ||
25 | +# def __str__(self): | ||
26 | +# return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) | ||
27 | + | ||
28 | +# def __repr__(self): | ||
29 | +# return self.__str__() | ||
30 | + | ||
31 | +# inputs, outputs, bindings, stream = [], [], [], [] | ||
32 | +# for binding in engine: | ||
33 | +# size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size | ||
34 | +# dtype = trt.nptype(engine.get_binding_dtype(binding)) | ||
35 | +# host_mem = cuda.pagelocked_empty(size, dtype) | ||
36 | +# device_mem = cuda.mem_alloc(host_mem.nbytes) | ||
37 | +# bindings.append(int(device_mem)) | ||
38 | +# if engine.binding_is_input(binding): | ||
39 | +# inputs.append( HostDeviceMem(host_mem, device_mem) ) | ||
40 | +# else: | ||
41 | +# outputs.append(HostDeviceMem(host_mem, device_mem)) | ||
42 | + | ||
43 | +# input_ids = np.ones([1, 1, 29, 29]) | ||
44 | + | ||
45 | +# numpy_array_input = [input_ids] | ||
46 | +# hosts = [input.host for input in inputs] | ||
47 | +# trt_types = [trt.int32] | ||
48 | + | ||
49 | +# for numpy_array, host, trt_types in zip(numpy_array_input, hosts, trt_types): | ||
50 | +# numpy_array = np.asarray(numpy_array).ravel() | ||
51 | +# np.copyto(host, numpy_array) | ||
52 | + | ||
53 | +# def do_inference(context, bindings, inputs, outputs, stream): | ||
54 | +# [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] | ||
55 | +# context.execute_async_v2(bindings=bindings, stream_handle=stream.handle) | ||
56 | +# [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] | ||
57 | +# stream.synchronize() | ||
58 | +# return [out.host for out in outputs] | ||
59 | + | ||
60 | +# trt_outputs = do_inference( | ||
61 | +# context=context, | ||
62 | +# bindings=bindings, | ||
63 | +# inputs=inputs, | ||
64 | +# outputs=outputs, | ||
65 | +# stream=stream) | ||
66 | + | ||
67 | +def infer(context, input_img, output_size, batch_size): | ||
68 | + # Load engine | ||
69 | + # engine = context.get_engine() | ||
70 | + # assert(engine.get_nb_bindings() == 2) | ||
71 | + # Convert input data to float32 | ||
72 | + input_img = input_img.astype(np.float32) | ||
73 | + # Create host buffer to receive data | ||
74 | + output = np.empty(output_size, dtype = np.float32) | ||
75 | + # Allocate device memory | ||
76 | + d_input = cuda.mem_alloc(batch_size * input_img.size * input_img.dtype.itemsize) | ||
77 | + d_output = cuda.mem_alloc(batch_size * output.size * output.dtype.itemsize) | ||
78 | + | ||
79 | + bindings = [int(d_input), int(d_output)] | ||
80 | + stream = cuda.Stream() | ||
81 | + # Transfer input data to device | ||
82 | + cuda.memcpy_htod_async(d_input, input_img, stream) | ||
83 | + # Execute model | ||
84 | + context.execute_async(batch_size, bindings, stream.handle, None) | ||
85 | + # Transfer predictions back | ||
86 | + cuda.memcpy_dtoh_async(output, d_output, stream) | ||
87 | + # Synchronize threads | ||
88 | + stream.synchronize() | ||
89 | + # Return predictions | ||
90 | + return output | ||
91 | + | ||
92 | + | ||
93 | +# kwargs = {"./dataset/DoS_dataset.csv" : './DoS_dataset.txt'} | ||
94 | +# train_data_set, data_idx_map, net_class_count, net_data_count, test_data_set = dataset.GetCanDatasetUsingTxtKwarg(100, 0, **kwargs) | ||
95 | +# testloader = torch.utils.data.DataLoader(test_data_set, batch_size=256, | ||
96 | +# shuffle=False, num_workers=2) | ||
97 | + | ||
98 | +check_time = time.time() | ||
99 | +cnt = 0 | ||
100 | +temp = np.ones([256, 1, 29, 29]) | ||
101 | +for idx in range(100): | ||
102 | +# for i, (inputs, labels) in enumerate(testloader): | ||
103 | + trt_outputs = infer(context, temp, (256, 2), 256) | ||
104 | + | ||
105 | + print(trt_outputs.shape) | ||
106 | + # print(trt_outputs) | ||
107 | + # print(np.argmax(trt_outputs, axis=0)) | ||
108 | + # cnt += 1 | ||
109 | + # if cnt == 100: | ||
110 | + # break | ||
111 | +print(time.time() - check_time) | ||
112 | + | ||
113 | + | ||
114 | +tensorrt_file_name = 'bert_int.plan' | ||
115 | +TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | ||
116 | +trt_runtime = trt.Runtime(TRT_LOGGER) | ||
117 | + | ||
118 | +with open(tensorrt_file_name, 'rb') as f: | ||
119 | + engine_data = f.read() | ||
120 | +engine = trt_runtime.deserialize_cuda_engine(engine_data) | ||
121 | +context = engine.create_execution_context() | ||
122 | +check_time = time.time() | ||
123 | +cnt = 0 | ||
124 | +temp = np.ones([256, 1, 29, 29]) | ||
125 | +for idx in range(100): | ||
126 | +# for i, (inputs, labels) in enumerate(testloader): | ||
127 | + trt_outputs = infer(context, temp, (256, 2), 256) | ||
128 | + | ||
129 | + print(trt_outputs.shape) | ||
130 | + # print(trt_outputs) | ||
131 | + # print(np.argmax(trt_outputs, axis=0)) | ||
132 | + # cnt += 1 | ||
133 | + # if cnt == 100: | ||
134 | + # break | ||
135 | +print(time.time() - check_time) | ||
136 | + | ||
137 | + | ||
138 | +test_model = model.Net().cuda() | ||
139 | +check_time = time.time() | ||
140 | +cnt = 0 | ||
141 | +temp = torch.randn(256, 1, 29, 29).cuda() | ||
142 | +for idx in range(100): | ||
143 | +# for i, (inputs, labels) in enumerate(testloader): | ||
144 | + # inputs = inputs.float().cuda() | ||
145 | + normal_outputs = test_model(temp) | ||
146 | + # print(normal_outputs) | ||
147 | + print(normal_outputs.shape) | ||
148 | + cnt += 1 | ||
149 | + if cnt == 100: | ||
150 | + break | ||
151 | +print(time.time() - check_time) | ||
152 | + | ||
153 | + | ||
154 | + | ||
155 | +import tensorrt as trt | ||
156 | +import numpy as np | ||
157 | +import pycuda.autoinit | ||
158 | +import pycuda.driver as cuda | ||
159 | +import time | ||
160 | + | ||
161 | +model_path = "bert.onnx" | ||
162 | +input_size = 32 | ||
163 | + | ||
164 | +TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | ||
165 | + | ||
166 | +# def build_engine(model_path): | ||
167 | +# with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser: | ||
168 | +# builder.max_workspace_size = 1<<20 | ||
169 | +# builder.max_batch_size = 1 | ||
170 | +# with open(model_path, "rb") as f: | ||
171 | +# parser.parse(f.read()) | ||
172 | +# engine = builder.build_cuda_engine(network) | ||
173 | +# return engine | ||
174 | + | ||
175 | +def alloc_buf(engine): | ||
176 | + # host cpu mem | ||
177 | + h_in_size = trt.volume(engine.get_binding_shape(0)) | ||
178 | + h_out_size = trt.volume(engine.get_binding_shape(1)) | ||
179 | + h_in_dtype = trt.nptype(engine.get_binding_dtype(0)) | ||
180 | + h_out_dtype = trt.nptype(engine.get_binding_dtype(1)) | ||
181 | + in_cpu = cuda.pagelocked_empty(h_in_size, h_in_dtype) | ||
182 | + out_cpu = cuda.pagelocked_empty(h_out_size, h_out_dtype) | ||
183 | + # allocate gpu mem | ||
184 | + in_gpu = cuda.mem_alloc(in_cpu.nbytes) | ||
185 | + out_gpu = cuda.mem_alloc(out_cpu.nbytes) | ||
186 | + stream = cuda.Stream() | ||
187 | + return in_cpu, out_cpu, in_gpu, out_gpu, stream | ||
188 | + | ||
189 | + | ||
190 | +def inference(engine, context, inputs, out_cpu, in_gpu, out_gpu, stream): | ||
191 | + # async version | ||
192 | + # with engine.create_execution_context() as context: # cost time to initialize | ||
193 | + # cuda.memcpy_htod_async(in_gpu, inputs, stream) | ||
194 | + # context.execute_async(1, [int(in_gpu), int(out_gpu)], stream.handle, None) | ||
195 | + # cuda.memcpy_dtoh_async(out_cpu, out_gpu, stream) | ||
196 | + # stream.synchronize() | ||
197 | + | ||
198 | + # sync version | ||
199 | + cuda.memcpy_htod(in_gpu, inputs) | ||
200 | + context.execute(1, [int(in_gpu), int(out_gpu)]) | ||
201 | + cuda.memcpy_dtoh(out_cpu, out_gpu) | ||
202 | + return out_cpu | ||
203 | + | ||
204 | +if __name__ == "__main__": | ||
205 | + inputs = np.random.random((1, 1, 29, 29)).astype(np.float32) | ||
206 | + | ||
207 | + tensorrt_file_name = '/content/drive/My Drive/capstone1/CAN/bert.plan' | ||
208 | + TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | ||
209 | + trt_runtime = trt.Runtime(TRT_LOGGER) | ||
210 | + | ||
211 | + with open(tensorrt_file_name, 'rb') as f: | ||
212 | + engine_data = f.read() | ||
213 | + engine = trt_runtime.deserialize_cuda_engine(engine_data) | ||
214 | + # engine = build_engine(model_path) | ||
215 | + context = engine.create_execution_context() | ||
216 | + for _ in range(10): | ||
217 | + t1 = time.time() | ||
218 | + in_cpu, out_cpu, in_gpu, out_gpu, stream = alloc_buf(engine) | ||
219 | + res = inference(engine, context, inputs.reshape(-1), out_cpu, in_gpu, out_gpu, stream) | ||
220 | + print(res) | ||
221 | + print("cost time: ", time.time()-t1) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
코드/연합학습/quantization/torch2onnx.py
0 → 100644
1 | +import model | ||
2 | +import torch | ||
3 | + | ||
4 | +import importlib | ||
5 | +importlib.reload(model) | ||
6 | + | ||
7 | +batch_size = 256 | ||
8 | +model = model.Net().cuda().eval() | ||
9 | +inputs = torch.randn(batch_size, 1, 29, 29, requires_grad=True).cuda() | ||
10 | +torch_out = model(inputs) | ||
11 | + | ||
12 | +torch.onnx.export( | ||
13 | + model, | ||
14 | + inputs, | ||
15 | + 'bert.onnx', | ||
16 | + input_names=['inputs'], | ||
17 | + output_names=['outputs'], | ||
18 | + export_params=True) | ||
19 | + | ||
20 | +print('done, onnx model') | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
코드/연합학습/utils.py
0 → 100644
This diff is collapsed. Click to expand it.
-
Please register or login to post a comment