김지훈

연합학습 code 정리중

1 -CAN_ID_BIT = 29
...\ No newline at end of file ...\ No newline at end of file
1 +CAN_DATA_LEN = 8
2 +SYNCAN_DATA_LEN = 4
...\ No newline at end of file ...\ No newline at end of file
......
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
1 import torch.nn as nn 1 import torch.nn as nn
2 -import torch.nn.functional as F
3 import torch 2 import torch
4 import const 3 import const
5 4
6 -class Net(nn.Module):
7 - def __init__(self):
8 - super(Net, self).__init__()
9 5
10 - self.f1 = nn.Sequential( 6 +STATE_DIM = 8 * 32
11 - nn.Conv2d(1, 2, 3), 7 +class OneNet(nn.Module):
12 - nn.ReLU(True), 8 + def __init__(self, packet_num):
13 - ) 9 + super(OneNet, self).__init__()
14 - self.f2 = nn.Sequential( 10 + IN_DIM = 8 * packet_num # byte
15 - nn.Conv2d(2, 4, 3), 11 + FEATURE_DIM = 32
16 - nn.ReLU(True), 12 +
13 + # transform the given packet into a tensor which is in a good feature space
14 + self.feature_layer = nn.Sequential(
15 + nn.Linear(IN_DIM, 32),
16 + nn.ReLU(),
17 + nn.Linear(32, FEATURE_DIM),
18 + nn.ReLU()
17 ) 19 )
18 - self.f3 = nn.Sequential( 20 +
19 - nn.Conv2d(4, 8, 3), 21 + # generates the current state 's'
20 - nn.ReLU(True), 22 + self.f = nn.Sequential(
23 + nn.Linear(STATE_DIM + FEATURE_DIM, STATE_DIM),
24 + nn.ReLU(),
25 + nn.Linear(STATE_DIM, STATE_DIM),
26 + nn.ReLU()
21 ) 27 )
22 - self.f4 = nn.Sequential( 28 +
23 - nn.Linear(8 * 23 * 23, 2), 29 + # check whether the given packet is malicious
30 + self.g = nn.Sequential(
31 + nn.Linear(STATE_DIM + FEATURE_DIM, 64),
32 + nn.ReLU(),
33 + nn.Linear(64, 64),
34 + nn.ReLU(),
35 + nn.Linear(64, 2),
24 ) 36 )
25 37
26 - def forward(self, x):
27 - x = self.f1(x)
28 - x = self.f2(x)
29 - x = self.f3(x)
30 - x = torch.flatten(x, 1)
31 - x = self.f4(x)
32 - return x
...\ No newline at end of file ...\ No newline at end of file
38 + def forward(self, x, s):
39 + x = self.feature_layer(x)
40 + x = torch.cat((x, s), 1)
41 + s2 = self.f(x)
42 + x2 = self.g(x)
43 +
44 + return x2, s2
...\ No newline at end of file ...\ No newline at end of file
......
1 +import tensorrt as trt
2 +
3 +onnx_file_name = 'bert.onnx'
4 +tensorrt_file_name = 'bert.plan'
5 +fp16_mode = True
6 +# int8_mode = True
7 +TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
8 +EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
9 +
10 +builder = trt.Builder(TRT_LOGGER)
11 +network = builder.create_network(EXPLICIT_BATCH)
12 +parser = trt.OnnxParser(network, TRT_LOGGER)
13 +
14 +builder.max_workspace_size = (1 << 30)
15 +builder.fp16_mode = fp16_mode
16 +# builder.int8_mode = int8_mode
17 +
18 +with open(onnx_file_name, 'rb') as model:
19 + if not parser.parse(model.read()):
20 + for error in range(parser.num_errors):
21 + print (parser.get_error(error))
22 +
23 +# for int8 mode
24 +# print(network.num_layers, network.num_inputs , network.num_outputs)
25 +# for layer_index in range(network.num_layers):
26 +# layer = network[layer_index]
27 +# print(layer.name)
28 +# tensor = layer.get_output(0)
29 +# print(tensor.name)
30 +# tensor.dynamic_range = (0, 255)
31 +
32 + # input_tensor = layer.get_input(0)
33 + # print(input_tensor)
34 + # input_tensor.dynamic_range = (0, 255)
35 +
36 +engine = builder.build_cuda_engine(network)
37 +buf = engine.serialize()
38 +with open(tensorrt_file_name, 'wb') as f:
39 + f.write(buf)
40 +
41 +print('done, trt model')
...\ No newline at end of file ...\ No newline at end of file
1 +import tensorrt as trt
2 +import pycuda.driver as cuda
3 +import numpy as np
4 +import torch
5 +import pycuda.autoinit
6 +import dataset
7 +import model
8 +import time
9 +# print(dir(trt))
10 +
11 +tensorrt_file_name = 'bert.plan'
12 +TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
13 +trt_runtime = trt.Runtime(TRT_LOGGER)
14 +
15 +with open(tensorrt_file_name, 'rb') as f:
16 + engine_data = f.read()
17 +engine = trt_runtime.deserialize_cuda_engine(engine_data)
18 +context = engine.create_execution_context()
19 +
20 +# class HostDeviceMem(object):
21 +# def __init__(self, host_mem, device_mem):
22 +# self.host = host_mem
23 +# self.device = device_mem
24 +
25 +# def __str__(self):
26 +# return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
27 +
28 +# def __repr__(self):
29 +# return self.__str__()
30 +
31 +# inputs, outputs, bindings, stream = [], [], [], []
32 +# for binding in engine:
33 +# size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
34 +# dtype = trt.nptype(engine.get_binding_dtype(binding))
35 +# host_mem = cuda.pagelocked_empty(size, dtype)
36 +# device_mem = cuda.mem_alloc(host_mem.nbytes)
37 +# bindings.append(int(device_mem))
38 +# if engine.binding_is_input(binding):
39 +# inputs.append( HostDeviceMem(host_mem, device_mem) )
40 +# else:
41 +# outputs.append(HostDeviceMem(host_mem, device_mem))
42 +
43 +# input_ids = np.ones([1, 1, 29, 29])
44 +
45 +# numpy_array_input = [input_ids]
46 +# hosts = [input.host for input in inputs]
47 +# trt_types = [trt.int32]
48 +
49 +# for numpy_array, host, trt_types in zip(numpy_array_input, hosts, trt_types):
50 +# numpy_array = np.asarray(numpy_array).ravel()
51 +# np.copyto(host, numpy_array)
52 +
53 +# def do_inference(context, bindings, inputs, outputs, stream):
54 +# [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
55 +# context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
56 +# [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
57 +# stream.synchronize()
58 +# return [out.host for out in outputs]
59 +
60 +# trt_outputs = do_inference(
61 +# context=context,
62 +# bindings=bindings,
63 +# inputs=inputs,
64 +# outputs=outputs,
65 +# stream=stream)
66 +
67 +def infer(context, input_img, output_size, batch_size):
68 + # Load engine
69 + # engine = context.get_engine()
70 + # assert(engine.get_nb_bindings() == 2)
71 + # Convert input data to float32
72 + input_img = input_img.astype(np.float32)
73 + # Create host buffer to receive data
74 + output = np.empty(output_size, dtype = np.float32)
75 + # Allocate device memory
76 + d_input = cuda.mem_alloc(batch_size * input_img.size * input_img.dtype.itemsize)
77 + d_output = cuda.mem_alloc(batch_size * output.size * output.dtype.itemsize)
78 +
79 + bindings = [int(d_input), int(d_output)]
80 + stream = cuda.Stream()
81 + # Transfer input data to device
82 + cuda.memcpy_htod_async(d_input, input_img, stream)
83 + # Execute model
84 + context.execute_async(batch_size, bindings, stream.handle, None)
85 + # Transfer predictions back
86 + cuda.memcpy_dtoh_async(output, d_output, stream)
87 + # Synchronize threads
88 + stream.synchronize()
89 + # Return predictions
90 + return output
91 +
92 +
93 +# kwargs = {"./dataset/DoS_dataset.csv" : './DoS_dataset.txt'}
94 +# train_data_set, data_idx_map, net_class_count, net_data_count, test_data_set = dataset.GetCanDatasetUsingTxtKwarg(100, 0, **kwargs)
95 +# testloader = torch.utils.data.DataLoader(test_data_set, batch_size=256,
96 +# shuffle=False, num_workers=2)
97 +
98 +check_time = time.time()
99 +cnt = 0
100 +temp = np.ones([256, 1, 29, 29])
101 +for idx in range(100):
102 +# for i, (inputs, labels) in enumerate(testloader):
103 + trt_outputs = infer(context, temp, (256, 2), 256)
104 +
105 + print(trt_outputs.shape)
106 + # print(trt_outputs)
107 + # print(np.argmax(trt_outputs, axis=0))
108 + # cnt += 1
109 + # if cnt == 100:
110 + # break
111 +print(time.time() - check_time)
112 +
113 +
114 +tensorrt_file_name = 'bert_int.plan'
115 +TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
116 +trt_runtime = trt.Runtime(TRT_LOGGER)
117 +
118 +with open(tensorrt_file_name, 'rb') as f:
119 + engine_data = f.read()
120 +engine = trt_runtime.deserialize_cuda_engine(engine_data)
121 +context = engine.create_execution_context()
122 +check_time = time.time()
123 +cnt = 0
124 +temp = np.ones([256, 1, 29, 29])
125 +for idx in range(100):
126 +# for i, (inputs, labels) in enumerate(testloader):
127 + trt_outputs = infer(context, temp, (256, 2), 256)
128 +
129 + print(trt_outputs.shape)
130 + # print(trt_outputs)
131 + # print(np.argmax(trt_outputs, axis=0))
132 + # cnt += 1
133 + # if cnt == 100:
134 + # break
135 +print(time.time() - check_time)
136 +
137 +
138 +test_model = model.Net().cuda()
139 +check_time = time.time()
140 +cnt = 0
141 +temp = torch.randn(256, 1, 29, 29).cuda()
142 +for idx in range(100):
143 +# for i, (inputs, labels) in enumerate(testloader):
144 + # inputs = inputs.float().cuda()
145 + normal_outputs = test_model(temp)
146 + # print(normal_outputs)
147 + print(normal_outputs.shape)
148 + cnt += 1
149 + if cnt == 100:
150 + break
151 +print(time.time() - check_time)
152 +
153 +
154 +
155 +import tensorrt as trt
156 +import numpy as np
157 +import pycuda.autoinit
158 +import pycuda.driver as cuda
159 +import time
160 +
161 +model_path = "bert.onnx"
162 +input_size = 32
163 +
164 +TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
165 +
166 +# def build_engine(model_path):
167 +# with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
168 +# builder.max_workspace_size = 1<<20
169 +# builder.max_batch_size = 1
170 +# with open(model_path, "rb") as f:
171 +# parser.parse(f.read())
172 +# engine = builder.build_cuda_engine(network)
173 +# return engine
174 +
175 +def alloc_buf(engine):
176 + # host cpu mem
177 + h_in_size = trt.volume(engine.get_binding_shape(0))
178 + h_out_size = trt.volume(engine.get_binding_shape(1))
179 + h_in_dtype = trt.nptype(engine.get_binding_dtype(0))
180 + h_out_dtype = trt.nptype(engine.get_binding_dtype(1))
181 + in_cpu = cuda.pagelocked_empty(h_in_size, h_in_dtype)
182 + out_cpu = cuda.pagelocked_empty(h_out_size, h_out_dtype)
183 + # allocate gpu mem
184 + in_gpu = cuda.mem_alloc(in_cpu.nbytes)
185 + out_gpu = cuda.mem_alloc(out_cpu.nbytes)
186 + stream = cuda.Stream()
187 + return in_cpu, out_cpu, in_gpu, out_gpu, stream
188 +
189 +
190 +def inference(engine, context, inputs, out_cpu, in_gpu, out_gpu, stream):
191 + # async version
192 + # with engine.create_execution_context() as context: # cost time to initialize
193 + # cuda.memcpy_htod_async(in_gpu, inputs, stream)
194 + # context.execute_async(1, [int(in_gpu), int(out_gpu)], stream.handle, None)
195 + # cuda.memcpy_dtoh_async(out_cpu, out_gpu, stream)
196 + # stream.synchronize()
197 +
198 + # sync version
199 + cuda.memcpy_htod(in_gpu, inputs)
200 + context.execute(1, [int(in_gpu), int(out_gpu)])
201 + cuda.memcpy_dtoh(out_cpu, out_gpu)
202 + return out_cpu
203 +
204 +if __name__ == "__main__":
205 + inputs = np.random.random((1, 1, 29, 29)).astype(np.float32)
206 +
207 + tensorrt_file_name = '/content/drive/My Drive/capstone1/CAN/bert.plan'
208 + TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
209 + trt_runtime = trt.Runtime(TRT_LOGGER)
210 +
211 + with open(tensorrt_file_name, 'rb') as f:
212 + engine_data = f.read()
213 + engine = trt_runtime.deserialize_cuda_engine(engine_data)
214 + # engine = build_engine(model_path)
215 + context = engine.create_execution_context()
216 + for _ in range(10):
217 + t1 = time.time()
218 + in_cpu, out_cpu, in_gpu, out_gpu, stream = alloc_buf(engine)
219 + res = inference(engine, context, inputs.reshape(-1), out_cpu, in_gpu, out_gpu, stream)
220 + print(res)
221 + print("cost time: ", time.time()-t1)
...\ No newline at end of file ...\ No newline at end of file
1 +import model
2 +import torch
3 +
4 +import importlib
5 +importlib.reload(model)
6 +
7 +batch_size = 256
8 +model = model.Net().cuda().eval()
9 +inputs = torch.randn(batch_size, 1, 29, 29, requires_grad=True).cuda()
10 +torch_out = model(inputs)
11 +
12 +torch.onnx.export(
13 + model,
14 + inputs,
15 + 'bert.onnx',
16 + input_names=['inputs'],
17 + output_names=['outputs'],
18 + export_params=True)
19 +
20 +print('done, onnx model')
...\ No newline at end of file ...\ No newline at end of file
This diff is collapsed. Click to expand it.