김건

Resnet18 Use data set change

......@@ -5,6 +5,8 @@ TEST_WAV_DIR = 'test_wavs'
# Feature path
TRAIN_FEAT_DIR = 'feat_logfbank_nfilt40/train'
# TRAIN_FEAT_DIR = '/test/merge_dataset'
# TRAIN_FEAT_DIR = '/test/trainFeature'
TEST_FEAT_DIR = 'feat_logfbank_nfilt40/test'
# Context window size
......
# Wave path
TRAIN_WAV_DIR = '/home/admin/Desktop/read_25h_2/train'
DEV_WAV_DIR = '/home/admin/Desktop/read_25h_2/dev'
TEST_WAV_DIR = 'test_wavs'
# Feature path
# TRAIN_FEAT_DIR = '/test/zeroth/train_data_01/003'
TRAIN_FEAT_DIR = '/test/merge_train_dataset'
# TRAIN_FEAT_DIR = '/test/trainFeature'
# TEST_FEAT_DIR = 'feat_logfbank_nfilt40/test'
TEST_FEAT_DIR = '/test/merge_test_dataset'
# Context window size
NUM_WIN_SIZE = 100 #10
# Settings for feature extraction
USE_LOGSCALE = True
USE_DELTA = False
USE_SCALE = False
SAMPLE_RATE = 16000
FILTER_BANK = 40
\ No newline at end of file
# Wave path
TRAIN_WAV_DIR = '/home/admin/Desktop/read_25h_2/train'
DEV_WAV_DIR = '/home/admin/Desktop/read_25h_2/dev'
TEST_WAV_DIR = 'test_wavs'
# Feature path
# TRAIN_FEAT_DIR = '/test/zeroth/train_data_01/003'
TRAIN_FEAT_DIR = '/test/zeroth_train_dataset'
# TRAIN_FEAT_DIR = '/test/trainFeature'
# TEST_FEAT_DIR = 'feat_logfbank_nfilt40/test'
TEST_FEAT_DIR = '/test/zeroth_test_dataset'
# Context window size
NUM_WIN_SIZE = 100 #10
# Settings for feature extraction
USE_LOGSCALE = True
USE_DELTA = False
USE_SCALE = False
SAMPLE_RATE = 16000
FILTER_BANK = 40
\ No newline at end of file
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import pandas as pd
import math
import os
import configure as c
from DB_wav_reader import read_feats_structure
from SR_Dataset import read_MFB, ToTensorTestInput
from model.model1 import background_resnet
def load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes):
model = background_resnet(embedding_size=embedding_size, num_classes=n_classes)
if use_cuda:
model.cuda()
print('=> loading checkpoint')
# original saved file with DataParallel
checkpoint = torch.load(log_dir + '/checkpoint_' + str(cp_num) + '.pth')
# create new OrderedDict that does not contain `module.`
model.load_state_dict(checkpoint['state_dict'])
model.eval()
return model
def split_enroll_and_test(dataroot_dir):
DB_all = read_feats_structure(dataroot_dir)
enroll_DB = pd.DataFrame()
test_DB = pd.DataFrame()
enroll_DB = DB_all[DB_all['filename'].str.contains('enroll.p')]
test_DB = DB_all[DB_all['filename'].str.contains('test.p')]
# Reset the index
enroll_DB = enroll_DB.reset_index(drop=True)
test_DB = test_DB.reset_index(drop=True)
return enroll_DB, test_DB
def get_embeddings(use_cuda, filename, model, test_frames):
input, label = read_MFB(filename) # input size:(n_frames, n_dims)
tot_segments = math.ceil(len(input)/test_frames) # total number of segments with 'test_frames'
activation = 0
with torch.no_grad():
for i in range(tot_segments):
temp_input = input[i*test_frames:i*test_frames+test_frames]
TT = ToTensorTestInput()
temp_input = TT(temp_input) # size:(1, 1, n_dims, n_frames)
if use_cuda:
temp_input = temp_input.cuda()
temp_activation,_ = model(temp_input)
activation += torch.sum(temp_activation, dim=0, keepdim=True)
activation = l2_norm(activation, 1)
return activation
def l2_norm(input, alpha):
input_size = input.size() # size:(n_frames, dim)
buffer = torch.pow(input, 2) # 2 denotes a squared operation. size:(n_frames, dim)
normp = torch.sum(buffer, 1).add_(1e-10) # size:(n_frames)
norm = torch.sqrt(normp) # size:(n_frames)
_output = torch.div(input, norm.view(-1, 1).expand_as(input))
output = _output.view(input_size)
# Multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf
output = output * alpha
return output
def enroll_per_spk(use_cuda, test_frames, model, DB, embedding_dir):
"""
Output the averaged d-vector for each speaker (enrollment)
Return the dictionary (length of n_spk)
"""
n_files = len(DB) # 10
enroll_speaker_list = sorted(set(DB['speaker_id']))
embeddings = {}
# Aggregates all the activations
print("Start to aggregate all the d-vectors per enroll speaker")
for i in range(n_files):
filename = DB['filename'][i]
spk = DB['speaker_id'][i]
activation = get_embeddings(use_cuda, filename, model, test_frames)
if spk in embeddings:
embeddings[spk] += activation
else:
embeddings[spk] = activation
print("Aggregates the activation (spk : %s)" % (spk))
if not os.path.exists(embedding_dir):
os.makedirs(embedding_dir)
# Save the embeddings
for spk_index in enroll_speaker_list:
embedding_path = os.path.join(embedding_dir, spk_index+'.pth')
torch.save(embeddings[spk_index], embedding_path)
print("Save the embeddings for %s" % (spk_index))
return embeddings
def main():
# Settings
use_cuda = True
log_dir = 'new_model1'
embedding_size = 128
cp_num = 24 # Which checkpoint to use?
n_classes = 241
test_frames = 200
# Load model from checkpoint
model = load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes)
# Get the dataframe for enroll DB
enroll_DB, test_DB = split_enroll_and_test(c.TEST_FEAT_DIR)
# Where to save embeddings
embedding_dir = 'enroll_embeddings1'
# Perform the enrollment and save the results
enroll_per_spk(use_cuda, test_frames, model, enroll_DB, embedding_dir)
""" Test speaker list
'103F3021', '207F2088', '213F5100', '217F3038', '225M4062',
'229M2031', '230M4087', '233F4013', '236M3043', '240M3063'
"""
if __name__ == '__main__':
main()
\ No newline at end of file
......@@ -123,10 +123,10 @@ def main():
"""
spk_list = ['103F3021', '207F2088', '213F5100', '217F3038', '225M4062',\
'229M2031', '230M4087', '233F4013', '236M3043', '240M3063']
'229M2031', '230M4087', '233F4013', '236M3043', '240M3063','777M7777','778M8777']
# Set the test speaker
test_speaker = '230M4087'
test_speaker = '778M8777'
test_path = os.path.join(test_dir, test_speaker, 'test.p')
......
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import pandas as pd
import math
import os
import configure as c
from DB_wav_reader import read_feats_structure
from SR_Dataset import read_MFB, ToTensorTestInput
from model.model1 import background_resnet
def load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes):
model = background_resnet(embedding_size=embedding_size, num_classes=n_classes)
if use_cuda:
model.cuda()
print('=> loading checkpoint')
# original saved file with DataParallel
checkpoint = torch.load(log_dir + '/checkpoint_' + str(cp_num) + '.pth')
# create new OrderedDict that does not contain `module.`
model.load_state_dict(checkpoint['state_dict'])
model.eval()
return model
def split_enroll_and_test(dataroot_dir):
DB_all = read_feats_structure(dataroot_dir)
enroll_DB = pd.DataFrame()
test_DB = pd.DataFrame()
enroll_DB = DB_all[DB_all['filename'].str.contains('enroll.p')]
test_DB = DB_all[DB_all['filename'].str.contains('test.p')]
# Reset the index
enroll_DB = enroll_DB.reset_index(drop=True)
test_DB = test_DB.reset_index(drop=True)
return enroll_DB, test_DB
def load_enroll_embeddings(embedding_dir):
embeddings = {}
for f in os.listdir(embedding_dir):
spk = f.replace('.pth','')
# Select the speakers who are in the 'enroll_spk_list'
embedding_path = os.path.join(embedding_dir, f)
tmp_embeddings = torch.load(embedding_path)
embeddings[spk] = tmp_embeddings
return embeddings
def get_embeddings(use_cuda, filename, model, test_frames):
input, label = read_MFB(filename) # input size:(n_frames, n_dims)
tot_segments = math.ceil(len(input)/test_frames) # total number of segments with 'test_frames'
activation = 0
with torch.no_grad():
for i in range(tot_segments):
temp_input = input[i*test_frames:i*test_frames+test_frames]
TT = ToTensorTestInput()
temp_input = TT(temp_input) # size:(1, 1, n_dims, n_frames)
if use_cuda:
temp_input = temp_input.cuda()
temp_activation,_ = model(temp_input)
activation += torch.sum(temp_activation, dim=0, keepdim=True)
activation = l2_norm(activation, 1)
return activation
def l2_norm(input, alpha):
input_size = input.size() # size:(n_frames, dim)
buffer = torch.pow(input, 2) # 2 denotes a squared operation. size:(n_frames, dim)
normp = torch.sum(buffer, 1).add_(1e-10) # size:(n_frames)
norm = torch.sqrt(normp) # size:(n_frames)
_output = torch.div(input, norm.view(-1, 1).expand_as(input))
output = _output.view(input_size)
# Multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf
output = output * alpha
return output
def perform_identification(use_cuda, model, embeddings, test_filename, test_frames, spk_list):
test_embedding = get_embeddings(use_cuda, test_filename, model, test_frames)
max_score = -10**8
best_spk = None
for spk in spk_list:
score = F.cosine_similarity(test_embedding, embeddings[spk])
score = score.data.cpu().numpy()
if score > max_score:
max_score = score
best_spk = spk
#print("Speaker identification result : %s" %best_spk)
true_spk = test_filename.split('/')[-2].split('_')[0]
print("\n=== Speaker identification ===")
print("True speaker : %s\nPredicted speaker : %s\nResult : %s\n" %(true_spk, best_spk, true_spk==best_spk))
return best_spk
def main():
log_dir = 'new_model1' # Where the checkpoints are saved
embedding_dir = 'enroll_embeddings1' # Where embeddings are saved
test_dir = 'feat_logfbank_nfilt40/test/' # Where test features are saved
# Settings
use_cuda = True # Use cuda or not
embedding_size = 128 # Dimension of speaker embeddings
cp_num = 30 # Which checkpoint to use?
n_classes = 241 # How many speakers in training data?
test_frames = 100 # Split the test utterance
# Load model from checkpoint
model = load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes)
# Get the dataframe for test DB
enroll_DB, test_DB = split_enroll_and_test(c.TEST_FEAT_DIR)
# Load enroll embeddings
embeddings = load_enroll_embeddings(embedding_dir)
""" Test speaker list
'103F3021', '207F2088', '213F5100', '217F3038', '225M4062',
'229M2031', '230M4087', '233F4013', '236M3043', '240M3063'
"""
spk_list = ['103F3021', '207F2088', '213F5100', '217F3038', '225M4062',\
'229M2031', '230M4087', '233F4013', '236M3043', '240M3063','777M7777','778M8777']
# Set the test speaker
test_speaker = '213F5100'
test_path = os.path.join(test_dir, test_speaker, 'test.p')
# Perform the test
best_spk = perform_identification(use_cuda, model, embeddings, test_path, test_frames, spk_list)
if __name__ == '__main__':
main()
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import model.resnet as resnet
class background_resnet(nn.Module):
def __init__(self, embedding_size, num_classes, backbone='resnet18'):
super(background_resnet, self).__init__()
self.backbone = backbone
# copying modules from pretrained models
if backbone == 'resnet50':
self.pretrained = resnet.resnet50(pretrained=False)
elif backbone == 'resnet101':
self.pretrained = resnet.resnet101(pretrained=False)
elif backbone == 'resnet152':
self.pretrained = resnet.resnet152(pretrained=False)
elif backbone == 'resnet18':
self.pretrained = resnet.resnet18(pretrained=False)
elif backbone == 'resnet34':
self.pretrained = resnet.resnet34(pretrained=False)
else:
raise RuntimeError('unknown backbone: {}'.format(backbone))
self.fc0 = nn.Linear(128, embedding_size)
self.bn0 = nn.BatchNorm1d(embedding_size)
self.relu = nn.ReLU()
self.last = nn.Linear(embedding_size, num_classes)
def forward(self, x):
# input x: minibatch x 1 x 40 x 40
x = self.pretrained.conv1(x)
x = self.pretrained.bn1(x)
x = self.pretrained.relu(x)
x = self.pretrained.layer1(x)
x = self.pretrained.layer2(x)
x = self.pretrained.layer3(x)
x = self.pretrained.layer4(x)
out = F.adaptive_avg_pool2d(x,1) # [batch, 128, 1, 1]
out = torch.squeeze(out) # [batch, n_embed]
# flatten the out so that the fully connected layer can be connected from here
out = out.view(x.size(0), -1) # (n_batch, n_embed)
spk_embedding = self.fc0(out)
out = F.relu(self.bn0(spk_embedding)) # [batch, n_embed]
out = self.last(out)
return spk_embedding, out
\ No newline at end of file
......@@ -113,6 +113,7 @@ class ResNet(nn.Module):
self.layer2 = self._make_layer(block, 32, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
self.layer4 = self._make_layer(block, 128, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(1, stride=1)
self.fc = nn.Linear(128 * block.expansion, num_classes)
......
"""Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
and added support for the 1x32x32 mel spectrogram for the speech recognition.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385
"""
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, in_channels=1):
self.inplanes = 16
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 16, kernel_size=7, stride=1, padding=3,
bias=False) # ori : stride = 2
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 16, layers[0])
self.layer2 = self._make_layer(block, 32, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
self.layer4 = self._make_layer(block, 128, layers[3], stride=2)
self.layer5 = self._make_layer(block, 256, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(1, stride=1)
self.fc = nn.Linear(128 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
\ No newline at end of file
This diff is collapsed. Click to expand it.
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import pandas as pd
import math
import os
import configure as c
from DB_wav_reader import read_feats_structure
from SR_Dataset import read_MFB, ToTensorTestInput
from model.model1 import background_resnet
def load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes):
model = background_resnet(embedding_size=embedding_size, num_classes=n_classes)
if use_cuda:
model.cuda()
print('=> loading checkpoint')
# original saved file with DataParallel
checkpoint = torch.load(log_dir + '/checkpoint_' + str(cp_num) + '.pth')
# create new OrderedDict that does not contain `module.`
model.load_state_dict(checkpoint['state_dict'])
model.eval()
return model
def split_enroll_and_test(dataroot_dir):
DB_all = read_feats_structure(dataroot_dir)
enroll_DB = pd.DataFrame()
test_DB = pd.DataFrame()
enroll_DB = DB_all[DB_all['filename'].str.contains('enroll.p')]
test_DB = DB_all[DB_all['filename'].str.contains('test.p')]
# Reset the index
enroll_DB = enroll_DB.reset_index(drop=True)
test_DB = test_DB.reset_index(drop=True)
return enroll_DB, test_DB
def load_enroll_embeddings(embedding_dir):
embeddings = {}
for f in os.listdir(embedding_dir):
spk = f.replace('.pth','')
# Select the speakers who are in the 'enroll_spk_list'
embedding_path = os.path.join(embedding_dir, f)
tmp_embeddings = torch.load(embedding_path)
embeddings[spk] = tmp_embeddings
return embeddings
def get_embeddings(use_cuda, filename, model, test_frames):
input, label = read_MFB(filename) # input size:(n_frames, n_dims)
tot_segments = math.ceil(len(input)/test_frames) # total number of segments with 'test_frames'
activation = 0
with torch.no_grad():
for i in range(tot_segments):
temp_input = input[i*test_frames:i*test_frames+test_frames]
TT = ToTensorTestInput()
temp_input = TT(temp_input) # size:(1, 1, n_dims, n_frames)
if use_cuda:
temp_input = temp_input.cuda()
temp_activation,_ = model(temp_input)
activation += torch.sum(temp_activation, dim=0, keepdim=True)
activation = l2_norm(activation, 1)
return activation
def l2_norm(input, alpha):
input_size = input.size() # size:(n_frames, dim)
buffer = torch.pow(input, 2) # 2 denotes a squared operation. size:(n_frames, dim)
normp = torch.sum(buffer, 1).add_(1e-10) # size:(n_frames)
norm = torch.sqrt(normp) # size:(n_frames)
_output = torch.div(input, norm.view(-1, 1).expand_as(input))
output = _output.view(input_size)
# Multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf
output = output * alpha
return output
def perform_verification(use_cuda, model, embeddings, enroll_speaker, test_filename, test_frames, thres):
enroll_embedding = embeddings[enroll_speaker]
test_embedding = get_embeddings(use_cuda, test_filename, model, test_frames)
score = F.cosine_similarity(test_embedding, enroll_embedding)
score = score.data.cpu().numpy()
if score > thres:
result = 'Accept'
else:
result = 'Reject'
test_spk = test_filename.split('/')[-2].split('_')[0]
print("\n=== Speaker verification ===")
print("True speaker: %s\nClaimed speaker : %s\n\nResult : %s\n" %(enroll_speaker, test_spk, result))
print("Score : %0.4f\nThreshold : %0.2f\n" %(score, thres))
def main():
log_dir = 'new_model1' # Where the checkpoints are saved
embedding_dir = 'enroll_embeddings1' # Where embeddings are saved
test_dir = 'feat_logfbank_nfilt40/test/' # Where test features are saved
# Settings
use_cuda = True # Use cuda or not
embedding_size = 128 # Dimension of speaker embeddings
cp_num = 29 # Which checkpoint to use?
n_classes = 241 # How many speakers in training data?
test_frames = 100 # Split the test utterance
# Load model from checkpoint
model = load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes)
# Get the dataframe for test DB
enroll_DB, test_DB = split_enroll_and_test(c.TEST_FEAT_DIR)
# Load enroll embeddings
embeddings = load_enroll_embeddings(embedding_dir)
""" Test speaker list
'103F3021', '207F2088', '213F5100', '217F3038', '225M4062',
'229M2031', '230M4087', '233F4013', '236M3043', '240M3063'
"""
# Set the true speaker
enroll_speaker = 'zerothfloac'
# Set the claimed speaker
test_speaker = 'zerothfloac'
# Threshold
thres = 0.95
test_path = os.path.join(test_dir, test_speaker, 'test.p')
# Perform the test
perform_verification(use_cuda, model, embeddings, enroll_speaker, test_path, test_frames, thres)
if __name__ == '__main__':
main()