Showing
1 changed file
with
218 additions
and
0 deletions
source/detect.py
0 → 100644
1 | +import argparse | ||
2 | +import time | ||
3 | +from pathlib import Path | ||
4 | + | ||
5 | +import cv2 | ||
6 | +import torch | ||
7 | +import torch.backends.cudnn as cudnn | ||
8 | + | ||
9 | +from models.experimental import attempt_load | ||
10 | +from utils.datasets import LoadStreams, LoadImages | ||
11 | +from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ | ||
12 | + scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box | ||
13 | +from utils.plots import colors, plot_one_box | ||
14 | +from utils.torch_utils import select_device, load_classifier, time_synchronized | ||
15 | + | ||
16 | +import serial | ||
17 | + | ||
18 | +def detect(opt): | ||
19 | + source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | ||
20 | + save_img = not opt.nosave and not source.endswith('.txt') # save inference images | ||
21 | + webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( | ||
22 | + ('rtsp://', 'rtmp://', 'http://', 'https://')) | ||
23 | + | ||
24 | + # Directories | ||
25 | + save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run | ||
26 | + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | ||
27 | + | ||
28 | + # Initialize | ||
29 | + set_logging() | ||
30 | + device = select_device(opt.device) | ||
31 | + half = device.type != 'cpu' # half precision only supported on CUDA | ||
32 | + | ||
33 | + # Load model | ||
34 | + model = attempt_load(weights, map_location=device) # load FP32 model | ||
35 | + stride = int(model.stride.max()) # model stride | ||
36 | + imgsz = check_img_size(imgsz, s=stride) # check img_size | ||
37 | + names = model.module.names if hasattr(model, 'module') else model.names # get class names | ||
38 | + if half: | ||
39 | + model.half() # to FP16 | ||
40 | + | ||
41 | + ser = serial.Serial('/dev/ttyAMA0',115200) | ||
42 | + if(ser.isOpen()): | ||
43 | + print("open") | ||
44 | + | ||
45 | + | ||
46 | + # Second-stage classifier | ||
47 | + classify = False | ||
48 | + if classify: | ||
49 | + modelc = load_classifier(name='resnet101', n=2) # initialize | ||
50 | + modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() | ||
51 | + | ||
52 | + # Set Dataloader | ||
53 | + vid_path, vid_writer = None, None | ||
54 | + if webcam: | ||
55 | + view_img = check_imshow() | ||
56 | + cudnn.benchmark = True # set True to speed up constant image size inference | ||
57 | + dataset = LoadStreams(source, img_size=imgsz, stride=stride) | ||
58 | + else: | ||
59 | + dataset = LoadImages(source, img_size=imgsz, stride=stride) | ||
60 | + | ||
61 | + # Run inference | ||
62 | + if device.type != 'cpu': | ||
63 | + model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once | ||
64 | + t0 = time.time() | ||
65 | + for path, img, im0s, vid_cap in dataset: | ||
66 | + img = torch.from_numpy(img).to(device) | ||
67 | + img = img.half() if half else img.float() # uint8 to fp16/32 | ||
68 | + img /= 255.0 # 0 - 255 to 0.0 - 1.0 | ||
69 | + if img.ndimension() == 3: | ||
70 | + img = img.unsqueeze(0) | ||
71 | + | ||
72 | + # Inference | ||
73 | + t1 = time_synchronized() | ||
74 | + pred = model(img, augment=opt.augment)[0] | ||
75 | + | ||
76 | + # Apply NMS | ||
77 | + pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | ||
78 | + t2 = time_synchronized() | ||
79 | + | ||
80 | + # Apply Classifier | ||
81 | + if classify: | ||
82 | + pred = apply_classifier(pred, modelc, img, im0s) | ||
83 | + | ||
84 | + # Process detections | ||
85 | + for i, det in enumerate(pred): # detections per image | ||
86 | + if webcam: # batch_size >= 1 | ||
87 | + p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count | ||
88 | + else: | ||
89 | + p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) | ||
90 | + | ||
91 | + p = Path(p) # to Path | ||
92 | + save_path = str(save_dir / p.name) # img.jpg | ||
93 | + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt | ||
94 | + s += '%gx%g ' % img.shape[2:] # print string | ||
95 | + gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | ||
96 | + imc = im0.copy() if opt.save_crop else im0 # for opt.save_crop | ||
97 | + | ||
98 | + if len(det): # dectection | ||
99 | + # Rescale boxes from img_size to im0 size | ||
100 | + det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | ||
101 | + | ||
102 | + # Print results | ||
103 | + for c in det[:, -1].unique(): | ||
104 | + n = (det[:, -1] == c).sum() # detections per class | ||
105 | + s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | ||
106 | + | ||
107 | + # distance Measurement/Visualization and Send parameter to STM Board | ||
108 | + for *xyxy, conf, cls in reversed(det): | ||
109 | + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | ||
110 | + | ||
111 | + w1 = 0.4 # w1 : 1m에서 측정한 Cart b-box width | ||
112 | + h1 = 0.44 # h1 : 1m에서 측정한 Cart b-box height | ||
113 | + std = w1 / h1 | ||
114 | + | ||
115 | + # width값의 오차율이 height보다 작을 떄 | ||
116 | + if std <= xywh[2] / xywh[3]: | ||
117 | + dis = round(w1 / xywh[2] * 100) | ||
118 | + | ||
119 | + # width값의 오차율이 height보다 클 때 | ||
120 | + else: | ||
121 | + dis = round(h1 / xywh[3] * 100) | ||
122 | + | ||
123 | + if dis < 70: # 전방 객체와의 거리가 0.7m 미만이면 | ||
124 | + ser.write(serial.to_bytes([int('1', 16)])) # send parameter 1 to STM Board | ||
125 | + elif 70 <= dis and dis < 100: # 전방 객체와의 거리가 0.7m ~ 1m 이면 | ||
126 | + ser.write(serial.to_bytes([int('2', 16)])) # send parameter 2 to STM Board | ||
127 | + elif 100 <= dis and dis < 150: # 전방 객체와의 거리가 1m ~ 1.5m 이면 | ||
128 | + ser.write(serial.to_bytes([int('3', 16)])) # send parameter 3 to STM Board | ||
129 | + else: # 전방 객체와의 거리가 1,5m 이상이면 | ||
130 | + ser.write(serial.to_bytes([int('4', 16)])) # send parameter 4 to STM Board | ||
131 | + | ||
132 | + if save_txt: # Write to file | ||
133 | + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | ||
134 | + line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format | ||
135 | + with open(txt_path + '.txt', 'a') as f: | ||
136 | + f.write(('%g ' * len(line)).rstrip() % line + '\n') | ||
137 | + | ||
138 | + if save_img or opt.save_crop or view_img: # Add bbox to image | ||
139 | + c = int(cls) # integer class | ||
140 | + | ||
141 | + # Class & Conf & Distance Visualization | ||
142 | + label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f} {dis:.2f}') | ||
143 | + | ||
144 | + plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness) | ||
145 | + if opt.save_crop: | ||
146 | + save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | ||
147 | + else: # not yet detection | ||
148 | + ser.write(serial.to_bytes([int('4', 16)])) # send parameter 4 to STM Board | ||
149 | + | ||
150 | + # Print time (inference + NMS) | ||
151 | + print(f'{s}Done. ({t2 - t1:.3f}s)') | ||
152 | + | ||
153 | + # Stream results | ||
154 | + if view_img: | ||
155 | + cv2.imshow(str(p), im0) | ||
156 | + cv2.waitKey(1) # 1 millisecond | ||
157 | + | ||
158 | + # Save results (image with detections) | ||
159 | + if save_img: | ||
160 | + if dataset.mode == 'image': | ||
161 | + cv2.imwrite(save_path, im0) | ||
162 | + else: # 'video' or 'stream' | ||
163 | + if vid_path != save_path: # new video | ||
164 | + vid_path = save_path | ||
165 | + if isinstance(vid_writer, cv2.VideoWriter): | ||
166 | + vid_writer.release() # release previous video writer | ||
167 | + if vid_cap: # video | ||
168 | + fps = vid_cap.get(cv2.CAP_PROP_FPS) | ||
169 | + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
170 | + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
171 | + else: # stream | ||
172 | + fps, w, h = 30, im0.shape[1], im0.shape[0] | ||
173 | + save_path += '.mp4' | ||
174 | + vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | ||
175 | + vid_writer.write(im0) | ||
176 | + | ||
177 | + if save_txt or save_img: | ||
178 | + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | ||
179 | + print(f"Results saved to {save_dir}{s}") | ||
180 | + | ||
181 | + print(f'Done. ({time.time() - t0:.3f}s)') | ||
182 | + | ||
183 | + ser.close() | ||
184 | + | ||
185 | +if __name__ == '__main__': | ||
186 | + parser = argparse.ArgumentParser() | ||
187 | + parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') | ||
188 | + parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam | ||
189 | + parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | ||
190 | + parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | ||
191 | + parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | ||
192 | + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | ||
193 | + parser.add_argument('--view-img', action='store_true', help='display results') | ||
194 | + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | ||
195 | + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | ||
196 | + parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') | ||
197 | + parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | ||
198 | + parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | ||
199 | + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | ||
200 | + parser.add_argument('--augment', action='store_true', help='augmented inference') | ||
201 | + parser.add_argument('--update', action='store_true', help='update all models') | ||
202 | + parser.add_argument('--project', default='runs/detect', help='save results to project/name') | ||
203 | + parser.add_argument('--name', default='exp', help='save results to project/name') | ||
204 | + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | ||
205 | + parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') | ||
206 | + parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') | ||
207 | + parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') | ||
208 | + opt = parser.parse_args() | ||
209 | + print(opt) | ||
210 | + check_requirements(exclude=('tensorboard', 'pycocotools', 'thop')) | ||
211 | + | ||
212 | + with torch.no_grad(): | ||
213 | + if opt.update: # update all models (to fix SourceChangeWarning) | ||
214 | + for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: | ||
215 | + detect(opt=opt) | ||
216 | + strip_optimizer(opt.weights) | ||
217 | + else: | ||
218 | + detect(opt=opt) |
-
Please register or login to post a comment