신동해

(add) detect.py

1 +import argparse
2 +import time
3 +from pathlib import Path
4 +
5 +import cv2
6 +import torch
7 +import torch.backends.cudnn as cudnn
8 +
9 +from models.experimental import attempt_load
10 +from utils.datasets import LoadStreams, LoadImages
11 +from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
12 + scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
13 +from utils.plots import colors, plot_one_box
14 +from utils.torch_utils import select_device, load_classifier, time_synchronized
15 +
16 +import serial
17 +
18 +def detect(opt):
19 + source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
20 + save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21 + webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22 + ('rtsp://', 'rtmp://', 'http://', 'https://'))
23 +
24 + # Directories
25 + save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
26 + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27 +
28 + # Initialize
29 + set_logging()
30 + device = select_device(opt.device)
31 + half = device.type != 'cpu' # half precision only supported on CUDA
32 +
33 + # Load model
34 + model = attempt_load(weights, map_location=device) # load FP32 model
35 + stride = int(model.stride.max()) # model stride
36 + imgsz = check_img_size(imgsz, s=stride) # check img_size
37 + names = model.module.names if hasattr(model, 'module') else model.names # get class names
38 + if half:
39 + model.half() # to FP16
40 +
41 + ser = serial.Serial('/dev/ttyAMA0',115200)
42 + if(ser.isOpen()):
43 + print("open")
44 +
45 +
46 + # Second-stage classifier
47 + classify = False
48 + if classify:
49 + modelc = load_classifier(name='resnet101', n=2) # initialize
50 + modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
51 +
52 + # Set Dataloader
53 + vid_path, vid_writer = None, None
54 + if webcam:
55 + view_img = check_imshow()
56 + cudnn.benchmark = True # set True to speed up constant image size inference
57 + dataset = LoadStreams(source, img_size=imgsz, stride=stride)
58 + else:
59 + dataset = LoadImages(source, img_size=imgsz, stride=stride)
60 +
61 + # Run inference
62 + if device.type != 'cpu':
63 + model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
64 + t0 = time.time()
65 + for path, img, im0s, vid_cap in dataset:
66 + img = torch.from_numpy(img).to(device)
67 + img = img.half() if half else img.float() # uint8 to fp16/32
68 + img /= 255.0 # 0 - 255 to 0.0 - 1.0
69 + if img.ndimension() == 3:
70 + img = img.unsqueeze(0)
71 +
72 + # Inference
73 + t1 = time_synchronized()
74 + pred = model(img, augment=opt.augment)[0]
75 +
76 + # Apply NMS
77 + pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
78 + t2 = time_synchronized()
79 +
80 + # Apply Classifier
81 + if classify:
82 + pred = apply_classifier(pred, modelc, img, im0s)
83 +
84 + # Process detections
85 + for i, det in enumerate(pred): # detections per image
86 + if webcam: # batch_size >= 1
87 + p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
88 + else:
89 + p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
90 +
91 + p = Path(p) # to Path
92 + save_path = str(save_dir / p.name) # img.jpg
93 + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
94 + s += '%gx%g ' % img.shape[2:] # print string
95 + gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
96 + imc = im0.copy() if opt.save_crop else im0 # for opt.save_crop
97 +
98 + if len(det): # dectection
99 + # Rescale boxes from img_size to im0 size
100 + det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
101 +
102 + # Print results
103 + for c in det[:, -1].unique():
104 + n = (det[:, -1] == c).sum() # detections per class
105 + s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
106 +
107 + # distance Measurement/Visualization and Send parameter to STM Board
108 + for *xyxy, conf, cls in reversed(det):
109 + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
110 +
111 + w1 = 0.4 # w1 : 1m에서 측정한 Cart b-box width
112 + h1 = 0.44 # h1 : 1m에서 측정한 Cart b-box height
113 + std = w1 / h1
114 +
115 + # width값의 오차율이 height보다 작을 떄
116 + if std <= xywh[2] / xywh[3]:
117 + dis = round(w1 / xywh[2] * 100)
118 +
119 + # width값의 오차율이 height보다 클 때
120 + else:
121 + dis = round(h1 / xywh[3] * 100)
122 +
123 + if dis < 70: # 전방 객체와의 거리가 0.7m 미만이면
124 + ser.write(serial.to_bytes([int('1', 16)])) # send parameter 1 to STM Board
125 + elif 70 <= dis and dis < 100: # 전방 객체와의 거리가 0.7m ~ 1m 이면
126 + ser.write(serial.to_bytes([int('2', 16)])) # send parameter 2 to STM Board
127 + elif 100 <= dis and dis < 150: # 전방 객체와의 거리가 1m ~ 1.5m 이면
128 + ser.write(serial.to_bytes([int('3', 16)])) # send parameter 3 to STM Board
129 + else: # 전방 객체와의 거리가 1,5m 이상이면
130 + ser.write(serial.to_bytes([int('4', 16)])) # send parameter 4 to STM Board
131 +
132 + if save_txt: # Write to file
133 + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
134 + line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
135 + with open(txt_path + '.txt', 'a') as f:
136 + f.write(('%g ' * len(line)).rstrip() % line + '\n')
137 +
138 + if save_img or opt.save_crop or view_img: # Add bbox to image
139 + c = int(cls) # integer class
140 +
141 + # Class & Conf & Distance Visualization
142 + label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f} {dis:.2f}')
143 +
144 + plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
145 + if opt.save_crop:
146 + save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
147 + else: # not yet detection
148 + ser.write(serial.to_bytes([int('4', 16)])) # send parameter 4 to STM Board
149 +
150 + # Print time (inference + NMS)
151 + print(f'{s}Done. ({t2 - t1:.3f}s)')
152 +
153 + # Stream results
154 + if view_img:
155 + cv2.imshow(str(p), im0)
156 + cv2.waitKey(1) # 1 millisecond
157 +
158 + # Save results (image with detections)
159 + if save_img:
160 + if dataset.mode == 'image':
161 + cv2.imwrite(save_path, im0)
162 + else: # 'video' or 'stream'
163 + if vid_path != save_path: # new video
164 + vid_path = save_path
165 + if isinstance(vid_writer, cv2.VideoWriter):
166 + vid_writer.release() # release previous video writer
167 + if vid_cap: # video
168 + fps = vid_cap.get(cv2.CAP_PROP_FPS)
169 + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
170 + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
171 + else: # stream
172 + fps, w, h = 30, im0.shape[1], im0.shape[0]
173 + save_path += '.mp4'
174 + vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
175 + vid_writer.write(im0)
176 +
177 + if save_txt or save_img:
178 + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
179 + print(f"Results saved to {save_dir}{s}")
180 +
181 + print(f'Done. ({time.time() - t0:.3f}s)')
182 +
183 + ser.close()
184 +
185 +if __name__ == '__main__':
186 + parser = argparse.ArgumentParser()
187 + parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
188 + parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
189 + parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
190 + parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
191 + parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
192 + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
193 + parser.add_argument('--view-img', action='store_true', help='display results')
194 + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
195 + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
196 + parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
197 + parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
198 + parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
199 + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
200 + parser.add_argument('--augment', action='store_true', help='augmented inference')
201 + parser.add_argument('--update', action='store_true', help='update all models')
202 + parser.add_argument('--project', default='runs/detect', help='save results to project/name')
203 + parser.add_argument('--name', default='exp', help='save results to project/name')
204 + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
205 + parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
206 + parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
207 + parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
208 + opt = parser.parse_args()
209 + print(opt)
210 + check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
211 +
212 + with torch.no_grad():
213 + if opt.update: # update all models (to fix SourceChangeWarning)
214 + for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
215 + detect(opt=opt)
216 + strip_optimizer(opt.weights)
217 + else:
218 + detect(opt=opt)