신동해

(add) main_arm.c, main_cart.c

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "i2c.h"
#include "i2s.h"
#include "spi.h"
#include "tim.h"
#include "usart.h"
#include "usb_host.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdbool.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
bool distance_flag = false;
int grab_mode = 0;
uint8_t rx3_data = 0;
uint8_t tmp_stop = 1;
uint8_t tmp_speed1 = 2;
uint8_t tmp_speed2 = 3;
uint8_t tmp_speed3 = 4;
int MOTOR_PWM[5];
int MOTOR_PWM_MEAN[5];
int MOTOR_PWM_MAX[5];
int MOTOR_PWM_MIN[5];
int mode[5]={1,1,1,1,1};
char direction;
char response;
volatile uint32_t distance;
#define Delay_ms HAL_Delay
#define millis() HAL_GetTick()
#define SYS_CLOCK 168
#define SYSTICK_LOAD 167999
__IO uint32_t uwTick=0;
extern __IO uint32_t uwTick;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_NVIC_Init(void);
void MX_USB_HOST_Process(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint32_t micros() {
return (uwTick&0x3FFFFF)*1000 + (SYSTICK_LOAD-SysTick->VAL)/SYS_CLOCK;
}
void Delay_us(uint32_t us) {
uint32_t temp = micros();
uint32_t comp = temp + us;
uint8_t flag = 0;
while(comp > temp){
if(((uwTick&0x3FFFFF)==0)&&(flag==0)){
flag = 1;
}
if(flag) temp = micros() + 0x400000UL * 1000;
else temp = micros();
}
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) //External interrupt for Sonar
{
static uint32_t ss=0;
uint32_t temp = GPIOC->IDR & 0x0002;//PC1이니까 2^(1)=2
switch (temp) {
case 0x0002:
ss = micros();
break;
case 0x0000 :
distance = (micros() - ss) / 58;
if(distance <= 2){
distance_flag = true;
}
break;
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_I2S3_Init();
MX_SPI1_Init();
MX_TIM3_Init();
MX_TIM12_Init();
MX_USB_HOST_Init();
MX_TIM1_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
/* Initialize interrupts */
MX_NVIC_Init();
/* USER CODE BEGIN 2 */
//raspberryPi to robotArm
HAL_UART_Receive_IT(&huart3,&rx3_data,1);
//Robot Arm
HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim12,TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim12,TIM_CHANNEL_2);
//SONAR
HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
TIM3->CCR3=300; // 1 top
TIM12->CCR1=350; //2
TIM12->CCR2=300; // 3
TIM3->CCR2= 300; //4
TIM3->CCR1 = 500; // 5
if(rx3_data == 1){ // 전방 차량과의 거리가 70cm 미만일 때 stm_cart에 신호값 1 전달
HAL_UART_Transmit(&huart2, &tmp_stop, 1, 100);
}
else if(rx3_data == 2){ // 전방 차량과의 거리가 70cm 이상 100cm 미만일 때 stm_cart에 신호값 2 전달
HAL_UART_Transmit(&huart2, &tmp_speed1, 1, 100);
}
else if(rx3_data == 3){ // 전방 차량과의 거리가 100cm 이상 150cm 미만일 stm_cart에 신호값 3 전달
HAL_UART_Transmit(&huart2, &tmp_speed2, 1, 100);
}
else (rx3_data == 4){ // 전방에 차량이 없거나 거리가 150cm 이상일 때 stm_cart에 신호값 4 전달
HAL_UART_Transmit(&huart2, &tmp_speed3, 1, 100);
}
distance_flag = false;
rx3_data = 0;
/* USER CODE END WHILE */
MX_USB_HOST_Process();
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2S;
PeriphClkInitStruct.PLLI2S.PLLI2SN = 192;
PeriphClkInitStruct.PLLI2S.PLLI2SR = 2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief NVIC Configuration.
* @retval None
*/
static void MX_NVIC_Init(void)
{
/* EXTI1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(EXTI1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI1_IRQn);
/* USART3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);
}
/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART3){
HAL_UART_Receive_IT(&huart3,&rx3_data,1);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/* USER CODE BEGIN Header */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <math.h>
#include <stdbool.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
uint8_t rx2_data = 0;
uint16_t speed = 6000;
uint16_t speed_LR = 9000;
uint16_t speed_turn = 4000;
uint16_t speed_user = 2000;
uint32_t desired_speed = 3000;
uint32_t MOTER_PWM[4] = {0};
uint32_t Kp = 1;
uint32_t encoder_cnt[4] = {0};
uint32_t encoder_speed[4] = {0};
int32_t error_speed[4] = {0};
int32_t PID_speed[4] = {0};
uint32_t old_PID_speed[4] = {3000, 3000, 3000, 3000};
/***********lidar************/
//response data
bool scan_start = false;
uint8_t rx3_start[7] = {0};
uint8_t rx3_data[5] = {0};
uint8_t Q = 0;
bool S = false;
uint16_t angle;
uint16_t d;
uint16_t distance[360] = {0};
int16_t avg_DIFF = 0;
//protocal
uint8_t scan_command[2] = {0xA5,0x20};
uint8_t stop_command[2] = {0xA5,0x25};
uint8_t soft_reboot[2] = {0xA5,0x40};
uint8_t scan_express[2] = {0xA5,0x82};
uint8_t scan_force[2] = {0xA5,0x21};
uint8_t device_info[2] = {0xA5,0x50};
uint8_t health_status[2] = {0xA5,0x52};
uint8_t sample_rate[2] = {0xA5,0x59};
uint8_t scan_response[7] = {0xa5, 0x5a, 0x5, 0x0, 0x0, 0x40, 0x81};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_NVIC_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
bool array_element_of_index_equal(uint8_t a[], uint8_t b[], uint8_t size) {
uint8_t i;
for(i=0; i<size; i++){
if( a[i] != b[i] )
return false;
}
return true;
}
int16_t array_avg_compare(uint16_t distance[]){
uint32_t sum_R = 0;
uint32_t sum_L = 0;
uint8_t len_L = 0;
uint8_t len_R = 0;
uint16_t avg_R = 0;
uint16_t avg_L = 0;
int16_t avg_diff = 0;
for(int i=0; i<90; i++){
sum_R += distance[i];
if(distance[i]!=0){
len_R++;
}
}
avg_R = sum_R/len_R;
for(int i=270; i<360; i++){
sum_L += distance[i];
if(distance[i]!=0){
len_L++;
}
}
avg_L = sum_L/len_L;
avg_diff = avg_R - avg_L; //왼쪽 거리가 클때 -
return avg_diff;
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) //Timer interrupt every 20ms
{
/*if(htim->Instance == TIM6){
//HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_SET);
encoder_cnt[0] = TIM2->CNT;
TIM2->CNT=0;
encoder_cnt[1] = TIM3->CNT;
TIM3->CNT=0;
encoder_cnt[2] = TIM4->CNT;
TIM4->CNT=0;
encoder_cnt[3] = TIM5->CNT;
TIM5->CNT=0;
encoder_speed[0] = 164.18 * exp(0.0112*encoder_cnt[0]);
encoder_speed[1] = 164.18 * exp(0.0112*encoder_cnt[1]);
encoder_speed[2] = 164.18 * exp(0.0112*encoder_cnt[2]);
encoder_speed[3] = 164.18 * exp(0.0112*encoder_cnt[3]);
error_speed[0] = desired_speed - encoder_speed[0];
error_speed[1] = desired_speed - encoder_speed[1];
error_speed[2] = desired_speed - encoder_speed[2];
error_speed[3] = desired_speed - encoder_speed[3];
PID_speed[0] = old_PID_speed[0] + Kp*error_speed[0];
PID_speed[1] = old_PID_speed[1] + Kp*error_speed[1];
PID_speed[2] = old_PID_speed[2] + Kp*error_speed[2];
PID_speed[3] = old_PID_speed[3] + Kp*error_speed[3];
old_PID_speed[0] = PID_speed[0];
old_PID_speed[1] = PID_speed[1];
old_PID_speed[2] = PID_speed[2];
old_PID_speed[3] = PID_speed[3];
}
*/
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_TIM6_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_TIM5_Init();
/* Initialize interrupts */
MX_NVIC_Init();
/* USER CODE BEGIN 2 */
HAL_Delay(3000);
//Initialize for motor PWM
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4);
//Initialize for motor direction
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, RESET);
//Initialize for encoder count value
TIM2->CNT = 0;
TIM3->CNT = 0;
TIM4->CNT = 0;
TIM5->CNT = 0;
//Initialize for Encoder
HAL_TIM_Encoder_Start(&htim2, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim5, TIM_CHANNEL_ALL);
//Initialize for timer interrupt initialization for Encoder (50ms)
HAL_TIM_Base_Start_IT(&htim6);
//LIDAR_scan_start
//HAL_UART_Transmit(&huart3, &scan_command, 2, 100);
HAL_UART_Transmit(&huart3, &scan_command, 2, 100);
//robotArm to Cart
HAL_UART_Receive_IT(&huart2,&rx2_data,1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, RESET);
while (1)
{
if(rx2_data == 1){ // 전방 카트와의 거리가 70cm 미만일 때 -> 정지
TIM1->CCR1 = 0;
TIM1->CCR2 = 0;
TIM1->CCR3 = 0;
TIM1->CCR4 = 0;
} else if(rx2_data == 2){ // 전방 카트와의 거리가 70cm 이상 100cm 미만일 때 -> speed = 2400기준 16%씩 감소
if (speed_user > 400){
speed_user -= 400;
}
else{
speed_user = 0
}
TIM1->CCR1 = speed_user;
TIM1->CCR2 = speed_user;
TIM1->CCR3 = speed_user;
TIM1->CCR4 = speed_user;
HAL_Delay(500);
} else if(rx2_data == 3){ // 전방 카트와의 거리가 100cm 이상 150cm 미만일 때 -> speed = 2400기준 8%씩 감소
if (speed_user > 200){
speed_user -= 200;
}
TIM1->CCR1 = speed_user;
TIM1->CCR2 = speed_user;
TIM1->CCR3 = speed_user;
TIM1->CCR4 = speed_user;
HAL_Delay(500);
} else if(rx2_data == 4){ // 전방에 카트가 없거나 거리가 150cm 이상일 때 -> speed = 2400기준 33%씩 증가
if (speed_user < 1600) {
speed_user = 2400;
}
else{
speed_user += 800;
}
TIM1->CCR1 = speed_user;
TIM1->CCR2 = speed_user;
TIM1->CCR3 = speed_user;
TIM1->CCR4 = speed_user;
HAL_Delay(500);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief NVIC Configuration.
* @retval None
*/
static void MX_NVIC_Init(void)
{
/* USART2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* TIM6_DAC_IRQn interrupt configuration */
HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);
}
/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART2){
HAL_UART_Receive_IT(&huart2,&rx2_data,1);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/