Showing
3 changed files
with
1 additions
and
2013 deletions
1 | -/**************************************************************************** | ||
2 | - * | ||
3 | - * Copyright (c) 2015-2021 PX4 Development Team. All rights reserved. | ||
4 | - * | ||
5 | - * Redistribution and use in source and binary forms, with or without | ||
6 | - * modification, are permitted provided that the following conditions | ||
7 | - * are met: | ||
8 | - * | ||
9 | - * 1. Redistributions of source code must retain the above copyright | ||
10 | - * notice, this list of conditions and the following disclaimer. | ||
11 | - * 2. Redistributions in binary form must reproduce the above copyright | ||
12 | - * notice, this list of conditions and the following disclaimer in | ||
13 | - * the documentation and/or other materials provided with the | ||
14 | - * distribution. | ||
15 | - * 3. Neither the name PX4 nor the names of its contributors may be | ||
16 | - * used to endorse or promote products derived from this software | ||
17 | - * without specific prior written permission. | ||
18 | - * | ||
19 | - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
20 | - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
21 | - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | ||
22 | - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | ||
23 | - * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | ||
24 | - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | ||
25 | - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | ||
26 | - * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | ||
27 | - * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
28 | - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | ||
29 | - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
30 | - * POSSIBILITY OF SUCH DAMAGE. | ||
31 | - * | ||
32 | - ****************************************************************************/ | ||
33 | - | ||
34 | -#include "EKF2.hpp" | ||
35 | -#include <iostream> | ||
36 | -using namespace time_literals; | ||
37 | -using math::constrain; | ||
38 | -using matrix::Eulerf; | ||
39 | -using matrix::Quatf; | ||
40 | -using matrix::Vector3f; | ||
41 | - | ||
42 | -pthread_mutex_t ekf2_module_mutex = PTHREAD_MUTEX_INITIALIZER; | ||
43 | -static px4::atomic<EKF2 *> _objects[EKF2_MAX_INSTANCES] {}; | ||
44 | -#if !defined(CONSTRAINED_FLASH) | ||
45 | -static px4::atomic<EKF2Selector *> _ekf2_selector {nullptr}; | ||
46 | -#endif // !CONSTRAINED_FLASH | ||
47 | -static int hold=0; | ||
48 | -EKF2::EKF2(bool multi_mode, const px4::wq_config_t &config, bool replay_mode): | ||
49 | - ModuleParams(nullptr), | ||
50 | - ScheduledWorkItem(MODULE_NAME, config), | ||
51 | - _replay_mode(replay_mode && !multi_mode), | ||
52 | - _multi_mode(multi_mode), | ||
53 | - _instance(multi_mode ? -1 : 0), | ||
54 | - _attitude_pub(multi_mode ? ORB_ID(estimator_attitude) : ORB_ID(vehicle_attitude)), | ||
55 | - _local_position_pub(multi_mode ? ORB_ID(estimator_local_position) : ORB_ID(vehicle_local_position)), | ||
56 | - _global_position_pub(multi_mode ? ORB_ID(estimator_global_position) : ORB_ID(vehicle_global_position)), | ||
57 | - _odometry_pub(multi_mode ? ORB_ID(estimator_odometry) : ORB_ID(vehicle_odometry)), | ||
58 | - _wind_pub(multi_mode ? ORB_ID(estimator_wind) : ORB_ID(wind)), | ||
59 | - _params(_ekf.getParamHandle()), | ||
60 | - _param_ekf2_min_obs_dt(_params->sensor_interval_min_ms), | ||
61 | - _param_ekf2_mag_delay(_params->mag_delay_ms), | ||
62 | - _param_ekf2_baro_delay(_params->baro_delay_ms), | ||
63 | - _param_ekf2_gps_delay(_params->gps_delay_ms), | ||
64 | - _param_ekf2_of_delay(_params->flow_delay_ms), | ||
65 | - _param_ekf2_rng_delay(_params->range_delay_ms), | ||
66 | - _param_ekf2_asp_delay(_params->airspeed_delay_ms), | ||
67 | - _param_ekf2_ev_delay(_params->ev_delay_ms), | ||
68 | - _param_ekf2_avel_delay(_params->auxvel_delay_ms), | ||
69 | - _param_ekf2_gyr_noise(_params->gyro_noise), | ||
70 | - _param_ekf2_acc_noise(_params->accel_noise), | ||
71 | - _param_ekf2_gyr_b_noise(_params->gyro_bias_p_noise), | ||
72 | - _param_ekf2_acc_b_noise(_params->accel_bias_p_noise), | ||
73 | - _param_ekf2_mag_e_noise(_params->mage_p_noise), | ||
74 | - _param_ekf2_mag_b_noise(_params->magb_p_noise), | ||
75 | - _param_ekf2_wind_noise(_params->wind_vel_p_noise), | ||
76 | - _param_ekf2_terr_noise(_params->terrain_p_noise), | ||
77 | - _param_ekf2_terr_grad(_params->terrain_gradient), | ||
78 | - _param_ekf2_gps_v_noise(_params->gps_vel_noise), | ||
79 | - _param_ekf2_gps_p_noise(_params->gps_pos_noise), | ||
80 | - _param_ekf2_noaid_noise(_params->pos_noaid_noise), | ||
81 | - _param_ekf2_baro_noise(_params->baro_noise), | ||
82 | - _param_ekf2_baro_gate(_params->baro_innov_gate), | ||
83 | - _param_ekf2_gnd_eff_dz(_params->gnd_effect_deadzone), | ||
84 | - _param_ekf2_gnd_max_hgt(_params->gnd_effect_max_hgt), | ||
85 | - _param_ekf2_gps_p_gate(_params->gps_pos_innov_gate), | ||
86 | - _param_ekf2_gps_v_gate(_params->gps_vel_innov_gate), | ||
87 | - _param_ekf2_tas_gate(_params->tas_innov_gate), | ||
88 | - _param_ekf2_head_noise(_params->mag_heading_noise), | ||
89 | - _param_ekf2_mag_noise(_params->mag_noise), | ||
90 | - _param_ekf2_eas_noise(_params->eas_noise), | ||
91 | - _param_ekf2_beta_gate(_params->beta_innov_gate), | ||
92 | - _param_ekf2_beta_noise(_params->beta_noise), | ||
93 | - _param_ekf2_mag_decl(_params->mag_declination_deg), | ||
94 | - _param_ekf2_hdg_gate(_params->heading_innov_gate), | ||
95 | - _param_ekf2_mag_gate(_params->mag_innov_gate), | ||
96 | - _param_ekf2_decl_type(_params->mag_declination_source), | ||
97 | - _param_ekf2_mag_type(_params->mag_fusion_type), | ||
98 | - _param_ekf2_mag_acclim(_params->mag_acc_gate), | ||
99 | - _param_ekf2_mag_yawlim(_params->mag_yaw_rate_gate), | ||
100 | - _param_ekf2_gps_check(_params->gps_check_mask), | ||
101 | - _param_ekf2_req_eph(_params->req_hacc), | ||
102 | - _param_ekf2_req_epv(_params->req_vacc), | ||
103 | - _param_ekf2_req_sacc(_params->req_sacc), | ||
104 | - _param_ekf2_req_nsats(_params->req_nsats), | ||
105 | - _param_ekf2_req_pdop(_params->req_pdop), | ||
106 | - _param_ekf2_req_hdrift(_params->req_hdrift), | ||
107 | - _param_ekf2_req_vdrift(_params->req_vdrift), | ||
108 | - _param_ekf2_aid_mask(_params->fusion_mode), | ||
109 | - _param_ekf2_hgt_mode(_params->vdist_sensor_type), | ||
110 | - _param_ekf2_terr_mask(_params->terrain_fusion_mode), | ||
111 | - _param_ekf2_noaid_tout(_params->valid_timeout_max), | ||
112 | - _param_ekf2_rng_noise(_params->range_noise), | ||
113 | - _param_ekf2_rng_sfe(_params->range_noise_scaler), | ||
114 | - _param_ekf2_rng_gate(_params->range_innov_gate), | ||
115 | - _param_ekf2_min_rng(_params->rng_gnd_clearance), | ||
116 | - _param_ekf2_rng_pitch(_params->rng_sens_pitch), | ||
117 | - _param_ekf2_rng_aid(_params->range_aid), | ||
118 | - _param_ekf2_rng_a_vmax(_params->max_vel_for_range_aid), | ||
119 | - _param_ekf2_rng_a_hmax(_params->max_hagl_for_range_aid), | ||
120 | - _param_ekf2_rng_a_igate(_params->range_aid_innov_gate), | ||
121 | - _param_ekf2_rng_qlty_t(_params->range_valid_quality_s), | ||
122 | - _param_ekf2_evv_gate(_params->ev_vel_innov_gate), | ||
123 | - _param_ekf2_evp_gate(_params->ev_pos_innov_gate), | ||
124 | - _param_ekf2_of_n_min(_params->flow_noise), | ||
125 | - _param_ekf2_of_n_max(_params->flow_noise_qual_min), | ||
126 | - _param_ekf2_of_qmin(_params->flow_qual_min), | ||
127 | - _param_ekf2_of_gate(_params->flow_innov_gate), | ||
128 | - _param_ekf2_imu_pos_x(_params->imu_pos_body(0)), | ||
129 | - _param_ekf2_imu_pos_y(_params->imu_pos_body(1)), | ||
130 | - _param_ekf2_imu_pos_z(_params->imu_pos_body(2)), | ||
131 | - _param_ekf2_gps_pos_x(_params->gps_pos_body(0)), | ||
132 | - _param_ekf2_gps_pos_y(_params->gps_pos_body(1)), | ||
133 | - _param_ekf2_gps_pos_z(_params->gps_pos_body(2)), | ||
134 | - _param_ekf2_rng_pos_x(_params->rng_pos_body(0)), | ||
135 | - _param_ekf2_rng_pos_y(_params->rng_pos_body(1)), | ||
136 | - _param_ekf2_rng_pos_z(_params->rng_pos_body(2)), | ||
137 | - _param_ekf2_of_pos_x(_params->flow_pos_body(0)), | ||
138 | - _param_ekf2_of_pos_y(_params->flow_pos_body(1)), | ||
139 | - _param_ekf2_of_pos_z(_params->flow_pos_body(2)), | ||
140 | - _param_ekf2_ev_pos_x(_params->ev_pos_body(0)), | ||
141 | - _param_ekf2_ev_pos_y(_params->ev_pos_body(1)), | ||
142 | - _param_ekf2_ev_pos_z(_params->ev_pos_body(2)), | ||
143 | - _param_ekf2_tau_vel(_params->vel_Tau), | ||
144 | - _param_ekf2_tau_pos(_params->pos_Tau), | ||
145 | - _param_ekf2_gbias_init(_params->switch_on_gyro_bias), | ||
146 | - _param_ekf2_abias_init(_params->switch_on_accel_bias), | ||
147 | - _param_ekf2_angerr_init(_params->initial_tilt_err), | ||
148 | - _param_ekf2_abl_lim(_params->acc_bias_lim), | ||
149 | - _param_ekf2_abl_acclim(_params->acc_bias_learn_acc_lim), | ||
150 | - _param_ekf2_abl_gyrlim(_params->acc_bias_learn_gyr_lim), | ||
151 | - _param_ekf2_abl_tau(_params->acc_bias_learn_tc), | ||
152 | - _param_ekf2_drag_noise(_params->drag_noise), | ||
153 | - _param_ekf2_bcoef_x(_params->bcoef_x), | ||
154 | - _param_ekf2_bcoef_y(_params->bcoef_y), | ||
155 | - _param_ekf2_aspd_max(_params->max_correction_airspeed), | ||
156 | - _param_ekf2_pcoef_xp(_params->static_pressure_coef_xp), | ||
157 | - _param_ekf2_pcoef_xn(_params->static_pressure_coef_xn), | ||
158 | - _param_ekf2_pcoef_yp(_params->static_pressure_coef_yp), | ||
159 | - _param_ekf2_pcoef_yn(_params->static_pressure_coef_yn), | ||
160 | - _param_ekf2_pcoef_z(_params->static_pressure_coef_z), | ||
161 | - _param_ekf2_move_test(_params->is_moving_scaler), | ||
162 | - _param_ekf2_mag_check(_params->check_mag_strength), | ||
163 | - _param_ekf2_synthetic_mag_z(_params->synthesize_mag_z), | ||
164 | - _param_ekf2_gsf_tas_default(_params->EKFGSF_tas_default) | ||
165 | -{ | ||
166 | -} | ||
167 | - | ||
168 | -EKF2::~EKF2() | ||
169 | -{ | ||
170 | - perf_free(_ecl_ekf_update_perf); | ||
171 | - perf_free(_ecl_ekf_update_full_perf); | ||
172 | - perf_free(_imu_missed_perf); | ||
173 | - perf_free(_mag_missed_perf); | ||
174 | -} | ||
175 | - | ||
176 | -bool EKF2::multi_init(int imu, int mag) | ||
177 | -{ | ||
178 | - // advertise immediately to ensure consistent uORB instance numbering | ||
179 | - _attitude_pub.advertise(); | ||
180 | - _local_position_pub.advertise(); | ||
181 | - _global_position_pub.advertise(); | ||
182 | - _odometry_pub.advertise(); | ||
183 | - _wind_pub.advertise(); | ||
184 | - | ||
185 | - _ekf2_timestamps_pub.advertise(); | ||
186 | - _ekf_gps_drift_pub.advertise(); | ||
187 | - _estimator_innovation_test_ratios_pub.advertise(); | ||
188 | - _estimator_innovation_variances_pub.advertise(); | ||
189 | - _estimator_innovations_pub.advertise(); | ||
190 | - _estimator_optical_flow_vel_pub.advertise(); | ||
191 | - _estimator_sensor_bias_pub.advertise(); | ||
192 | - _estimator_states_pub.advertise(); | ||
193 | - _estimator_status_pub.advertise(); | ||
194 | - _estimator_status_flags_pub.advertise(); | ||
195 | - _estimator_visual_odometry_aligned_pub.advertised(); | ||
196 | - _yaw_est_pub.advertise(); | ||
197 | - | ||
198 | - bool changed_instance = _vehicle_imu_sub.ChangeInstance(imu) && _magnetometer_sub.ChangeInstance(mag); | ||
199 | - | ||
200 | - const int status_instance = _estimator_states_pub.get_instance(); | ||
201 | - | ||
202 | - if ((status_instance >= 0) && changed_instance | ||
203 | - && (_attitude_pub.get_instance() == status_instance) | ||
204 | - && (_local_position_pub.get_instance() == status_instance) | ||
205 | - && (_global_position_pub.get_instance() == status_instance)) { | ||
206 | - | ||
207 | - _instance = status_instance; | ||
208 | - | ||
209 | - ScheduleNow(); | ||
210 | - return true; | ||
211 | - } | ||
212 | - | ||
213 | - PX4_ERR("publication instance problem: %d att: %d lpos: %d gpos: %d", status_instance, | ||
214 | - _attitude_pub.get_instance(), _local_position_pub.get_instance(), _global_position_pub.get_instance()); | ||
215 | - | ||
216 | - return false; | ||
217 | -} | ||
218 | - | ||
219 | -int EKF2::print_status() | ||
220 | -{ | ||
221 | - PX4_INFO_RAW("ekf2:%d attitude: %d, local position: %d, global position: %d\n", _instance, _ekf.attitude_valid(), | ||
222 | - _ekf.local_position_is_valid(), _ekf.global_position_is_valid()); | ||
223 | - perf_print_counter(_ecl_ekf_update_perf); | ||
224 | - perf_print_counter(_ecl_ekf_update_full_perf); | ||
225 | - perf_print_counter(_imu_missed_perf); | ||
226 | - | ||
227 | - if (_device_id_mag != 0) { | ||
228 | - perf_print_counter(_mag_missed_perf); | ||
229 | - } | ||
230 | - | ||
231 | - return 0; | ||
232 | -} | ||
233 | - | ||
234 | -void EKF2::Run() | ||
235 | -{ | ||
236 | - if (should_exit()) { | ||
237 | - _sensor_combined_sub.unregisterCallback(); | ||
238 | - _vehicle_imu_sub.unregisterCallback(); | ||
239 | - | ||
240 | - return; | ||
241 | - } | ||
242 | - | ||
243 | - // check for parameter updates | ||
244 | - if (_parameter_update_sub.updated() || !_callback_registered) { | ||
245 | - // clear update | ||
246 | - parameter_update_s pupdate; | ||
247 | - _parameter_update_sub.copy(&pupdate); | ||
248 | - | ||
249 | - // update parameters from storage | ||
250 | - updateParams(); | ||
251 | - | ||
252 | - _ekf.set_min_required_gps_health_time(_param_ekf2_req_gps_h.get() * 1_s); | ||
253 | - | ||
254 | - // The airspeed scale factor correcton is only available via parameter as used by the airspeed module | ||
255 | - param_t param_aspd_scale = param_find("ASPD_SCALE"); | ||
256 | - | ||
257 | - if (param_aspd_scale != PARAM_INVALID) { | ||
258 | - param_get(param_aspd_scale, &_airspeed_scale_factor); | ||
259 | - } | ||
260 | - } | ||
261 | - | ||
262 | - if (!_callback_registered) { | ||
263 | - if (_multi_mode) { | ||
264 | - _callback_registered = _vehicle_imu_sub.registerCallback(); | ||
265 | - | ||
266 | - } else { | ||
267 | - _callback_registered = _sensor_combined_sub.registerCallback(); | ||
268 | - } | ||
269 | - | ||
270 | - if (!_callback_registered) { | ||
271 | - PX4_WARN("%d - failed to register callback, retrying", _instance); | ||
272 | - ScheduleDelayed(1_s); | ||
273 | - return; | ||
274 | - } | ||
275 | - } | ||
276 | - | ||
277 | - if (_vehicle_command_sub.updated()) { | ||
278 | - vehicle_command_s vehicle_command; | ||
279 | - | ||
280 | - if (_vehicle_command_sub.update(&vehicle_command)) { | ||
281 | - if (vehicle_command.command == vehicle_command_s::VEHICLE_CMD_SET_GPS_GLOBAL_ORIGIN) { | ||
282 | - if (!_ekf.control_status_flags().in_air) { | ||
283 | - | ||
284 | - uint64_t origin_time {}; | ||
285 | - double latitude = vehicle_command.param5; | ||
286 | - double longitude = vehicle_command.param6; | ||
287 | - float altitude = vehicle_command.param7; | ||
288 | - | ||
289 | - _ekf.setEkfGlobalOrigin(latitude, longitude, altitude); | ||
290 | - | ||
291 | - // Validate the ekf origin status. | ||
292 | - _ekf.getEkfGlobalOrigin(origin_time, latitude, longitude, altitude); | ||
293 | - PX4_INFO("New NED origin (LLA): %3.10f, %3.10f, %4.3f\n", latitude, longitude, static_cast<double>(altitude)); | ||
294 | - } | ||
295 | - } | ||
296 | - } | ||
297 | - } | ||
298 | - | ||
299 | - bool imu_updated = false; | ||
300 | - imuSample imu_sample_new {}; | ||
301 | - | ||
302 | - hrt_abstime imu_dt = 0; // for tracking time slip later | ||
303 | - | ||
304 | - if (_multi_mode) { | ||
305 | - const unsigned last_generation = _vehicle_imu_sub.get_last_generation(); | ||
306 | - vehicle_imu_s imu; | ||
307 | - imu_updated = _vehicle_imu_sub.update(&imu); | ||
308 | - | ||
309 | - if (imu_updated && (_vehicle_imu_sub.get_last_generation() != last_generation + 1)) { | ||
310 | - perf_count(_imu_missed_perf); | ||
311 | - PX4_DEBUG("%d - vehicle_imu lost, generation %d -> %d", _instance, last_generation, | ||
312 | - _vehicle_imu_sub.get_last_generation()); | ||
313 | - } | ||
314 | - | ||
315 | - imu_sample_new.time_us = imu.timestamp_sample; | ||
316 | - imu_sample_new.delta_ang_dt = imu.delta_angle_dt * 1.e-6f; | ||
317 | - imu_sample_new.delta_ang = Vector3f{imu.delta_angle}; | ||
318 | - imu_sample_new.delta_vel_dt = imu.delta_velocity_dt * 1.e-6f; | ||
319 | - imu_sample_new.delta_vel = Vector3f{imu.delta_velocity}; | ||
320 | - | ||
321 | - if (imu.delta_velocity_clipping > 0) { | ||
322 | - imu_sample_new.delta_vel_clipping[0] = imu.delta_velocity_clipping & vehicle_imu_s::CLIPPING_X; | ||
323 | - imu_sample_new.delta_vel_clipping[1] = imu.delta_velocity_clipping & vehicle_imu_s::CLIPPING_Y; | ||
324 | - imu_sample_new.delta_vel_clipping[2] = imu.delta_velocity_clipping & vehicle_imu_s::CLIPPING_Z; | ||
325 | - } | ||
326 | - | ||
327 | - imu_dt = imu.delta_angle_dt; | ||
328 | - | ||
329 | - if ((_device_id_accel == 0) || (_device_id_gyro == 0)) { | ||
330 | - _device_id_accel = imu.accel_device_id; | ||
331 | - _device_id_gyro = imu.gyro_device_id; | ||
332 | - _imu_calibration_count = imu.calibration_count; | ||
333 | - | ||
334 | - } else if ((imu.calibration_count > _imu_calibration_count) | ||
335 | - || (imu.accel_device_id != _device_id_accel) | ||
336 | - || (imu.gyro_device_id != _device_id_gyro)) { | ||
337 | - | ||
338 | - PX4_INFO("%d - resetting IMU bias", _instance); | ||
339 | - _device_id_accel = imu.accel_device_id; | ||
340 | - _device_id_gyro = imu.gyro_device_id; | ||
341 | - | ||
342 | - _ekf.resetImuBias(); | ||
343 | - _imu_calibration_count = imu.calibration_count; | ||
344 | - } | ||
345 | - | ||
346 | - } else { | ||
347 | - sensor_combined_s sensor_combined; | ||
348 | - imu_updated = _sensor_combined_sub.update(&sensor_combined); | ||
349 | - | ||
350 | - imu_sample_new.time_us = sensor_combined.timestamp; | ||
351 | - imu_sample_new.delta_ang_dt = sensor_combined.gyro_integral_dt * 1.e-6f; | ||
352 | - imu_sample_new.delta_ang = Vector3f{sensor_combined.gyro_rad} * imu_sample_new.delta_ang_dt; | ||
353 | - imu_sample_new.delta_vel_dt = sensor_combined.accelerometer_integral_dt * 1.e-6f; | ||
354 | - imu_sample_new.delta_vel = Vector3f{sensor_combined.accelerometer_m_s2} * imu_sample_new.delta_vel_dt; | ||
355 | - | ||
356 | - if (sensor_combined.accelerometer_clipping > 0) { | ||
357 | - imu_sample_new.delta_vel_clipping[0] = sensor_combined.accelerometer_clipping & sensor_combined_s::CLIPPING_X; | ||
358 | - imu_sample_new.delta_vel_clipping[1] = sensor_combined.accelerometer_clipping & sensor_combined_s::CLIPPING_Y; | ||
359 | - imu_sample_new.delta_vel_clipping[2] = sensor_combined.accelerometer_clipping & sensor_combined_s::CLIPPING_Z; | ||
360 | - } | ||
361 | - | ||
362 | - imu_dt = sensor_combined.gyro_integral_dt; | ||
363 | - | ||
364 | - if (_sensor_selection_sub.updated() || (_device_id_accel == 0 || _device_id_gyro == 0)) { | ||
365 | - sensor_selection_s sensor_selection; | ||
366 | - | ||
367 | - if (_sensor_selection_sub.copy(&sensor_selection)) { | ||
368 | - if (_device_id_accel != sensor_selection.accel_device_id) { | ||
369 | - _ekf.resetAccelBias(); | ||
370 | - _device_id_accel = sensor_selection.accel_device_id; | ||
371 | - } | ||
372 | - | ||
373 | - if (_device_id_gyro != sensor_selection.gyro_device_id) { | ||
374 | - _ekf.resetGyroBias(); | ||
375 | - _device_id_gyro = sensor_selection.gyro_device_id; | ||
376 | - } | ||
377 | - } | ||
378 | - } | ||
379 | - } | ||
380 | - | ||
381 | - if (imu_updated) { | ||
382 | - const hrt_abstime now = imu_sample_new.time_us; | ||
383 | - | ||
384 | - // push imu data into estimator | ||
385 | - _ekf.setIMUData(imu_sample_new); | ||
386 | - PublishAttitude(now); // publish attitude immediately (uses quaternion from output predictor) | ||
387 | - | ||
388 | - // integrate time to monitor time slippage | ||
389 | - if (_start_time_us > 0) { | ||
390 | - _integrated_time_us += imu_dt; | ||
391 | - _last_time_slip_us = (imu_sample_new.time_us - _start_time_us) - _integrated_time_us; | ||
392 | - | ||
393 | - } else { | ||
394 | - _start_time_us = imu_sample_new.time_us; | ||
395 | - _last_time_slip_us = 0; | ||
396 | - } | ||
397 | - | ||
398 | - // update all other topics if they have new data | ||
399 | - if (_status_sub.updated()) { | ||
400 | - vehicle_status_s vehicle_status; | ||
401 | - | ||
402 | - if (_status_sub.copy(&vehicle_status)) { | ||
403 | - const bool is_fixed_wing = (vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING); | ||
404 | - | ||
405 | - // only fuse synthetic sideslip measurements if conditions are met | ||
406 | - _ekf.set_fuse_beta_flag(is_fixed_wing && (_param_ekf2_fuse_beta.get() == 1)); | ||
407 | - | ||
408 | - // let the EKF know if the vehicle motion is that of a fixed wing (forward flight only relative to wind) | ||
409 | - _ekf.set_is_fixed_wing(is_fixed_wing); | ||
410 | - | ||
411 | - _preflt_checker.setVehicleCanObserveHeadingInFlight(vehicle_status.vehicle_type != | ||
412 | - vehicle_status_s::VEHICLE_TYPE_ROTARY_WING); | ||
413 | - | ||
414 | - _armed = (vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_ARMED); | ||
415 | - | ||
416 | - // update standby (arming state) flag | ||
417 | - const bool standby = (vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_STANDBY); | ||
418 | - | ||
419 | - if (_standby != standby) { | ||
420 | - _standby = standby; | ||
421 | - | ||
422 | - // reset preflight checks if transitioning in or out of standby arming state | ||
423 | - _preflt_checker.reset(); | ||
424 | - } | ||
425 | - } | ||
426 | - } | ||
427 | - | ||
428 | - if (_vehicle_land_detected_sub.updated()) { | ||
429 | - vehicle_land_detected_s vehicle_land_detected; | ||
430 | - | ||
431 | - if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) { | ||
432 | - _ekf.set_in_air_status(!vehicle_land_detected.landed); | ||
433 | - | ||
434 | - if (_armed && (_param_ekf2_gnd_eff_dz.get() > 0.f)) { | ||
435 | - if (!_had_valid_terrain) { | ||
436 | - // update ground effect flag based on land detector state if we've never had valid terrain data | ||
437 | - _ekf.set_gnd_effect_flag(vehicle_land_detected.in_ground_effect); | ||
438 | - } | ||
439 | - | ||
440 | - } else { | ||
441 | - _ekf.set_gnd_effect_flag(false); | ||
442 | - } | ||
443 | - } | ||
444 | - } | ||
445 | - | ||
446 | - // ekf2_timestamps (using 0.1 ms relative timestamps) | ||
447 | - ekf2_timestamps_s ekf2_timestamps { | ||
448 | - .timestamp = now, | ||
449 | - .airspeed_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID, | ||
450 | - .distance_sensor_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID, | ||
451 | - .optical_flow_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID, | ||
452 | - .vehicle_air_data_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID, | ||
453 | - .vehicle_magnetometer_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID, | ||
454 | - .visual_odometry_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID, | ||
455 | - }; | ||
456 | - | ||
457 | - UpdateAirspeedSample(ekf2_timestamps); | ||
458 | - UpdateAuxVelSample(ekf2_timestamps); | ||
459 | - UpdateBaroSample(ekf2_timestamps); | ||
460 | - UpdateGpsSample(ekf2_timestamps); | ||
461 | - UpdateMagSample(ekf2_timestamps); | ||
462 | - UpdateRangeSample(ekf2_timestamps); | ||
463 | - | ||
464 | - vehicle_odometry_s ev_odom; | ||
465 | - const bool new_ev_odom = UpdateExtVisionSample(ekf2_timestamps, ev_odom); | ||
466 | - | ||
467 | - optical_flow_s optical_flow; | ||
468 | - const bool new_optical_flow = UpdateFlowSample(ekf2_timestamps, optical_flow); | ||
469 | - | ||
470 | - | ||
471 | - // run the EKF update and output | ||
472 | - const hrt_abstime ekf_update_start = hrt_absolute_time(); | ||
473 | - | ||
474 | - if (_ekf.update()) { | ||
475 | - perf_set_elapsed(_ecl_ekf_update_full_perf, hrt_elapsed_time(&ekf_update_start)); | ||
476 | - | ||
477 | - PublishLocalPosition(now); | ||
478 | - PublishOdometry(now, imu_sample_new); | ||
479 | - PublishGlobalPosition(now); | ||
480 | - PublishSensorBias(now); | ||
481 | - PublishWindEstimate(now); | ||
482 | - | ||
483 | - // publish status/logging messages | ||
484 | - PublishEkfDriftMetrics(now); | ||
485 | - PublishEventFlags(now); | ||
486 | - PublishStates(now); | ||
487 | - PublishStatus(now); | ||
488 | - PublishStatusFlags(now); | ||
489 | - PublishInnovations(now, imu_sample_new); | ||
490 | - PublishInnovationTestRatios(now); | ||
491 | - PublishInnovationVariances(now); | ||
492 | - PublishYawEstimatorStatus(now); | ||
493 | - | ||
494 | - UpdateMagCalibration(now); | ||
495 | - | ||
496 | - } else { | ||
497 | - // ekf no update | ||
498 | - perf_set_elapsed(_ecl_ekf_update_perf, hrt_elapsed_time(&ekf_update_start)); | ||
499 | - } | ||
500 | - | ||
501 | - // publish external visual odometry after fixed frame alignment if new odometry is received | ||
502 | - if (new_ev_odom) { | ||
503 | - PublishOdometryAligned(now, ev_odom); | ||
504 | - } | ||
505 | - | ||
506 | - if (new_optical_flow) { | ||
507 | - PublishOpticalFlowVel(now, optical_flow); | ||
508 | - } | ||
509 | - | ||
510 | - // publish ekf2_timestamps | ||
511 | - _ekf2_timestamps_pub.publish(ekf2_timestamps); | ||
512 | - } | ||
513 | -} | ||
514 | - | ||
515 | -void EKF2::PublishAttitude(const hrt_abstime ×tamp) | ||
516 | -{ | ||
517 | - if (_ekf.attitude_valid()) { | ||
518 | - // generate vehicle attitude quaternion data | ||
519 | - vehicle_attitude_s att; | ||
520 | - att.timestamp_sample = timestamp; | ||
521 | - const Quatf q{_ekf.calculate_quaternion()}; | ||
522 | - q.copyTo(att.q); | ||
523 | - | ||
524 | - _ekf.get_quat_reset(&att.delta_q_reset[0], &att.quat_reset_counter); | ||
525 | - att.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
526 | - _attitude_pub.publish(att); | ||
527 | - | ||
528 | - } else if (_replay_mode) { | ||
529 | - // in replay mode we have to tell the replay module not to wait for an update | ||
530 | - // we do this by publishing an attitude with zero timestamp | ||
531 | - vehicle_attitude_s att{}; | ||
532 | - _attitude_pub.publish(att); | ||
533 | - } | ||
534 | -} | ||
535 | - | ||
536 | -void EKF2::PublishEkfDriftMetrics(const hrt_abstime ×tamp) | ||
537 | -{ | ||
538 | - // publish GPS drift data only when updated to minimise overhead | ||
539 | - float gps_drift[3]; | ||
540 | - bool blocked; | ||
541 | - | ||
542 | - if (_ekf.get_gps_drift_metrics(gps_drift, &blocked)) { | ||
543 | - ekf_gps_drift_s drift_data; | ||
544 | - drift_data.hpos_drift_rate = gps_drift[0]; | ||
545 | - drift_data.vpos_drift_rate = gps_drift[1]; | ||
546 | - drift_data.hspd = gps_drift[2]; | ||
547 | - drift_data.blocked = blocked; | ||
548 | - drift_data.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
549 | - | ||
550 | - _ekf_gps_drift_pub.publish(drift_data); | ||
551 | - } | ||
552 | -} | ||
553 | - | ||
554 | -void EKF2::PublishEventFlags(const hrt_abstime ×tamp) | ||
555 | -{ | ||
556 | - // information events | ||
557 | - uint32_t information_events = _ekf.information_event_status().value; | ||
558 | - bool information_event_updated = false; | ||
559 | - | ||
560 | - if (information_events != 0) { | ||
561 | - information_event_updated = true; | ||
562 | - _filter_information_event_changes++; | ||
563 | - } | ||
564 | - | ||
565 | - // warning events | ||
566 | - uint32_t warning_events = _ekf.warning_event_status().value; | ||
567 | - bool warning_event_updated = false; | ||
568 | - | ||
569 | - if (warning_events != 0) { | ||
570 | - warning_event_updated = true; | ||
571 | - _filter_warning_event_changes++; | ||
572 | - } | ||
573 | - | ||
574 | - if (information_event_updated || warning_event_updated) { | ||
575 | - estimator_event_flags_s event_flags{}; | ||
576 | - event_flags.timestamp_sample = timestamp; | ||
577 | - | ||
578 | - event_flags.information_event_changes = _filter_information_event_changes; | ||
579 | - event_flags.gps_checks_passed = _ekf.information_event_flags().gps_checks_passed; | ||
580 | - event_flags.reset_vel_to_gps = _ekf.information_event_flags().reset_vel_to_gps; | ||
581 | - event_flags.reset_vel_to_flow = _ekf.information_event_flags().reset_vel_to_flow; | ||
582 | - event_flags.reset_vel_to_vision = _ekf.information_event_flags().reset_vel_to_vision; | ||
583 | - event_flags.reset_vel_to_zero = _ekf.information_event_flags().reset_vel_to_zero; | ||
584 | - event_flags.reset_pos_to_last_known = _ekf.information_event_flags().reset_pos_to_last_known; | ||
585 | - event_flags.reset_pos_to_gps = _ekf.information_event_flags().reset_pos_to_gps; | ||
586 | - event_flags.reset_pos_to_vision = _ekf.information_event_flags().reset_pos_to_vision; | ||
587 | - event_flags.starting_gps_fusion = _ekf.information_event_flags().starting_gps_fusion; | ||
588 | - event_flags.starting_vision_pos_fusion = _ekf.information_event_flags().starting_vision_pos_fusion; | ||
589 | - event_flags.starting_vision_vel_fusion = _ekf.information_event_flags().starting_vision_vel_fusion; | ||
590 | - event_flags.starting_vision_yaw_fusion = _ekf.information_event_flags().starting_vision_yaw_fusion; | ||
591 | - event_flags.yaw_aligned_to_imu_gps = _ekf.information_event_flags().yaw_aligned_to_imu_gps; | ||
592 | - | ||
593 | - event_flags.warning_event_changes = _filter_warning_event_changes; | ||
594 | - event_flags.gps_quality_poor = _ekf.warning_event_flags().gps_quality_poor; | ||
595 | - event_flags.gps_fusion_timout = _ekf.warning_event_flags().gps_fusion_timout; | ||
596 | - event_flags.gps_data_stopped = _ekf.warning_event_flags().gps_data_stopped; | ||
597 | - event_flags.gps_data_stopped_using_alternate = _ekf.warning_event_flags().gps_data_stopped_using_alternate; | ||
598 | - event_flags.height_sensor_timeout = _ekf.warning_event_flags().height_sensor_timeout; | ||
599 | - event_flags.stopping_navigation = _ekf.warning_event_flags().stopping_mag_use; | ||
600 | - event_flags.invalid_accel_bias_cov_reset = _ekf.warning_event_flags().invalid_accel_bias_cov_reset; | ||
601 | - event_flags.bad_yaw_using_gps_course = _ekf.warning_event_flags().bad_yaw_using_gps_course; | ||
602 | - event_flags.stopping_mag_use = _ekf.warning_event_flags().stopping_mag_use; | ||
603 | - event_flags.vision_data_stopped = _ekf.warning_event_flags().vision_data_stopped; | ||
604 | - event_flags.emergency_yaw_reset_mag_stopped = _ekf.warning_event_flags().emergency_yaw_reset_mag_stopped; | ||
605 | - | ||
606 | - event_flags.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
607 | - _estimator_event_flags_pub.publish(event_flags); | ||
608 | - } | ||
609 | - | ||
610 | - _ekf.clear_information_events(); | ||
611 | - _ekf.clear_warning_events(); | ||
612 | -} | ||
613 | - | ||
614 | -void EKF2::PublishGlobalPosition(const hrt_abstime ×tamp) | ||
615 | -{ | ||
616 | - if (_ekf.global_position_is_valid() && !_preflt_checker.hasFailed()) { | ||
617 | - // only publish if position has changed by at least 1 mm (map_projection_reproject is relatively expensive) | ||
618 | - const Vector3f position{_ekf.getPosition()}; | ||
619 | - | ||
620 | - if ((_last_local_position_for_gpos - position).longerThan(0.001f)) { | ||
621 | - // generate and publish global position data | ||
622 | - vehicle_global_position_s global_pos; | ||
623 | - global_pos.timestamp_sample = timestamp; | ||
624 | - | ||
625 | - // Position of local NED origin in GPS / WGS84 frame | ||
626 | - map_projection_reproject(&_ekf.global_origin(), position(0), position(1), &global_pos.lat, &global_pos.lon); | ||
627 | - | ||
628 | - float delta_xy[2]; | ||
629 | - _ekf.get_posNE_reset(delta_xy, &global_pos.lat_lon_reset_counter); | ||
630 | - | ||
631 | - global_pos.alt = -position(2) + _ekf.getEkfGlobalOriginAltitude(); // Altitude AMSL in meters | ||
632 | - global_pos.alt_ellipsoid = filter_altitude_ellipsoid(global_pos.alt); | ||
633 | - | ||
634 | - // global altitude has opposite sign of local down position | ||
635 | - float delta_z; | ||
636 | - uint8_t z_reset_counter; | ||
637 | - _ekf.get_posD_reset(&delta_z, &z_reset_counter); | ||
638 | - global_pos.delta_alt = -delta_z; | ||
639 | - | ||
640 | - _ekf.get_ekf_gpos_accuracy(&global_pos.eph, &global_pos.epv); | ||
641 | - | ||
642 | - if (_ekf.isTerrainEstimateValid()) { | ||
643 | - // Terrain altitude in m, WGS84 | ||
644 | - global_pos.terrain_alt = _ekf.getEkfGlobalOriginAltitude() - _ekf.getTerrainVertPos(); | ||
645 | - global_pos.terrain_alt_valid = true; | ||
646 | - | ||
647 | - } else { | ||
648 | - global_pos.terrain_alt = NAN; | ||
649 | - global_pos.terrain_alt_valid = false; | ||
650 | - } | ||
651 | - | ||
652 | - global_pos.dead_reckoning = _ekf.inertial_dead_reckoning(); // True if this position is estimated through dead-reckoning | ||
653 | - global_pos.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
654 | - _global_position_pub.publish(global_pos); | ||
655 | - | ||
656 | - _last_local_position_for_gpos = position; | ||
657 | - } | ||
658 | - } | ||
659 | -} | ||
660 | - | ||
661 | -void EKF2::PublishInnovations(const hrt_abstime ×tamp, const imuSample &imu) | ||
662 | -{ | ||
663 | - // publish estimator innovation data | ||
664 | - estimator_innovations_s innovations{}; | ||
665 | - innovations.timestamp_sample = timestamp; | ||
666 | - _ekf.getGpsVelPosInnov(innovations.gps_hvel, innovations.gps_vvel, innovations.gps_hpos, innovations.gps_vpos); | ||
667 | - _ekf.getEvVelPosInnov(innovations.ev_hvel, innovations.ev_vvel, innovations.ev_hpos, innovations.ev_vpos); | ||
668 | - _ekf.getBaroHgtInnov(innovations.baro_vpos); | ||
669 | - _ekf.getRngHgtInnov(innovations.rng_vpos); | ||
670 | - _ekf.getAuxVelInnov(innovations.aux_hvel); | ||
671 | - _ekf.getFlowInnov(innovations.flow); | ||
672 | - _ekf.getHeadingInnov(innovations.heading); | ||
673 | - _ekf.getMagInnov(innovations.mag_field); | ||
674 | - _ekf.getDragInnov(innovations.drag); | ||
675 | - _ekf.getAirspeedInnov(innovations.airspeed); | ||
676 | - _ekf.getBetaInnov(innovations.beta); | ||
677 | - _ekf.getHaglInnov(innovations.hagl); | ||
678 | - // Not yet supported | ||
679 | - innovations.aux_vvel = NAN; | ||
680 | - | ||
681 | - innovations.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
682 | - _estimator_innovations_pub.publish(innovations); | ||
683 | - | ||
684 | - // calculate noise filtered velocity innovations which are used for pre-flight checking | ||
685 | - if (_standby) { | ||
686 | - // TODO: move to run before publications | ||
687 | - _preflt_checker.setUsingGpsAiding(_ekf.control_status_flags().gps); | ||
688 | - _preflt_checker.setUsingFlowAiding(_ekf.control_status_flags().opt_flow); | ||
689 | - _preflt_checker.setUsingEvPosAiding(_ekf.control_status_flags().ev_pos); | ||
690 | - _preflt_checker.setUsingEvVelAiding(_ekf.control_status_flags().ev_vel); | ||
691 | - | ||
692 | - _preflt_checker.update(imu.delta_ang_dt, innovations); | ||
693 | - } | ||
694 | -} | ||
695 | - | ||
696 | -void EKF2::PublishInnovationTestRatios(const hrt_abstime ×tamp) | ||
697 | -{ | ||
698 | - // publish estimator innovation test ratio data | ||
699 | - estimator_innovations_s test_ratios{}; | ||
700 | - test_ratios.timestamp_sample = timestamp; | ||
701 | - _ekf.getGpsVelPosInnovRatio(test_ratios.gps_hvel[0], test_ratios.gps_vvel, test_ratios.gps_hpos[0], | ||
702 | - test_ratios.gps_vpos); | ||
703 | - _ekf.getEvVelPosInnovRatio(test_ratios.ev_hvel[0], test_ratios.ev_vvel, test_ratios.ev_hpos[0], test_ratios.ev_vpos); | ||
704 | - _ekf.getBaroHgtInnovRatio(test_ratios.baro_vpos); | ||
705 | - _ekf.getRngHgtInnovRatio(test_ratios.rng_vpos); | ||
706 | - _ekf.getAuxVelInnovRatio(test_ratios.aux_hvel[0]); | ||
707 | - _ekf.getFlowInnovRatio(test_ratios.flow[0]); | ||
708 | - _ekf.getHeadingInnovRatio(test_ratios.heading); | ||
709 | - _ekf.getMagInnovRatio(test_ratios.mag_field[0]); | ||
710 | - _ekf.getDragInnovRatio(&test_ratios.drag[0]); | ||
711 | - _ekf.getAirspeedInnovRatio(test_ratios.airspeed); | ||
712 | - _ekf.getBetaInnovRatio(test_ratios.beta); | ||
713 | - _ekf.getHaglInnovRatio(test_ratios.hagl); | ||
714 | - // Not yet supported | ||
715 | - test_ratios.aux_vvel = NAN; | ||
716 | - | ||
717 | - test_ratios.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
718 | - _estimator_innovation_test_ratios_pub.publish(test_ratios); | ||
719 | -} | ||
720 | - | ||
721 | -void EKF2::PublishInnovationVariances(const hrt_abstime ×tamp) | ||
722 | -{ | ||
723 | - // publish estimator innovation variance data | ||
724 | - estimator_innovations_s variances{}; | ||
725 | - variances.timestamp_sample = timestamp; | ||
726 | - _ekf.getGpsVelPosInnovVar(variances.gps_hvel, variances.gps_vvel, variances.gps_hpos, variances.gps_vpos); | ||
727 | - _ekf.getEvVelPosInnovVar(variances.ev_hvel, variances.ev_vvel, variances.ev_hpos, variances.ev_vpos); | ||
728 | - _ekf.getBaroHgtInnovVar(variances.baro_vpos); | ||
729 | - _ekf.getRngHgtInnovVar(variances.rng_vpos); | ||
730 | - _ekf.getAuxVelInnovVar(variances.aux_hvel); | ||
731 | - _ekf.getFlowInnovVar(variances.flow); | ||
732 | - _ekf.getHeadingInnovVar(variances.heading); | ||
733 | - _ekf.getMagInnovVar(variances.mag_field); | ||
734 | - _ekf.getDragInnovVar(variances.drag); | ||
735 | - _ekf.getAirspeedInnovVar(variances.airspeed); | ||
736 | - _ekf.getBetaInnovVar(variances.beta); | ||
737 | - _ekf.getHaglInnovVar(variances.hagl); | ||
738 | - // Not yet supported | ||
739 | - variances.aux_vvel = NAN; | ||
740 | - | ||
741 | - variances.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
742 | - _estimator_innovation_variances_pub.publish(variances); | ||
743 | -} | ||
744 | - | ||
745 | -void EKF2::PublishLocalPosition(const hrt_abstime ×tamp) | ||
746 | -{ | ||
747 | - vehicle_local_position_s lpos; | ||
748 | - // generate vehicle local position data | ||
749 | - lpos.timestamp_sample = timestamp; | ||
750 | - | ||
751 | - // Position of body origin in local NED frame | ||
752 | - const Vector3f position{_ekf.getPosition()}; | ||
753 | - lpos.x = position(0); | ||
754 | - lpos.y = position(1); | ||
755 | - lpos.z = position(2); | ||
756 | - | ||
757 | - // Velocity of body origin in local NED frame (m/s) | ||
758 | - const Vector3f velocity{_ekf.getVelocity()}; | ||
759 | - lpos.vx = velocity(0); | ||
760 | - lpos.vy = velocity(1); | ||
761 | - lpos.vz = velocity(2); | ||
762 | - | ||
763 | - // vertical position time derivative (m/s) | ||
764 | - lpos.z_deriv = _ekf.getVerticalPositionDerivative(); | ||
765 | - | ||
766 | - // Acceleration of body origin in local frame | ||
767 | - const Vector3f vel_deriv{_ekf.getVelocityDerivative()}; | ||
768 | - lpos.ax = vel_deriv(0); | ||
769 | - lpos.ay = vel_deriv(1); | ||
770 | - lpos.az = vel_deriv(2); | ||
771 | - | ||
772 | - // TODO: better status reporting | ||
773 | - lpos.xy_valid = _ekf.local_position_is_valid() && !_preflt_checker.hasHorizFailed(); | ||
774 | - lpos.z_valid = !_preflt_checker.hasVertFailed(); | ||
775 | - lpos.v_xy_valid = _ekf.local_position_is_valid() && !_preflt_checker.hasHorizFailed(); | ||
776 | - lpos.v_z_valid = !_preflt_checker.hasVertFailed(); | ||
777 | - | ||
778 | - // Position of local NED origin in GPS / WGS84 frame | ||
779 | - if (_ekf.global_origin_valid()) { | ||
780 | - lpos.ref_timestamp = _ekf.global_origin().timestamp; | ||
781 | - lpos.ref_lat = math::degrees(_ekf.global_origin().lat_rad); // Reference point latitude in degrees | ||
782 | - lpos.ref_lon = math::degrees(_ekf.global_origin().lon_rad); // Reference point longitude in degrees | ||
783 | - lpos.ref_alt = _ekf.getEkfGlobalOriginAltitude(); // Reference point in MSL altitude meters | ||
784 | - lpos.xy_global = true; | ||
785 | - lpos.z_global = true; | ||
786 | - | ||
787 | - } else { | ||
788 | - lpos.ref_timestamp = 0; | ||
789 | - lpos.ref_lat = static_cast<double>(NAN); | ||
790 | - lpos.ref_lon = static_cast<double>(NAN); | ||
791 | - lpos.ref_alt = NAN; | ||
792 | - lpos.xy_global = false; | ||
793 | - lpos.z_global = false; | ||
794 | - } | ||
795 | - | ||
796 | - Quatf delta_q_reset; | ||
797 | - _ekf.get_quat_reset(&delta_q_reset(0), &lpos.heading_reset_counter); | ||
798 | - | ||
799 | - lpos.heading = Eulerf(_ekf.getQuaternion()).psi(); | ||
800 | - lpos.delta_heading = Eulerf(delta_q_reset).psi(); | ||
801 | - | ||
802 | - // Distance to bottom surface (ground) in meters | ||
803 | - // constrain the distance to ground to _rng_gnd_clearance | ||
804 | - lpos.dist_bottom = math::max(_ekf.getTerrainVertPos() - lpos.z, _param_ekf2_min_rng.get()); | ||
805 | - lpos.dist_bottom_valid = _ekf.isTerrainEstimateValid(); | ||
806 | - lpos.dist_bottom_sensor_bitfield = _ekf.getTerrainEstimateSensorBitfield(); | ||
807 | - | ||
808 | - if (!_had_valid_terrain) { | ||
809 | - _had_valid_terrain = lpos.dist_bottom_valid; | ||
810 | - } | ||
811 | - | ||
812 | - // only consider ground effect if compensation is configured and the vehicle is armed (props spinning) | ||
813 | - if ((_param_ekf2_gnd_eff_dz.get() > 0.0f) && _armed && lpos.dist_bottom_valid) { | ||
814 | - // set ground effect flag if vehicle is closer than a specified distance to the ground | ||
815 | - _ekf.set_gnd_effect_flag(lpos.dist_bottom < _param_ekf2_gnd_max_hgt.get()); | ||
816 | - | ||
817 | - // if we have no valid terrain estimate and never had one then use ground effect flag from land detector | ||
818 | - // _had_valid_terrain is used to make sure that we don't fall back to using this option | ||
819 | - // if we temporarily lose terrain data due to the distance sensor getting out of range | ||
820 | - } | ||
821 | - | ||
822 | - _ekf.get_ekf_lpos_accuracy(&lpos.eph, &lpos.epv); | ||
823 | - _ekf.get_ekf_vel_accuracy(&lpos.evh, &lpos.evv); | ||
824 | - | ||
825 | - // get state reset information of position and velocity | ||
826 | - _ekf.get_posD_reset(&lpos.delta_z, &lpos.z_reset_counter); | ||
827 | - _ekf.get_velD_reset(&lpos.delta_vz, &lpos.vz_reset_counter); | ||
828 | - _ekf.get_posNE_reset(&lpos.delta_xy[0], &lpos.xy_reset_counter); | ||
829 | - _ekf.get_velNE_reset(&lpos.delta_vxy[0], &lpos.vxy_reset_counter); | ||
830 | - | ||
831 | - // get control limit information | ||
832 | - _ekf.get_ekf_ctrl_limits(&lpos.vxy_max, &lpos.vz_max, &lpos.hagl_min, &lpos.hagl_max); | ||
833 | - | ||
834 | - // convert NaN to INFINITY | ||
835 | - if (!PX4_ISFINITE(lpos.vxy_max)) { | ||
836 | - lpos.vxy_max = INFINITY; | ||
837 | - } | ||
838 | - | ||
839 | - if (!PX4_ISFINITE(lpos.vz_max)) { | ||
840 | - lpos.vz_max = INFINITY; | ||
841 | - } | ||
842 | - | ||
843 | - if (!PX4_ISFINITE(lpos.hagl_min)) { | ||
844 | - lpos.hagl_min = INFINITY; | ||
845 | - } | ||
846 | - | ||
847 | - if (!PX4_ISFINITE(lpos.hagl_max)) { | ||
848 | - lpos.hagl_max = INFINITY; | ||
849 | - } | ||
850 | - | ||
851 | - // publish vehicle local position data | ||
852 | - lpos.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
853 | - _local_position_pub.publish(lpos); | ||
854 | -} | ||
855 | - | ||
856 | -void EKF2::PublishOdometry(const hrt_abstime ×tamp, const imuSample &imu) | ||
857 | -{ | ||
858 | - // generate vehicle odometry data | ||
859 | - vehicle_odometry_s odom; | ||
860 | - odom.timestamp_sample = imu.time_us; | ||
861 | - | ||
862 | - odom.local_frame = vehicle_odometry_s::LOCAL_FRAME_NED; | ||
863 | - | ||
864 | - // Vehicle odometry position | ||
865 | - const Vector3f position{_ekf.getPosition()}; | ||
866 | - odom.x = position(0); | ||
867 | - odom.y = position(1); | ||
868 | - odom.z = position(2); | ||
869 | - | ||
870 | - // Vehicle odometry linear velocity | ||
871 | - odom.velocity_frame = vehicle_odometry_s::LOCAL_FRAME_FRD; | ||
872 | - const Vector3f velocity{_ekf.getVelocity()}; | ||
873 | - odom.vx = velocity(0); | ||
874 | - odom.vy = velocity(1); | ||
875 | - odom.vz = velocity(2); | ||
876 | - | ||
877 | - // Vehicle odometry quaternion | ||
878 | - _ekf.getQuaternion().copyTo(odom.q); | ||
879 | - | ||
880 | - // Vehicle odometry angular rates | ||
881 | - const Vector3f gyro_bias{_ekf.getGyroBias()}; | ||
882 | - const Vector3f rates{imu.delta_ang / imu.delta_ang_dt}; | ||
883 | - odom.rollspeed = rates(0) - gyro_bias(0); | ||
884 | - odom.pitchspeed = rates(1) - gyro_bias(1); | ||
885 | - odom.yawspeed = rates(2) - gyro_bias(2); | ||
886 | - | ||
887 | - // get the covariance matrix size | ||
888 | - static constexpr size_t POS_URT_SIZE = sizeof(odom.pose_covariance) / sizeof(odom.pose_covariance[0]); | ||
889 | - static constexpr size_t VEL_URT_SIZE = sizeof(odom.velocity_covariance) / sizeof(odom.velocity_covariance[0]); | ||
890 | - | ||
891 | - // Get covariances to vehicle odometry | ||
892 | - float covariances[24]; | ||
893 | - _ekf.covariances_diagonal().copyTo(covariances); | ||
894 | - | ||
895 | - // initially set pose covariances to 0 | ||
896 | - for (size_t i = 0; i < POS_URT_SIZE; i++) { | ||
897 | - odom.pose_covariance[i] = 0.0; | ||
898 | - } | ||
899 | - | ||
900 | - // set the position variances | ||
901 | - odom.pose_covariance[odom.COVARIANCE_MATRIX_X_VARIANCE] = covariances[7]; | ||
902 | - odom.pose_covariance[odom.COVARIANCE_MATRIX_Y_VARIANCE] = covariances[8]; | ||
903 | - odom.pose_covariance[odom.COVARIANCE_MATRIX_Z_VARIANCE] = covariances[9]; | ||
904 | - | ||
905 | - // TODO: implement propagation from quaternion covariance to Euler angle covariance | ||
906 | - // by employing the covariance law | ||
907 | - | ||
908 | - // initially set velocity covariances to 0 | ||
909 | - for (size_t i = 0; i < VEL_URT_SIZE; i++) { | ||
910 | - odom.velocity_covariance[i] = 0.0; | ||
911 | - } | ||
912 | - | ||
913 | - // set the linear velocity variances | ||
914 | - odom.velocity_covariance[odom.COVARIANCE_MATRIX_VX_VARIANCE] = covariances[4]; | ||
915 | - odom.velocity_covariance[odom.COVARIANCE_MATRIX_VY_VARIANCE] = covariances[5]; | ||
916 | - odom.velocity_covariance[odom.COVARIANCE_MATRIX_VZ_VARIANCE] = covariances[6]; | ||
917 | - | ||
918 | - // publish vehicle odometry data | ||
919 | - odom.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
920 | - _odometry_pub.publish(odom); | ||
921 | -} | ||
922 | - | ||
923 | -void EKF2::PublishOdometryAligned(const hrt_abstime ×tamp, const vehicle_odometry_s &ev_odom) | ||
924 | -{ | ||
925 | - const Quatf quat_ev2ekf = _ekf.getVisionAlignmentQuaternion(); // rotates from EV to EKF navigation frame | ||
926 | - const Dcmf ev_rot_mat(quat_ev2ekf); | ||
927 | - | ||
928 | - vehicle_odometry_s aligned_ev_odom{ev_odom}; | ||
929 | - | ||
930 | - // Rotate external position and velocity into EKF navigation frame | ||
931 | - const Vector3f aligned_pos = ev_rot_mat * Vector3f(ev_odom.x, ev_odom.y, ev_odom.z); | ||
932 | - aligned_ev_odom.x = aligned_pos(0); | ||
933 | - aligned_ev_odom.y = aligned_pos(1); | ||
934 | - aligned_ev_odom.z = aligned_pos(2); | ||
935 | - | ||
936 | - switch (ev_odom.velocity_frame) { | ||
937 | - case vehicle_odometry_s::BODY_FRAME_FRD: { | ||
938 | - const Vector3f aligned_vel = Dcmf(_ekf.getQuaternion()) * Vector3f(ev_odom.vx, ev_odom.vy, ev_odom.vz); | ||
939 | - aligned_ev_odom.vx = aligned_vel(0); | ||
940 | - aligned_ev_odom.vy = aligned_vel(1); | ||
941 | - aligned_ev_odom.vz = aligned_vel(2); | ||
942 | - break; | ||
943 | - } | ||
944 | - | ||
945 | - case vehicle_odometry_s::LOCAL_FRAME_FRD: { | ||
946 | - const Vector3f aligned_vel = ev_rot_mat * Vector3f(ev_odom.vx, ev_odom.vy, ev_odom.vz); | ||
947 | - aligned_ev_odom.vx = aligned_vel(0); | ||
948 | - aligned_ev_odom.vy = aligned_vel(1); | ||
949 | - aligned_ev_odom.vz = aligned_vel(2); | ||
950 | - break; | ||
951 | - } | ||
952 | - } | ||
953 | - | ||
954 | - aligned_ev_odom.velocity_frame = vehicle_odometry_s::LOCAL_FRAME_NED; | ||
955 | - | ||
956 | - // Compute orientation in EKF navigation frame | ||
957 | - Quatf ev_quat_aligned = quat_ev2ekf * Quatf(ev_odom.q) ; | ||
958 | - ev_quat_aligned.normalize(); | ||
959 | - | ||
960 | - ev_quat_aligned.copyTo(aligned_ev_odom.q); | ||
961 | - quat_ev2ekf.copyTo(aligned_ev_odom.q_offset); | ||
962 | - | ||
963 | - _estimator_visual_odometry_aligned_pub.publish(aligned_ev_odom); | ||
964 | -} | ||
965 | - | ||
966 | -void EKF2::PublishSensorBias(const hrt_abstime ×tamp) | ||
967 | -{ | ||
968 | - // estimator_sensor_bias | ||
969 | - estimator_sensor_bias_s bias{}; | ||
970 | - bias.timestamp_sample = timestamp; | ||
971 | - | ||
972 | - const Vector3f gyro_bias{_ekf.getGyroBias()}; | ||
973 | - const Vector3f accel_bias{_ekf.getAccelBias()}; | ||
974 | - const Vector3f mag_bias{_mag_cal_last_bias}; | ||
975 | - | ||
976 | - // only publish on change | ||
977 | - if ((gyro_bias - _last_gyro_bias_published).longerThan(0.001f) | ||
978 | - || (accel_bias - _last_accel_bias_published).longerThan(0.001f) | ||
979 | - || (mag_bias - _last_mag_bias_published).longerThan(0.001f)) { | ||
980 | - | ||
981 | - // take device ids from sensor_selection_s if not using specific vehicle_imu_s | ||
982 | - if (_device_id_gyro != 0) { | ||
983 | - bias.gyro_device_id = _device_id_gyro; | ||
984 | - gyro_bias.copyTo(bias.gyro_bias); | ||
985 | - bias.gyro_bias_limit = math::radians(20.f); // 20 degrees/s see Ekf::constrainStates() | ||
986 | - _ekf.getGyroBiasVariance().copyTo(bias.gyro_bias_variance); | ||
987 | - bias.gyro_bias_valid = true; | ||
988 | - | ||
989 | - _last_gyro_bias_published = gyro_bias; | ||
990 | - } | ||
991 | - | ||
992 | - if ((_device_id_accel != 0) && !(_param_ekf2_aid_mask.get() & MASK_INHIBIT_ACC_BIAS)) { | ||
993 | - bias.accel_device_id = _device_id_accel; | ||
994 | - accel_bias.copyTo(bias.accel_bias); | ||
995 | - bias.accel_bias_limit = _params->acc_bias_lim; | ||
996 | - _ekf.getAccelBiasVariance().copyTo(bias.accel_bias_variance); | ||
997 | - bias.accel_bias_valid = !_ekf.fault_status_flags().bad_acc_bias; | ||
998 | - | ||
999 | - _last_accel_bias_published = accel_bias; | ||
1000 | - } | ||
1001 | - | ||
1002 | - if (_device_id_mag != 0) { | ||
1003 | - bias.mag_device_id = _device_id_mag; | ||
1004 | - mag_bias.copyTo(bias.mag_bias); | ||
1005 | - bias.mag_bias_limit = 0.5f; // 0.5 Gauss see Ekf::constrainStates() | ||
1006 | - _mag_cal_last_bias_variance.copyTo(bias.mag_bias_variance); | ||
1007 | - bias.mag_bias_valid = _mag_cal_available; | ||
1008 | - | ||
1009 | - _last_mag_bias_published = mag_bias; | ||
1010 | - } | ||
1011 | - | ||
1012 | - bias.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1013 | - _estimator_sensor_bias_pub.publish(bias); | ||
1014 | - } | ||
1015 | -} | ||
1016 | - | ||
1017 | -void EKF2::PublishStates(const hrt_abstime ×tamp) | ||
1018 | -{ | ||
1019 | - // publish estimator states | ||
1020 | - estimator_states_s states; | ||
1021 | - states.timestamp_sample = timestamp; | ||
1022 | - states.n_states = 24; | ||
1023 | - _ekf.getStateAtFusionHorizonAsVector().copyTo(states.states); | ||
1024 | - _ekf.covariances_diagonal().copyTo(states.covariances); | ||
1025 | - states.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1026 | - _estimator_states_pub.publish(states); | ||
1027 | -} | ||
1028 | - | ||
1029 | -void EKF2::PublishStatus(const hrt_abstime ×tamp) | ||
1030 | -{ | ||
1031 | - estimator_status_s status{}; | ||
1032 | - status.timestamp_sample = timestamp; | ||
1033 | - | ||
1034 | - _ekf.getOutputTrackingError().copyTo(status.output_tracking_error); | ||
1035 | - | ||
1036 | - _ekf.get_gps_check_status(&status.gps_check_fail_flags); | ||
1037 | - | ||
1038 | - // only report enabled GPS check failures (the param indexes are shifted by 1 bit, because they don't include | ||
1039 | - // the GPS Fix bit, which is always checked) | ||
1040 | - status.gps_check_fail_flags &= ((uint16_t)_params->gps_check_mask << 1) | 1; | ||
1041 | - | ||
1042 | - status.control_mode_flags = _ekf.control_status().value; | ||
1043 | - status.filter_fault_flags = _ekf.fault_status().value; | ||
1044 | - | ||
1045 | - uint16_t innov_check_flags_temp = 0; | ||
1046 | - _ekf.get_innovation_test_status(innov_check_flags_temp, status.mag_test_ratio, | ||
1047 | - status.vel_test_ratio, status.pos_test_ratio, | ||
1048 | - status.hgt_test_ratio, status.tas_test_ratio, | ||
1049 | - status.hagl_test_ratio, status.beta_test_ratio); | ||
1050 | - | ||
1051 | - // Bit mismatch between ecl and Firmware, combine the 2 first bits to preserve msg definition | ||
1052 | - // TODO: legacy use only, those flags are also in estimator_status_flags | ||
1053 | - status.innovation_check_flags = (innov_check_flags_temp >> 1) | (innov_check_flags_temp & 0x1); | ||
1054 | - | ||
1055 | - _ekf.get_ekf_lpos_accuracy(&status.pos_horiz_accuracy, &status.pos_vert_accuracy); | ||
1056 | - _ekf.get_ekf_soln_status(&status.solution_status_flags); | ||
1057 | - _ekf.getImuVibrationMetrics().copyTo(status.vibe); | ||
1058 | - | ||
1059 | - // reset counters | ||
1060 | - status.reset_count_vel_ne = _ekf.state_reset_status().velNE_counter; | ||
1061 | - status.reset_count_vel_d = _ekf.state_reset_status().velD_counter; | ||
1062 | - status.reset_count_pos_ne = _ekf.state_reset_status().posNE_counter; | ||
1063 | - status.reset_count_pod_d = _ekf.state_reset_status().posD_counter; | ||
1064 | - status.reset_count_quat = _ekf.state_reset_status().quat_counter; | ||
1065 | - | ||
1066 | - status.time_slip = _last_time_slip_us * 1e-6f; | ||
1067 | - | ||
1068 | - status.pre_flt_fail_innov_heading = _preflt_checker.hasHeadingFailed(); | ||
1069 | - status.pre_flt_fail_innov_vel_horiz = _preflt_checker.hasHorizVelFailed(); | ||
1070 | - status.pre_flt_fail_innov_vel_vert = _preflt_checker.hasVertVelFailed(); | ||
1071 | - status.pre_flt_fail_innov_height = _preflt_checker.hasHeightFailed(); | ||
1072 | - status.pre_flt_fail_mag_field_disturbed = _ekf.control_status_flags().mag_field_disturbed; | ||
1073 | - | ||
1074 | - status.accel_device_id = _device_id_accel; | ||
1075 | - status.baro_device_id = _device_id_baro; | ||
1076 | - status.gyro_device_id = _device_id_gyro; | ||
1077 | - status.mag_device_id = _device_id_mag; | ||
1078 | - | ||
1079 | - status.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1080 | - _estimator_status_pub.publish(status); | ||
1081 | -} | ||
1082 | - | ||
1083 | -void EKF2::PublishStatusFlags(const hrt_abstime ×tamp) | ||
1084 | -{ | ||
1085 | - // publish at ~ 1 Hz (or immediately if filter control status or fault status changes) | ||
1086 | - bool update = (hrt_elapsed_time(&_last_status_flag_update) >= 1_s); | ||
1087 | - | ||
1088 | - // filter control status | ||
1089 | - if (_ekf.control_status().value != _filter_control_status) { | ||
1090 | - update = true; | ||
1091 | - _filter_control_status = _ekf.control_status().value; | ||
1092 | - _filter_control_status_changes++; | ||
1093 | - } | ||
1094 | - | ||
1095 | - // filter fault status | ||
1096 | - if (_ekf.fault_status().value != _filter_fault_status) { | ||
1097 | - update = true; | ||
1098 | - _filter_fault_status = _ekf.fault_status().value; | ||
1099 | - _filter_fault_status_changes++; | ||
1100 | - } | ||
1101 | - | ||
1102 | - // innovation check fail status | ||
1103 | - if (_ekf.innov_check_fail_status().value != _innov_check_fail_status) { | ||
1104 | - update = true; | ||
1105 | - _innov_check_fail_status = _ekf.innov_check_fail_status().value; | ||
1106 | - _innov_check_fail_status_changes++; | ||
1107 | - } | ||
1108 | - | ||
1109 | - if (update) { | ||
1110 | - estimator_status_flags_s status_flags{}; | ||
1111 | - status_flags.timestamp_sample = timestamp; | ||
1112 | - | ||
1113 | - status_flags.control_status_changes = _filter_control_status_changes; | ||
1114 | - status_flags.cs_tilt_align = _ekf.control_status_flags().tilt_align; | ||
1115 | - status_flags.cs_yaw_align = _ekf.control_status_flags().yaw_align; | ||
1116 | - status_flags.cs_gps = _ekf.control_status_flags().gps; | ||
1117 | - status_flags.cs_opt_flow = _ekf.control_status_flags().opt_flow; | ||
1118 | - status_flags.cs_mag_hdg = _ekf.control_status_flags().mag_hdg; | ||
1119 | - status_flags.cs_mag_3d = _ekf.control_status_flags().mag_3D; | ||
1120 | - status_flags.cs_mag_dec = _ekf.control_status_flags().mag_dec; | ||
1121 | - status_flags.cs_in_air = _ekf.control_status_flags().in_air; | ||
1122 | - status_flags.cs_wind = _ekf.control_status_flags().wind; | ||
1123 | - status_flags.cs_baro_hgt = _ekf.control_status_flags().baro_hgt; | ||
1124 | - status_flags.cs_rng_hgt = _ekf.control_status_flags().rng_hgt; | ||
1125 | - status_flags.cs_gps_hgt = _ekf.control_status_flags().gps_hgt; | ||
1126 | - status_flags.cs_ev_pos = _ekf.control_status_flags().ev_pos; | ||
1127 | - status_flags.cs_ev_yaw = _ekf.control_status_flags().ev_yaw; | ||
1128 | - status_flags.cs_ev_hgt = _ekf.control_status_flags().ev_hgt; | ||
1129 | - status_flags.cs_fuse_beta = _ekf.control_status_flags().fuse_beta; | ||
1130 | - status_flags.cs_mag_field_disturbed = _ekf.control_status_flags().mag_field_disturbed; | ||
1131 | - status_flags.cs_fixed_wing = _ekf.control_status_flags().fixed_wing; | ||
1132 | - status_flags.cs_mag_fault = _ekf.control_status_flags().mag_fault; | ||
1133 | - status_flags.cs_fuse_aspd = _ekf.control_status_flags().fuse_aspd; | ||
1134 | - status_flags.cs_gnd_effect = _ekf.control_status_flags().gnd_effect; | ||
1135 | - status_flags.cs_rng_stuck = _ekf.control_status_flags().rng_stuck; | ||
1136 | - status_flags.cs_gps_yaw = _ekf.control_status_flags().gps_yaw; | ||
1137 | - status_flags.cs_mag_aligned_in_flight = _ekf.control_status_flags().mag_aligned_in_flight; | ||
1138 | - status_flags.cs_ev_vel = _ekf.control_status_flags().ev_vel; | ||
1139 | - status_flags.cs_synthetic_mag_z = _ekf.control_status_flags().synthetic_mag_z; | ||
1140 | - status_flags.cs_vehicle_at_rest = _ekf.control_status_flags().vehicle_at_rest; | ||
1141 | - | ||
1142 | - status_flags.fault_status_changes = _filter_fault_status_changes; | ||
1143 | - status_flags.fs_bad_mag_x = _ekf.fault_status_flags().bad_mag_x; | ||
1144 | - status_flags.fs_bad_mag_y = _ekf.fault_status_flags().bad_mag_y; | ||
1145 | - status_flags.fs_bad_mag_z = _ekf.fault_status_flags().bad_mag_z; | ||
1146 | - status_flags.fs_bad_hdg = _ekf.fault_status_flags().bad_hdg; | ||
1147 | - status_flags.fs_bad_mag_decl = _ekf.fault_status_flags().bad_mag_decl; | ||
1148 | - status_flags.fs_bad_airspeed = _ekf.fault_status_flags().bad_airspeed; | ||
1149 | - status_flags.fs_bad_sideslip = _ekf.fault_status_flags().bad_sideslip; | ||
1150 | - status_flags.fs_bad_optflow_x = _ekf.fault_status_flags().bad_optflow_X; | ||
1151 | - status_flags.fs_bad_optflow_y = _ekf.fault_status_flags().bad_optflow_Y; | ||
1152 | - status_flags.fs_bad_vel_n = _ekf.fault_status_flags().bad_vel_N; | ||
1153 | - status_flags.fs_bad_vel_e = _ekf.fault_status_flags().bad_vel_E; | ||
1154 | - status_flags.fs_bad_vel_d = _ekf.fault_status_flags().bad_vel_D; | ||
1155 | - status_flags.fs_bad_pos_n = _ekf.fault_status_flags().bad_pos_N; | ||
1156 | - status_flags.fs_bad_pos_e = _ekf.fault_status_flags().bad_pos_E; | ||
1157 | - status_flags.fs_bad_pos_d = _ekf.fault_status_flags().bad_pos_D; | ||
1158 | - status_flags.fs_bad_acc_bias = _ekf.fault_status_flags().bad_acc_bias; | ||
1159 | - status_flags.fs_bad_acc_vertical = _ekf.fault_status_flags().bad_acc_vertical; | ||
1160 | - status_flags.fs_bad_acc_clipping = _ekf.fault_status_flags().bad_acc_clipping; | ||
1161 | - | ||
1162 | - status_flags.innovation_fault_status_changes = _innov_check_fail_status_changes; | ||
1163 | - status_flags.reject_hor_vel = _ekf.innov_check_fail_status_flags().reject_hor_vel; | ||
1164 | - status_flags.reject_ver_vel = _ekf.innov_check_fail_status_flags().reject_ver_vel; | ||
1165 | - status_flags.reject_hor_pos = _ekf.innov_check_fail_status_flags().reject_hor_pos; | ||
1166 | - status_flags.reject_ver_pos = _ekf.innov_check_fail_status_flags().reject_ver_pos; | ||
1167 | - status_flags.reject_mag_x = _ekf.innov_check_fail_status_flags().reject_mag_x; | ||
1168 | - status_flags.reject_mag_y = _ekf.innov_check_fail_status_flags().reject_mag_y; | ||
1169 | - status_flags.reject_mag_z = _ekf.innov_check_fail_status_flags().reject_mag_z; | ||
1170 | - status_flags.reject_yaw = _ekf.innov_check_fail_status_flags().reject_yaw; | ||
1171 | - status_flags.reject_airspeed = _ekf.innov_check_fail_status_flags().reject_airspeed; | ||
1172 | - status_flags.reject_sideslip = _ekf.innov_check_fail_status_flags().reject_sideslip; | ||
1173 | - status_flags.reject_hagl = _ekf.innov_check_fail_status_flags().reject_hagl; | ||
1174 | - status_flags.reject_optflow_x = _ekf.innov_check_fail_status_flags().reject_optflow_X; | ||
1175 | - status_flags.reject_optflow_y = _ekf.innov_check_fail_status_flags().reject_optflow_Y; | ||
1176 | - | ||
1177 | - status_flags.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1178 | - _estimator_status_flags_pub.publish(status_flags); | ||
1179 | - | ||
1180 | - _last_status_flag_update = status_flags.timestamp; | ||
1181 | - } | ||
1182 | -} | ||
1183 | - | ||
1184 | -void EKF2::PublishYawEstimatorStatus(const hrt_abstime ×tamp) | ||
1185 | -{ | ||
1186 | - static_assert(sizeof(yaw_estimator_status_s::yaw) / sizeof(float) == N_MODELS_EKFGSF, | ||
1187 | - "yaw_estimator_status_s::yaw wrong size"); | ||
1188 | - | ||
1189 | - yaw_estimator_status_s yaw_est_test_data; | ||
1190 | - | ||
1191 | - if (_ekf.getDataEKFGSF(&yaw_est_test_data.yaw_composite, &yaw_est_test_data.yaw_variance, | ||
1192 | - yaw_est_test_data.yaw, | ||
1193 | - yaw_est_test_data.innov_vn, yaw_est_test_data.innov_ve, | ||
1194 | - yaw_est_test_data.weight)) { | ||
1195 | - | ||
1196 | - yaw_est_test_data.timestamp_sample = timestamp; | ||
1197 | - yaw_est_test_data.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1198 | - | ||
1199 | - _yaw_est_pub.publish(yaw_est_test_data); | ||
1200 | - } | ||
1201 | -} | ||
1202 | - | ||
1203 | -void EKF2::PublishWindEstimate(const hrt_abstime ×tamp) | ||
1204 | -{ | ||
1205 | - if (_ekf.get_wind_status()) { | ||
1206 | - // Publish wind estimate only if ekf declares them valid | ||
1207 | - wind_s wind{}; | ||
1208 | - wind.timestamp_sample = timestamp; | ||
1209 | - | ||
1210 | - const Vector2f wind_vel = _ekf.getWindVelocity(); | ||
1211 | - const Vector2f wind_vel_var = _ekf.getWindVelocityVariance(); | ||
1212 | - _ekf.getAirspeedInnov(wind.tas_innov); | ||
1213 | - _ekf.getAirspeedInnovVar(wind.tas_innov_var); | ||
1214 | - _ekf.getBetaInnov(wind.beta_innov); | ||
1215 | - _ekf.getBetaInnovVar(wind.beta_innov_var); | ||
1216 | - | ||
1217 | - wind.windspeed_north = wind_vel(0); | ||
1218 | - wind.windspeed_east = wind_vel(1); | ||
1219 | - wind.variance_north = wind_vel_var(0); | ||
1220 | - wind.variance_east = wind_vel_var(1); | ||
1221 | - wind.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1222 | - | ||
1223 | - _wind_pub.publish(wind); | ||
1224 | - } | ||
1225 | -} | ||
1226 | - | ||
1227 | -void EKF2::PublishOpticalFlowVel(const hrt_abstime ×tamp, const optical_flow_s &flow_sample) | ||
1228 | -{ | ||
1229 | - estimator_optical_flow_vel_s flow_vel{}; | ||
1230 | - flow_vel.timestamp_sample = flow_sample.timestamp; | ||
1231 | - | ||
1232 | - _ekf.getFlowVelBody().copyTo(flow_vel.vel_body); | ||
1233 | - _ekf.getFlowVelNE().copyTo(flow_vel.vel_ne); | ||
1234 | - _ekf.getFlowUncompensated().copyTo(flow_vel.flow_uncompensated_integral); | ||
1235 | - _ekf.getFlowCompensated().copyTo(flow_vel.flow_compensated_integral); | ||
1236 | - _ekf.getFlowGyro().copyTo(flow_vel.gyro_rate_integral); | ||
1237 | - flow_vel.timestamp = _replay_mode ? timestamp : hrt_absolute_time(); | ||
1238 | - | ||
1239 | - _estimator_optical_flow_vel_pub.publish(flow_vel); | ||
1240 | -} | ||
1241 | - | ||
1242 | -float EKF2::filter_altitude_ellipsoid(float amsl_hgt) | ||
1243 | -{ | ||
1244 | - float height_diff = static_cast<float>(_gps_alttitude_ellipsoid) * 1e-3f - amsl_hgt; | ||
1245 | - | ||
1246 | - if (_gps_alttitude_ellipsoid_previous_timestamp == 0) { | ||
1247 | - | ||
1248 | - _wgs84_hgt_offset = height_diff; | ||
1249 | - _gps_alttitude_ellipsoid_previous_timestamp = _gps_time_usec; | ||
1250 | - | ||
1251 | - } else if (_gps_time_usec != _gps_alttitude_ellipsoid_previous_timestamp) { | ||
1252 | - | ||
1253 | - // apply a 10 second first order low pass filter to baro offset | ||
1254 | - float dt = 1e-6f * (_gps_time_usec - _gps_alttitude_ellipsoid_previous_timestamp); | ||
1255 | - _gps_alttitude_ellipsoid_previous_timestamp = _gps_time_usec; | ||
1256 | - float offset_rate_correction = 0.1f * (height_diff - _wgs84_hgt_offset); | ||
1257 | - _wgs84_hgt_offset += dt * constrain(offset_rate_correction, -0.1f, 0.1f); | ||
1258 | - } | ||
1259 | - | ||
1260 | - return amsl_hgt + _wgs84_hgt_offset; | ||
1261 | -} | ||
1262 | - | ||
1263 | -void EKF2::UpdateAirspeedSample(ekf2_timestamps_s &ekf2_timestamps) | ||
1264 | -{ | ||
1265 | - // EKF airspeed sample | ||
1266 | - airspeed_s airspeed; | ||
1267 | - | ||
1268 | - if (_airspeed_sub.update(&airspeed)) { | ||
1269 | - // The airspeed measurement received via the airspeed.msg topic has not been corrected | ||
1270 | - // for scale favtor errors and requires the ASPD_SCALE correction to be applied. | ||
1271 | - // This could be avoided if true_airspeed_m_s from the airspeed-validated.msg topic | ||
1272 | - // was used instead, however this would introduce a potential circular dependency | ||
1273 | - // via the wind estimator that uses EKF velocity estimates. | ||
1274 | - const float true_airspeed_m_s = airspeed.true_airspeed_m_s * _airspeed_scale_factor; | ||
1275 | - | ||
1276 | - // only set airspeed data if condition for airspeed fusion are met | ||
1277 | - if ((_param_ekf2_arsp_thr.get() > FLT_EPSILON) && (true_airspeed_m_s > _param_ekf2_arsp_thr.get())) { | ||
1278 | - | ||
1279 | - airspeedSample airspeed_sample { | ||
1280 | - .time_us = airspeed.timestamp, | ||
1281 | - .true_airspeed = true_airspeed_m_s, | ||
1282 | - .eas2tas = airspeed.true_airspeed_m_s / airspeed.indicated_airspeed_m_s, | ||
1283 | - }; | ||
1284 | - _ekf.setAirspeedData(airspeed_sample); | ||
1285 | - } | ||
1286 | - | ||
1287 | - ekf2_timestamps.airspeed_timestamp_rel = (int16_t)((int64_t)airspeed.timestamp / 100 - | ||
1288 | - (int64_t)ekf2_timestamps.timestamp / 100); | ||
1289 | - } | ||
1290 | -} | ||
1291 | - | ||
1292 | -void EKF2::UpdateAuxVelSample(ekf2_timestamps_s &ekf2_timestamps) | ||
1293 | -{ | ||
1294 | - // EKF auxillary velocity sample | ||
1295 | - // - use the landing target pose estimate as another source of velocity data | ||
1296 | - const unsigned last_generation = _landing_target_pose_sub.get_last_generation(); | ||
1297 | - landing_target_pose_s landing_target_pose; | ||
1298 | - | ||
1299 | - if (_landing_target_pose_sub.update(&landing_target_pose)) { | ||
1300 | - | ||
1301 | - if (_landing_target_pose_sub.get_last_generation() != last_generation + 1) { | ||
1302 | - PX4_ERR("%d - landing_target_pose lost, generation %d -> %d", _instance, last_generation, | ||
1303 | - _landing_target_pose_sub.get_last_generation()); | ||
1304 | - } | ||
1305 | - | ||
1306 | - // we can only use the landing target if it has a fixed position and a valid velocity estimate | ||
1307 | - if (landing_target_pose.is_static && landing_target_pose.rel_vel_valid) { | ||
1308 | - // velocity of vehicle relative to target has opposite sign to target relative to vehicle | ||
1309 | - auxVelSample auxvel_sample{ | ||
1310 | - .time_us = landing_target_pose.timestamp, | ||
1311 | - .vel = Vector3f{-landing_target_pose.vx_rel, -landing_target_pose.vy_rel, 0.0f}, | ||
1312 | - .velVar = Vector3f{landing_target_pose.cov_vx_rel, landing_target_pose.cov_vy_rel, 0.0f}, | ||
1313 | - }; | ||
1314 | - _ekf.setAuxVelData(auxvel_sample); | ||
1315 | - } | ||
1316 | - } | ||
1317 | -} | ||
1318 | - | ||
1319 | -void EKF2::UpdateBaroSample(ekf2_timestamps_s &ekf2_timestamps) | ||
1320 | -{ | ||
1321 | - // EKF baro sample | ||
1322 | - vehicle_air_data_s airdata; | ||
1323 | - | ||
1324 | - if (_airdata_sub.update(&airdata)) { | ||
1325 | - _ekf.set_air_density(airdata.rho); | ||
1326 | - | ||
1327 | - _ekf.setBaroData(baroSample{airdata.timestamp_sample, airdata.baro_alt_meter}); | ||
1328 | - | ||
1329 | - _device_id_baro = airdata.baro_device_id; | ||
1330 | - | ||
1331 | - ekf2_timestamps.vehicle_air_data_timestamp_rel = (int16_t)((int64_t)airdata.timestamp / 100 - | ||
1332 | - (int64_t)ekf2_timestamps.timestamp / 100); | ||
1333 | - } | ||
1334 | -} | ||
1335 | - | ||
1336 | -bool EKF2::UpdateExtVisionSample(ekf2_timestamps_s &ekf2_timestamps, vehicle_odometry_s &ev_odom) | ||
1337 | -{ | ||
1338 | - bool new_ev_odom = false; | ||
1339 | - const unsigned last_generation = _ev_odom_sub.get_last_generation(); | ||
1340 | - | ||
1341 | - // EKF external vision sample | ||
1342 | - if (_ev_odom_sub.update(&ev_odom)) { | ||
1343 | - | ||
1344 | - if (_ev_odom_sub.get_last_generation() != last_generation + 1) { | ||
1345 | - PX4_ERR("%d - vehicle_visual_odometry lost, generation %d -> %d", _instance, last_generation, | ||
1346 | - _ev_odom_sub.get_last_generation()); | ||
1347 | - } | ||
1348 | - | ||
1349 | - if (_param_ekf2_aid_mask.get() & (MASK_USE_EVPOS | MASK_USE_EVYAW | MASK_USE_EVVEL)) { | ||
1350 | - | ||
1351 | - extVisionSample ev_data{}; | ||
1352 | - | ||
1353 | - // if error estimates are unavailable, use parameter defined defaults | ||
1354 | - | ||
1355 | - // check for valid velocity data | ||
1356 | - if (PX4_ISFINITE(ev_odom.vx) && PX4_ISFINITE(ev_odom.vy) && PX4_ISFINITE(ev_odom.vz)) { | ||
1357 | - ev_data.vel(0) = ev_odom.vx; | ||
1358 | - ev_data.vel(1) = ev_odom.vy; | ||
1359 | - ev_data.vel(2) = ev_odom.vz; | ||
1360 | - | ||
1361 | - if (ev_odom.velocity_frame == vehicle_odometry_s::BODY_FRAME_FRD) { | ||
1362 | - ev_data.vel_frame = velocity_frame_t::BODY_FRAME_FRD; | ||
1363 | - | ||
1364 | - } else { | ||
1365 | - ev_data.vel_frame = velocity_frame_t::LOCAL_FRAME_FRD; | ||
1366 | - } | ||
1367 | - | ||
1368 | - // velocity measurement error from ev_data or parameters | ||
1369 | - float param_evv_noise_var = sq(_param_ekf2_evv_noise.get()); | ||
1370 | - | ||
1371 | - if (!_param_ekf2_ev_noise_md.get() && PX4_ISFINITE(ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VX_VARIANCE]) | ||
1372 | - && PX4_ISFINITE(ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VY_VARIANCE]) | ||
1373 | - && PX4_ISFINITE(ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VZ_VARIANCE])) { | ||
1374 | - ev_data.velCov(0, 0) = ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VX_VARIANCE]; | ||
1375 | - ev_data.velCov(0, 1) = ev_data.velCov(1, 0) = ev_odom.velocity_covariance[1]; | ||
1376 | - ev_data.velCov(0, 2) = ev_data.velCov(2, 0) = ev_odom.velocity_covariance[2]; | ||
1377 | - ev_data.velCov(1, 1) = ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VY_VARIANCE]; | ||
1378 | - ev_data.velCov(1, 2) = ev_data.velCov(2, 1) = ev_odom.velocity_covariance[7]; | ||
1379 | - ev_data.velCov(2, 2) = ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VZ_VARIANCE]; | ||
1380 | - | ||
1381 | - } else { | ||
1382 | - ev_data.velCov = matrix::eye<float, 3>() * param_evv_noise_var; | ||
1383 | - } | ||
1384 | - } | ||
1385 | - | ||
1386 | - // check for valid position data | ||
1387 | - if (PX4_ISFINITE(ev_odom.x) && PX4_ISFINITE(ev_odom.y) && PX4_ISFINITE(ev_odom.z)) { | ||
1388 | - ev_data.pos(0) = ev_odom.x; | ||
1389 | - ev_data.pos(1) = ev_odom.y; | ||
1390 | - ev_data.pos(2) = ev_odom.z; | ||
1391 | - | ||
1392 | - float param_evp_noise_var = sq(_param_ekf2_evp_noise.get()); | ||
1393 | - | ||
1394 | - // position measurement error from ev_data or parameters | ||
1395 | - if (!_param_ekf2_ev_noise_md.get() && PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_X_VARIANCE]) | ||
1396 | - && PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Y_VARIANCE]) | ||
1397 | - && PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Z_VARIANCE])) { | ||
1398 | - ev_data.posVar(0) = fmaxf(param_evp_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_X_VARIANCE]); | ||
1399 | - ev_data.posVar(1) = fmaxf(param_evp_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Y_VARIANCE]); | ||
1400 | - ev_data.posVar(2) = fmaxf(param_evp_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Z_VARIANCE]); | ||
1401 | - | ||
1402 | - } else { | ||
1403 | - ev_data.posVar.setAll(param_evp_noise_var); | ||
1404 | - } | ||
1405 | - } | ||
1406 | - | ||
1407 | - // check for valid orientation data | ||
1408 | - if (PX4_ISFINITE(ev_odom.q[0])) { | ||
1409 | - ev_data.quat = Quatf(ev_odom.q); | ||
1410 | - | ||
1411 | - // orientation measurement error from ev_data or parameters | ||
1412 | - float param_eva_noise_var = sq(_param_ekf2_eva_noise.get()); | ||
1413 | - | ||
1414 | - if (!_param_ekf2_ev_noise_md.get() && PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_YAW_VARIANCE])) { | ||
1415 | - ev_data.angVar = fmaxf(param_eva_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_YAW_VARIANCE]); | ||
1416 | - | ||
1417 | - } else { | ||
1418 | - ev_data.angVar = param_eva_noise_var; | ||
1419 | - } | ||
1420 | - } | ||
1421 | - | ||
1422 | - // use timestamp from external computer, clocks are synchronized when using MAVROS | ||
1423 | - ev_data.time_us = ev_odom.timestamp_sample; | ||
1424 | - _ekf.setExtVisionData(ev_data); | ||
1425 | - | ||
1426 | - new_ev_odom = true; | ||
1427 | - } | ||
1428 | - | ||
1429 | - ekf2_timestamps.visual_odometry_timestamp_rel = (int16_t)((int64_t)ev_odom.timestamp / 100 - | ||
1430 | - (int64_t)ekf2_timestamps.timestamp / 100); | ||
1431 | - } | ||
1432 | - | ||
1433 | - return new_ev_odom; | ||
1434 | -} | ||
1435 | - | ||
1436 | -bool EKF2::UpdateFlowSample(ekf2_timestamps_s &ekf2_timestamps, optical_flow_s &optical_flow) | ||
1437 | -{ | ||
1438 | - bool new_optical_flow = false; | ||
1439 | - const unsigned last_generation = _optical_flow_sub.get_last_generation(); | ||
1440 | - | ||
1441 | - if (_optical_flow_sub.update(&optical_flow)) { | ||
1442 | - | ||
1443 | - if (_optical_flow_sub.get_last_generation() != last_generation + 1) { | ||
1444 | - PX4_ERR("%d - optical_flow lost, generation %d -> %d", _instance, last_generation, | ||
1445 | - _optical_flow_sub.get_last_generation()); | ||
1446 | - } | ||
1447 | - | ||
1448 | - if (_param_ekf2_aid_mask.get() & MASK_USE_OF) { | ||
1449 | - | ||
1450 | - flowSample flow { | ||
1451 | - .time_us = optical_flow.timestamp, | ||
1452 | - // NOTE: the EKF uses the reverse sign convention to the flow sensor. EKF assumes positive LOS rate | ||
1453 | - // is produced by a RH rotation of the image about the sensor axis. | ||
1454 | - .flow_xy_rad = Vector2f{-optical_flow.pixel_flow_x_integral, -optical_flow.pixel_flow_y_integral}, | ||
1455 | - .gyro_xyz = Vector3f{-optical_flow.gyro_x_rate_integral, -optical_flow.gyro_y_rate_integral, -optical_flow.gyro_z_rate_integral}, | ||
1456 | - .dt = 1e-6f * (float)optical_flow.integration_timespan, | ||
1457 | - .quality = optical_flow.quality, | ||
1458 | - }; | ||
1459 | - | ||
1460 | - if (PX4_ISFINITE(optical_flow.pixel_flow_y_integral) && | ||
1461 | - PX4_ISFINITE(optical_flow.pixel_flow_x_integral) && | ||
1462 | - flow.dt < 1) { | ||
1463 | - | ||
1464 | - // Save sensor limits reported by the optical flow sensor | ||
1465 | - _ekf.set_optical_flow_limits(optical_flow.max_flow_rate, optical_flow.min_ground_distance, | ||
1466 | - optical_flow.max_ground_distance); | ||
1467 | - | ||
1468 | - _ekf.setOpticalFlowData(flow); | ||
1469 | - | ||
1470 | - new_optical_flow = true; | ||
1471 | - } | ||
1472 | - } | ||
1473 | - | ||
1474 | - ekf2_timestamps.optical_flow_timestamp_rel = (int16_t)((int64_t)optical_flow.timestamp / 100 - | ||
1475 | - (int64_t)ekf2_timestamps.timestamp / 100); | ||
1476 | - } | ||
1477 | - | ||
1478 | - return new_optical_flow; | ||
1479 | -} | ||
1480 | - | ||
1481 | -void EKF2::UpdateGpsSample(ekf2_timestamps_s &ekf2_timestamps) | ||
1482 | -{ | ||
1483 | - // EKF GPS message | ||
1484 | - if (_param_ekf2_aid_mask.get() & MASK_USE_GPS) { | ||
1485 | - vehicle_gps_position_s vehicle_gps_position; | ||
1486 | - | ||
1487 | - if (_vehicle_gps_position_sub.update(&vehicle_gps_position)) { | ||
1488 | - gps_message gps_msg{ | ||
1489 | - .time_usec = vehicle_gps_position.timestamp, | ||
1490 | - .lat = vehicle_gps_position.lat, | ||
1491 | - .lon = vehicle_gps_position.lon, | ||
1492 | - .alt = vehicle_gps_position.alt, | ||
1493 | - .yaw = vehicle_gps_position.heading, | ||
1494 | - .yaw_offset = vehicle_gps_position.heading_offset, | ||
1495 | - .fix_type = vehicle_gps_position.fix_type, | ||
1496 | - .eph = vehicle_gps_position.eph, | ||
1497 | - .epv = vehicle_gps_position.epv, | ||
1498 | - .sacc = vehicle_gps_position.s_variance_m_s, | ||
1499 | - .vel_m_s = vehicle_gps_position.vel_m_s, | ||
1500 | - .vel_ned = Vector3f{ | ||
1501 | - vehicle_gps_position.vel_n_m_s, | ||
1502 | - vehicle_gps_position.vel_e_m_s, | ||
1503 | - vehicle_gps_position.vel_d_m_s | ||
1504 | - }, | ||
1505 | - .vel_ned_valid = vehicle_gps_position.vel_ned_valid, | ||
1506 | - .nsats = vehicle_gps_position.satellites_used, | ||
1507 | - .pdop = sqrtf(vehicle_gps_position.hdop *vehicle_gps_position.hdop | ||
1508 | - + vehicle_gps_position.vdop * vehicle_gps_position.vdop), | ||
1509 | - }; | ||
1510 | - _ekf.setGpsData(gps_msg); | ||
1511 | - if(hold != int(gps_msg.time_usec/1000000)) | ||
1512 | - { | ||
1513 | - hold=int(gps_msg.time_usec/1000000); | ||
1514 | - if(hold%2==0) | ||
1515 | - { | ||
1516 | - std::cout <<"----------------------current--------------------------"<<std::endl; | ||
1517 | - std :: cout << "time : "<<gps_msg.time_usec/1000000<<std::endl; | ||
1518 | - std :: cout << "lat : " <<gps_msg.lat <<std::endl; | ||
1519 | - std :: cout << "lon : " <<gps_msg.lon <<std::endl; | ||
1520 | - std :: cout << "alt : " <<gps_msg.alt <<std::endl; | ||
1521 | - } | ||
1522 | - } | ||
1523 | - _gps_time_usec = gps_msg.time_usec; | ||
1524 | - _gps_alttitude_ellipsoid = vehicle_gps_position.alt_ellipsoid; | ||
1525 | - } | ||
1526 | - } | ||
1527 | -} | ||
1528 | - | ||
1529 | -void EKF2::UpdateMagSample(ekf2_timestamps_s &ekf2_timestamps) | ||
1530 | -{ | ||
1531 | - const unsigned last_generation = _magnetometer_sub.get_last_generation(); | ||
1532 | - vehicle_magnetometer_s magnetometer; | ||
1533 | - | ||
1534 | - if (_magnetometer_sub.update(&magnetometer)) { | ||
1535 | - | ||
1536 | - if (_magnetometer_sub.get_last_generation() != last_generation + 1) { | ||
1537 | - perf_count(_mag_missed_perf); | ||
1538 | - PX4_DEBUG("%d - vehicle_magnetometer lost, generation %d -> %d", _instance, last_generation, | ||
1539 | - _magnetometer_sub.get_last_generation()); | ||
1540 | - } | ||
1541 | - | ||
1542 | - bool reset = false; | ||
1543 | - | ||
1544 | - // check if magnetometer has changed | ||
1545 | - if (magnetometer.device_id != _device_id_mag) { | ||
1546 | - if (_device_id_mag != 0) { | ||
1547 | - PX4_WARN("%d - mag sensor ID changed %d -> %d", _instance, _device_id_mag, magnetometer.device_id); | ||
1548 | - } | ||
1549 | - | ||
1550 | - reset = true; | ||
1551 | - | ||
1552 | - } else if (magnetometer.calibration_count > _mag_calibration_count) { | ||
1553 | - // existing calibration has changed, reset saved mag bias | ||
1554 | - PX4_DEBUG("%d - mag %d calibration updated, resetting bias", _instance, _device_id_mag); | ||
1555 | - reset = true; | ||
1556 | - } | ||
1557 | - | ||
1558 | - if (reset) { | ||
1559 | - _ekf.resetMagBias(); | ||
1560 | - _device_id_mag = magnetometer.device_id; | ||
1561 | - _mag_calibration_count = magnetometer.calibration_count; | ||
1562 | - | ||
1563 | - // reset magnetometer bias learning | ||
1564 | - _mag_cal_total_time_us = 0; | ||
1565 | - _mag_cal_last_us = 0; | ||
1566 | - _mag_cal_available = false; | ||
1567 | - } | ||
1568 | - | ||
1569 | - _ekf.setMagData(magSample{magnetometer.timestamp_sample, Vector3f{magnetometer.magnetometer_ga}}); | ||
1570 | - | ||
1571 | - ekf2_timestamps.vehicle_magnetometer_timestamp_rel = (int16_t)((int64_t)magnetometer.timestamp / 100 - | ||
1572 | - (int64_t)ekf2_timestamps.timestamp / 100); | ||
1573 | - } | ||
1574 | -} | ||
1575 | - | ||
1576 | -void EKF2::UpdateRangeSample(ekf2_timestamps_s &ekf2_timestamps) | ||
1577 | -{ | ||
1578 | - if (!_distance_sensor_selected) { | ||
1579 | - // get subscription index of first downward-facing range sensor | ||
1580 | - uORB::SubscriptionMultiArray<distance_sensor_s> distance_sensor_subs{ORB_ID::distance_sensor}; | ||
1581 | - | ||
1582 | - for (unsigned i = 0; i < distance_sensor_subs.size(); i++) { | ||
1583 | - distance_sensor_s distance_sensor; | ||
1584 | - | ||
1585 | - if (distance_sensor_subs[i].copy(&distance_sensor)) { | ||
1586 | - // only use the first instace which has the correct orientation | ||
1587 | - if ((hrt_elapsed_time(&distance_sensor.timestamp) < 100_ms) | ||
1588 | - && (distance_sensor.orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING)) { | ||
1589 | - | ||
1590 | - if (_distance_sensor_sub.ChangeInstance(i)) { | ||
1591 | - PX4_INFO("%d - selected distance_sensor:%d", _instance, i); | ||
1592 | - _distance_sensor_selected = true; | ||
1593 | - } | ||
1594 | - } | ||
1595 | - } | ||
1596 | - } | ||
1597 | - } | ||
1598 | - | ||
1599 | - // EKF range sample | ||
1600 | - const unsigned last_generation = _distance_sensor_sub.get_last_generation(); | ||
1601 | - distance_sensor_s distance_sensor; | ||
1602 | - | ||
1603 | - if (_distance_sensor_sub.update(&distance_sensor)) { | ||
1604 | - | ||
1605 | - if (_distance_sensor_sub.get_last_generation() != last_generation + 1) { | ||
1606 | - PX4_ERR("%d - distance_sensor lost, generation %d -> %d", _instance, last_generation, | ||
1607 | - _distance_sensor_sub.get_last_generation()); | ||
1608 | - } | ||
1609 | - | ||
1610 | - ekf2_timestamps.distance_sensor_timestamp_rel = (int16_t)((int64_t)distance_sensor.timestamp / 100 - | ||
1611 | - (int64_t)ekf2_timestamps.timestamp / 100); | ||
1612 | - | ||
1613 | - if (distance_sensor.orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING) { | ||
1614 | - rangeSample range_sample { | ||
1615 | - .time_us = distance_sensor.timestamp, | ||
1616 | - .rng = distance_sensor.current_distance, | ||
1617 | - .quality = distance_sensor.signal_quality, | ||
1618 | - }; | ||
1619 | - _ekf.setRangeData(range_sample); | ||
1620 | - | ||
1621 | - // Save sensor limits reported by the rangefinder | ||
1622 | - _ekf.set_rangefinder_limits(distance_sensor.min_distance, distance_sensor.max_distance); | ||
1623 | - | ||
1624 | - _last_range_sensor_update = distance_sensor.timestamp; | ||
1625 | - return; | ||
1626 | - } | ||
1627 | - } | ||
1628 | - | ||
1629 | - if (hrt_elapsed_time(&_last_range_sensor_update) > 1_s) { | ||
1630 | - _distance_sensor_selected = false; | ||
1631 | - } | ||
1632 | -} | ||
1633 | - | ||
1634 | -void EKF2::UpdateMagCalibration(const hrt_abstime ×tamp) | ||
1635 | -{ | ||
1636 | - // Check if conditions are OK for learning of magnetometer bias values | ||
1637 | - // the EKF is operating in the correct mode and there are no filter faults | ||
1638 | - if (_ekf.control_status_flags().in_air && _ekf.control_status_flags().mag_3D && (_ekf.fault_status().value == 0)) { | ||
1639 | - | ||
1640 | - if (_mag_cal_last_us != 0) { | ||
1641 | - _mag_cal_total_time_us += timestamp - _mag_cal_last_us; | ||
1642 | - | ||
1643 | - // Start checking mag bias estimates when we have accumulated sufficient calibration time | ||
1644 | - if (_mag_cal_total_time_us > 30_s) { | ||
1645 | - _mag_cal_last_bias = _ekf.getMagBias(); | ||
1646 | - _mag_cal_last_bias_variance = _ekf.getMagBiasVariance(); | ||
1647 | - _mag_cal_available = true; | ||
1648 | - } | ||
1649 | - } | ||
1650 | - | ||
1651 | - _mag_cal_last_us = timestamp; | ||
1652 | - | ||
1653 | - } else { | ||
1654 | - // conditions are NOT OK for learning magnetometer bias, reset timestamp | ||
1655 | - // but keep the accumulated calibration time | ||
1656 | - _mag_cal_last_us = 0; | ||
1657 | - | ||
1658 | - if (_ekf.fault_status().value != 0) { | ||
1659 | - // if a filter fault has occurred, assume previous learning was invalid and do not | ||
1660 | - // count it towards total learning time. | ||
1661 | - _mag_cal_total_time_us = 0; | ||
1662 | - } | ||
1663 | - } | ||
1664 | - | ||
1665 | - if (!_armed) { | ||
1666 | - // update stored declination value | ||
1667 | - if (!_mag_decl_saved) { | ||
1668 | - float declination_deg; | ||
1669 | - | ||
1670 | - if (_ekf.get_mag_decl_deg(&declination_deg)) { | ||
1671 | - _param_ekf2_mag_decl.set(declination_deg); | ||
1672 | - _mag_decl_saved = true; | ||
1673 | - | ||
1674 | - if (!_multi_mode) { | ||
1675 | - _param_ekf2_mag_decl.commit_no_notification(); | ||
1676 | - } | ||
1677 | - } | ||
1678 | - } | ||
1679 | - } | ||
1680 | -} | ||
1681 | - | ||
1682 | -int EKF2::custom_command(int argc, char *argv[]) | ||
1683 | -{ | ||
1684 | - return print_usage("unknown command"); | ||
1685 | -} | ||
1686 | - | ||
1687 | -int EKF2::task_spawn(int argc, char *argv[]) | ||
1688 | -{ | ||
1689 | - bool success = false; | ||
1690 | - bool replay_mode = false; | ||
1691 | - | ||
1692 | - if (argc > 1 && !strcmp(argv[1], "-r")) { | ||
1693 | - PX4_INFO("replay mode enabled"); | ||
1694 | - replay_mode = true; | ||
1695 | - } | ||
1696 | - | ||
1697 | -#if !defined(CONSTRAINED_FLASH) | ||
1698 | - bool multi_mode = false; | ||
1699 | - int32_t imu_instances = 0; | ||
1700 | - int32_t mag_instances = 0; | ||
1701 | - | ||
1702 | - int32_t sens_imu_mode = 1; | ||
1703 | - param_get(param_find("SENS_IMU_MODE"), &sens_imu_mode); | ||
1704 | - | ||
1705 | - if (sens_imu_mode == 0) { | ||
1706 | - // ekf selector requires SENS_IMU_MODE = 0 | ||
1707 | - multi_mode = true; | ||
1708 | - | ||
1709 | - // IMUs (1 - 4 supported) | ||
1710 | - param_get(param_find("EKF2_MULTI_IMU"), &imu_instances); | ||
1711 | - | ||
1712 | - if (imu_instances < 1 || imu_instances > 4) { | ||
1713 | - const int32_t imu_instances_limited = math::constrain(imu_instances, 1, 4); | ||
1714 | - PX4_WARN("EKF2_MULTI_IMU limited %d -> %d", imu_instances, imu_instances_limited); | ||
1715 | - param_set_no_notification(param_find("EKF2_MULTI_IMU"), &imu_instances_limited); | ||
1716 | - imu_instances = imu_instances_limited; | ||
1717 | - } | ||
1718 | - | ||
1719 | - int32_t sens_mag_mode = 1; | ||
1720 | - param_get(param_find("SENS_MAG_MODE"), &sens_mag_mode); | ||
1721 | - | ||
1722 | - if (sens_mag_mode == 0) { | ||
1723 | - param_get(param_find("EKF2_MULTI_MAG"), &mag_instances); | ||
1724 | - | ||
1725 | - // Mags (1 - 4 supported) | ||
1726 | - if (mag_instances < 1 || mag_instances > 4) { | ||
1727 | - const int32_t mag_instances_limited = math::constrain(mag_instances, 1, 4); | ||
1728 | - PX4_WARN("EKF2_MULTI_MAG limited %d -> %d", mag_instances, mag_instances_limited); | ||
1729 | - param_set_no_notification(param_find("EKF2_MULTI_MAG"), &mag_instances_limited); | ||
1730 | - mag_instances = mag_instances_limited; | ||
1731 | - } | ||
1732 | - | ||
1733 | - } else { | ||
1734 | - mag_instances = 1; | ||
1735 | - } | ||
1736 | - } | ||
1737 | - | ||
1738 | - if (multi_mode) { | ||
1739 | - // Start EKF2Selector if it's not already running | ||
1740 | - if (_ekf2_selector.load() == nullptr) { | ||
1741 | - EKF2Selector *inst = new EKF2Selector(); | ||
1742 | - | ||
1743 | - if (inst) { | ||
1744 | - _ekf2_selector.store(inst); | ||
1745 | - | ||
1746 | - } else { | ||
1747 | - PX4_ERR("Failed to create EKF2 selector"); | ||
1748 | - return PX4_ERROR; | ||
1749 | - } | ||
1750 | - } | ||
1751 | - | ||
1752 | - const hrt_abstime time_started = hrt_absolute_time(); | ||
1753 | - const int multi_instances = math::min(imu_instances * mag_instances, (int)EKF2_MAX_INSTANCES); | ||
1754 | - int multi_instances_allocated = 0; | ||
1755 | - | ||
1756 | - // allocate EKF2 instances until all found or arming | ||
1757 | - uORB::SubscriptionData<vehicle_status_s> vehicle_status_sub{ORB_ID(vehicle_status)}; | ||
1758 | - | ||
1759 | - bool ekf2_instance_created[4][4] {}; // IMUs * mags | ||
1760 | - | ||
1761 | - while ((multi_instances_allocated < multi_instances) | ||
1762 | - && (vehicle_status_sub.get().arming_state != vehicle_status_s::ARMING_STATE_ARMED) | ||
1763 | - && ((hrt_elapsed_time(&time_started) < 30_s) | ||
1764 | - || (vehicle_status_sub.get().hil_state == vehicle_status_s::HIL_STATE_ON))) { | ||
1765 | - | ||
1766 | - vehicle_status_sub.update(); | ||
1767 | - | ||
1768 | - for (uint8_t mag = 0; mag < mag_instances; mag++) { | ||
1769 | - uORB::SubscriptionData<vehicle_magnetometer_s> vehicle_mag_sub{ORB_ID(vehicle_magnetometer), mag}; | ||
1770 | - | ||
1771 | - for (uint8_t imu = 0; imu < imu_instances; imu++) { | ||
1772 | - | ||
1773 | - uORB::SubscriptionData<vehicle_imu_s> vehicle_imu_sub{ORB_ID(vehicle_imu), imu}; | ||
1774 | - vehicle_mag_sub.update(); | ||
1775 | - | ||
1776 | - // Mag & IMU data must be valid, first mag can be ignored initially | ||
1777 | - if ((vehicle_mag_sub.get().device_id != 0 || mag == 0) | ||
1778 | - && (vehicle_imu_sub.get().accel_device_id != 0) | ||
1779 | - && (vehicle_imu_sub.get().gyro_device_id != 0)) { | ||
1780 | - | ||
1781 | - if (!ekf2_instance_created[imu][mag]) { | ||
1782 | - EKF2 *ekf2_inst = new EKF2(true, px4::ins_instance_to_wq(imu), false); | ||
1783 | - | ||
1784 | - if (ekf2_inst && ekf2_inst->multi_init(imu, mag)) { | ||
1785 | - int actual_instance = ekf2_inst->instance(); // match uORB instance numbering | ||
1786 | - | ||
1787 | - if ((actual_instance >= 0) && (_objects[actual_instance].load() == nullptr)) { | ||
1788 | - _objects[actual_instance].store(ekf2_inst); | ||
1789 | - success = true; | ||
1790 | - multi_instances_allocated++; | ||
1791 | - ekf2_instance_created[imu][mag] = true; | ||
1792 | - | ||
1793 | - if (actual_instance == 0) { | ||
1794 | - // force selector to run immediately if first instance started | ||
1795 | - _ekf2_selector.load()->ScheduleNow(); | ||
1796 | - } | ||
1797 | - | ||
1798 | - PX4_INFO("starting instance %d, IMU:%d (%d), MAG:%d (%d)", actual_instance, | ||
1799 | - imu, vehicle_imu_sub.get().accel_device_id, | ||
1800 | - mag, vehicle_mag_sub.get().device_id); | ||
1801 | - | ||
1802 | - // sleep briefly before starting more instances | ||
1803 | - px4_usleep(10000); | ||
1804 | - | ||
1805 | - } else { | ||
1806 | - PX4_ERR("instance numbering problem instance: %d", actual_instance); | ||
1807 | - delete ekf2_inst; | ||
1808 | - break; | ||
1809 | - } | ||
1810 | - | ||
1811 | - } else { | ||
1812 | - PX4_ERR("alloc and init failed imu: %d mag:%d", imu, mag); | ||
1813 | - px4_usleep(1000000); | ||
1814 | - break; | ||
1815 | - } | ||
1816 | - } | ||
1817 | - | ||
1818 | - } else { | ||
1819 | - px4_usleep(50000); // give the sensors extra time to start | ||
1820 | - continue; | ||
1821 | - } | ||
1822 | - } | ||
1823 | - } | ||
1824 | - | ||
1825 | - if (multi_instances_allocated < multi_instances) { | ||
1826 | - px4_usleep(100000); | ||
1827 | - } | ||
1828 | - } | ||
1829 | - | ||
1830 | - } | ||
1831 | - | ||
1832 | -#endif // !CONSTRAINED_FLASH | ||
1833 | - | ||
1834 | - else { | ||
1835 | - // otherwise launch regular | ||
1836 | - EKF2 *ekf2_inst = new EKF2(false, px4::wq_configurations::INS0, replay_mode); | ||
1837 | - | ||
1838 | - if (ekf2_inst) { | ||
1839 | - _objects[0].store(ekf2_inst); | ||
1840 | - ekf2_inst->ScheduleNow(); | ||
1841 | - success = true; | ||
1842 | - } | ||
1843 | - } | ||
1844 | - | ||
1845 | - return success ? PX4_OK : PX4_ERROR; | ||
1846 | -} | ||
1847 | - | ||
1848 | -int EKF2::print_usage(const char *reason) | ||
1849 | -{ | ||
1850 | - if (reason) { | ||
1851 | - PX4_WARN("%s\n", reason); | ||
1852 | - } | ||
1853 | - | ||
1854 | - PRINT_MODULE_DESCRIPTION( | ||
1855 | - R"DESCR_STR( | ||
1856 | -### Description | ||
1857 | -Attitude and position estimator using an Extended Kalman Filter. It is used for Multirotors and Fixed-Wing. | ||
1858 | - | ||
1859 | -The documentation can be found on the [ECL/EKF Overview & Tuning](https://docs.px4.io/master/en/advanced_config/tuning_the_ecl_ekf.html) page. | ||
1860 | - | ||
1861 | -ekf2 can be started in replay mode (`-r`): in this mode it does not access the system time, but only uses the | ||
1862 | -timestamps from the sensor topics. | ||
1863 | - | ||
1864 | -)DESCR_STR"); | ||
1865 | - | ||
1866 | - PRINT_MODULE_USAGE_NAME("ekf2", "estimator"); | ||
1867 | - PRINT_MODULE_USAGE_COMMAND("start"); | ||
1868 | - PRINT_MODULE_USAGE_PARAM_FLAG('r', "Enable replay mode", true); | ||
1869 | - PRINT_MODULE_USAGE_DEFAULT_COMMANDS(); | ||
1870 | - | ||
1871 | - return 0; | ||
1872 | -} | ||
1873 | - | ||
1874 | -extern "C" __EXPORT int ekf2_main(int argc, char *argv[]) | ||
1875 | -{ | ||
1876 | - if (argc <= 1 || strcmp(argv[1], "-h") == 0) { | ||
1877 | - return EKF2::print_usage(); | ||
1878 | - } | ||
1879 | - | ||
1880 | - if (strcmp(argv[1], "start") == 0) { | ||
1881 | - int ret = 0; | ||
1882 | - EKF2::lock_module(); | ||
1883 | - | ||
1884 | - ret = EKF2::task_spawn(argc - 1, argv + 1); | ||
1885 | - | ||
1886 | - if (ret < 0) { | ||
1887 | - PX4_ERR("start failed (%i)", ret); | ||
1888 | - } | ||
1889 | - | ||
1890 | - EKF2::unlock_module(); | ||
1891 | - return ret; | ||
1892 | - | ||
1893 | - } else if (strcmp(argv[1], "status") == 0) { | ||
1894 | - if (EKF2::trylock_module()) { | ||
1895 | -#if !defined(CONSTRAINED_FLASH) | ||
1896 | - if (_ekf2_selector.load()) { | ||
1897 | - _ekf2_selector.load()->PrintStatus(); | ||
1898 | - } | ||
1899 | -#endif // !CONSTRAINED_FLASH | ||
1900 | - | ||
1901 | - for (int i = 0; i < EKF2_MAX_INSTANCES; i++) { | ||
1902 | - if (_objects[i].load()) { | ||
1903 | - PX4_INFO_RAW("\n"); | ||
1904 | - _objects[i].load()->print_status(); | ||
1905 | - } | ||
1906 | - } | ||
1907 | - | ||
1908 | - EKF2::unlock_module(); | ||
1909 | - | ||
1910 | - } else { | ||
1911 | - PX4_WARN("module locked, try again later"); | ||
1912 | - } | ||
1913 | - | ||
1914 | - return 0; | ||
1915 | - | ||
1916 | - } else if (strcmp(argv[1], "stop") == 0) { | ||
1917 | - EKF2::lock_module(); | ||
1918 | - | ||
1919 | - if (argc > 2) { | ||
1920 | - int instance = atoi(argv[2]); | ||
1921 | - | ||
1922 | - if (instance >= 0 && instance < EKF2_MAX_INSTANCES) { | ||
1923 | - PX4_INFO("stopping instance %d", instance); | ||
1924 | - EKF2 *inst = _objects[instance].load(); | ||
1925 | - | ||
1926 | - if (inst) { | ||
1927 | - inst->request_stop(); | ||
1928 | - px4_usleep(20000); // 20 ms | ||
1929 | - delete inst; | ||
1930 | - _objects[instance].store(nullptr); | ||
1931 | - } | ||
1932 | - } else { | ||
1933 | - PX4_ERR("invalid instance %d", instance); | ||
1934 | - } | ||
1935 | - | ||
1936 | - } else { | ||
1937 | - // otherwise stop everything | ||
1938 | - bool was_running = false; | ||
1939 | - | ||
1940 | -#if !defined(CONSTRAINED_FLASH) | ||
1941 | - if (_ekf2_selector.load()) { | ||
1942 | - PX4_INFO("stopping ekf2 selector"); | ||
1943 | - _ekf2_selector.load()->Stop(); | ||
1944 | - delete _ekf2_selector.load(); | ||
1945 | - _ekf2_selector.store(nullptr); | ||
1946 | - was_running = true; | ||
1947 | - } | ||
1948 | -#endif // !CONSTRAINED_FLASH | ||
1949 | - | ||
1950 | - for (int i = 0; i < EKF2_MAX_INSTANCES; i++) { | ||
1951 | - EKF2 *inst = _objects[i].load(); | ||
1952 | - | ||
1953 | - if (inst) { | ||
1954 | - PX4_INFO("stopping ekf2 instance %d", i); | ||
1955 | - was_running = true; | ||
1956 | - inst->request_stop(); | ||
1957 | - px4_usleep(20000); // 20 ms | ||
1958 | - delete inst; | ||
1959 | - _objects[i].store(nullptr); | ||
1960 | - } | ||
1961 | - } | ||
1962 | - | ||
1963 | - if (!was_running) { | ||
1964 | - PX4_WARN("not running"); | ||
1965 | - } | ||
1966 | - } | ||
1967 | - | ||
1968 | - EKF2::unlock_module(); | ||
1969 | - return PX4_OK; | ||
1970 | - } | ||
1971 | - | ||
1972 | - EKF2::lock_module(); // Lock here, as the method could access _object. | ||
1973 | - int ret = EKF2::custom_command(argc - 1, argv + 1); | ||
1974 | - EKF2::unlock_module(); | ||
1975 | - | ||
1976 | - return ret; | ||
1977 | -} |
... | @@ -47,7 +47,7 @@ | ... | @@ -47,7 +47,7 @@ |
47 | 47 | ||
48 | #include "mission.h" | 48 | #include "mission.h" |
49 | #include "navigator.h" | 49 | #include "navigator.h" |
50 | -#include "iostream" | 50 | + |
51 | #include <string.h> | 51 | #include <string.h> |
52 | #include <drivers/drv_hrt.h> | 52 | #include <drivers/drv_hrt.h> |
53 | #include <dataman/dataman.h> | 53 | #include <dataman/dataman.h> |
... | @@ -1031,30 +1031,6 @@ Mission::set_mission_items() | ... | @@ -1031,30 +1031,6 @@ Mission::set_mission_items() |
1031 | generate_waypoint_from_heading(&pos_sp_triplet->current, pos_sp_triplet->current.yaw); | 1031 | generate_waypoint_from_heading(&pos_sp_triplet->current, pos_sp_triplet->current.yaw); |
1032 | } | 1032 | } |
1033 | 1033 | ||
1034 | - /* don't advance mission after FW to MC command */ | ||
1035 | - if (_mission_item.nav_cmd == NAV_CMD_DO_VTOL_TRANSITION | ||
1036 | - && _work_item_type == WORK_ITEM_TYPE_DEFAULT | ||
1037 | - && new_work_item_type == WORK_ITEM_TYPE_DEFAULT | ||
1038 | - && _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING | ||
1039 | - && !_navigator->get_land_detected()->landed | ||
1040 | - && pos_sp_triplet->current.valid) { | ||
1041 | - | ||
1042 | - new_work_item_type = WORK_ITEM_TYPE_CMD_BEFORE_MOVE; | ||
1043 | - } | ||
1044 | - | ||
1045 | - /* after FW to MC transition finish moving to the waypoint */ | ||
1046 | - if (_work_item_type == WORK_ITEM_TYPE_CMD_BEFORE_MOVE && | ||
1047 | - new_work_item_type == WORK_ITEM_TYPE_DEFAULT | ||
1048 | - && pos_sp_triplet->current.valid) { | ||
1049 | - | ||
1050 | - new_work_item_type = WORK_ITEM_TYPE_DEFAULT; | ||
1051 | - | ||
1052 | - _mission_item.nav_cmd = NAV_CMD_WAYPOINT; | ||
1053 | - copy_position_if_valid(&_mission_item, &pos_sp_triplet->current); | ||
1054 | - _mission_item.autocontinue = true; | ||
1055 | - _mission_item.time_inside = 0.0f; | ||
1056 | - } | ||
1057 | - | ||
1058 | // ignore certain commands in mission fast forward | 1034 | // ignore certain commands in mission fast forward |
1059 | if ((_mission_execution_mode == mission_result_s::MISSION_EXECUTION_MODE_FAST_FORWARD) && | 1035 | if ((_mission_execution_mode == mission_result_s::MISSION_EXECUTION_MODE_FAST_FORWARD) && |
1060 | (_mission_item.nav_cmd == NAV_CMD_DELAY)) { | 1036 | (_mission_item.nav_cmd == NAV_CMD_DELAY)) { |
... | @@ -1862,9 +1838,6 @@ bool Mission::position_setpoint_equal(const position_setpoint_s *p1, const posit | ... | @@ -1862,9 +1838,6 @@ bool Mission::position_setpoint_equal(const position_setpoint_s *p1, const posit |
1862 | 1838 | ||
1863 | void Mission::publish_navigator_mission_item() | 1839 | void Mission::publish_navigator_mission_item() |
1864 | { | 1840 | { |
1865 | - | ||
1866 | - for(int i=0;i<8;i++) | ||
1867 | -{ | ||
1868 | navigator_mission_item_s navigator_mission_item{}; | 1841 | navigator_mission_item_s navigator_mission_item{}; |
1869 | 1842 | ||
1870 | navigator_mission_item.instance_count = _navigator->mission_instance_count(); | 1843 | navigator_mission_item.instance_count = _navigator->mission_instance_count(); |
... | @@ -1891,11 +1864,4 @@ void Mission::publish_navigator_mission_item() | ... | @@ -1891,11 +1864,4 @@ void Mission::publish_navigator_mission_item() |
1891 | navigator_mission_item.timestamp = hrt_absolute_time(); | 1864 | navigator_mission_item.timestamp = hrt_absolute_time(); |
1892 | 1865 | ||
1893 | _navigator_mission_item_pub.publish(navigator_mission_item); | 1866 | _navigator_mission_item_pub.publish(navigator_mission_item); |
1894 | - | ||
1895 | - | ||
1896 | - std::cout<<navigator_mission_item.latitude<<std::endl; | ||
1897 | - navigator_mission_item.sequence_current++; | ||
1898 | - std::cout<<"************************"<<std::endl; | ||
1899 | -} | ||
1900 | - | ||
1901 | } | 1867 | } | ... | ... |
... | @@ -281,7 +281,6 @@ private: | ... | @@ -281,7 +281,6 @@ private: |
281 | WORK_ITEM_TYPE_TAKEOFF, /**< takeoff before moving to waypoint */ | 281 | WORK_ITEM_TYPE_TAKEOFF, /**< takeoff before moving to waypoint */ |
282 | WORK_ITEM_TYPE_MOVE_TO_LAND, /**< move to land waypoint before descent */ | 282 | WORK_ITEM_TYPE_MOVE_TO_LAND, /**< move to land waypoint before descent */ |
283 | WORK_ITEM_TYPE_ALIGN, /**< align for next waypoint */ | 283 | WORK_ITEM_TYPE_ALIGN, /**< align for next waypoint */ |
284 | - WORK_ITEM_TYPE_CMD_BEFORE_MOVE, | ||
285 | WORK_ITEM_TYPE_TRANSITON_AFTER_TAKEOFF, | 284 | WORK_ITEM_TYPE_TRANSITON_AFTER_TAKEOFF, |
286 | WORK_ITEM_TYPE_MOVE_TO_LAND_AFTER_TRANSITION, | 285 | WORK_ITEM_TYPE_MOVE_TO_LAND_AFTER_TRANSITION, |
287 | WORK_ITEM_TYPE_PRECISION_LAND | 286 | WORK_ITEM_TYPE_PRECISION_LAND | ... | ... |
-
Please register or login to post a comment