Showing
1 changed file
with
0 additions
and
342 deletions
code/cal_variance.py
deleted
100644 → 0
1 | -# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16 | ||
2 | -# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8 | ||
3 | -# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20 | ||
4 | - | ||
5 | -import pdb | ||
6 | -import argparse | ||
7 | -import numpy as np | ||
8 | -from tqdm import tqdm | ||
9 | - | ||
10 | -import torch | ||
11 | -import torch.nn as nn | ||
12 | -from torch.autograd import Variable | ||
13 | -import torch.backends.cudnn as cudnn | ||
14 | -from torch.optim.lr_scheduler import MultiStepLR | ||
15 | - | ||
16 | -from torchvision.utils import make_grid | ||
17 | -from torchvision import datasets, transforms | ||
18 | - | ||
19 | -from torch.utils.data.dataloader import RandomSampler | ||
20 | -from util.misc import CSVLogger | ||
21 | -from util.cutout import Cutout | ||
22 | - | ||
23 | -from model.resnet import ResNet18 | ||
24 | -from model.wide_resnet import WideResNet | ||
25 | - | ||
26 | -model_options = ['resnet18', 'wideresnet'] | ||
27 | -dataset_options = ['cifar10', 'cifar100', 'svhn'] | ||
28 | - | ||
29 | -parser = argparse.ArgumentParser(description='CNN') | ||
30 | -parser.add_argument('--dataset', '-d', default='cifar10', | ||
31 | - choices=dataset_options) | ||
32 | -parser.add_argument('--model', '-a', default='resnet18', | ||
33 | - choices=model_options) | ||
34 | -parser.add_argument('--batch_size', type=int, default=128, | ||
35 | - help='input batch size for training (default: 128)') | ||
36 | -parser.add_argument('--epochs', type=int, default=200, | ||
37 | - help='number of epochs to train (default: 20)') | ||
38 | -parser.add_argument('--learning_rate', type=float, default=0.1, | ||
39 | - help='learning rate') | ||
40 | -parser.add_argument('--data_augmentation', action='store_true', default=False, | ||
41 | - help='augment data by flipping and cropping') | ||
42 | -parser.add_argument('--cutout', action='store_true', default=False, | ||
43 | - help='apply cutout') | ||
44 | -parser.add_argument('--n_holes', type=int, default=1, | ||
45 | - help='number of holes to cut out from image') | ||
46 | -parser.add_argument('--length', type=int, default=16, | ||
47 | - help='length of the holes') | ||
48 | -parser.add_argument('--no-cuda', action='store_true', default=False, | ||
49 | - help='enables CUDA training') | ||
50 | -parser.add_argument('--seed', type=int, default=0, | ||
51 | - help='random seed (default: 1)') | ||
52 | - | ||
53 | -args = parser.parse_args() | ||
54 | -args.cuda = not args.no_cuda and torch.cuda.is_available() | ||
55 | -cudnn.benchmark = True # Should make training should go faster for large models | ||
56 | - | ||
57 | -torch.manual_seed(args.seed) | ||
58 | -if args.cuda: | ||
59 | - torch.cuda.manual_seed(args.seed) | ||
60 | - | ||
61 | -test_id = args.dataset + '_' + args.model | ||
62 | - | ||
63 | -print(args) | ||
64 | - | ||
65 | -# Image Preprocessing | ||
66 | -if args.dataset == 'svhn': | ||
67 | - normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]], | ||
68 | - std=[x / 255.0 for x in [50.1, 50.6, 50.8]]) | ||
69 | -else: | ||
70 | - normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], | ||
71 | - std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) | ||
72 | - | ||
73 | -train_transform = transforms.Compose([]) | ||
74 | -if args.data_augmentation: | ||
75 | - train_transform.transforms.append(transforms.RandomCrop(32, padding=4)) | ||
76 | - train_transform.transforms.append(transforms.RandomHorizontalFlip()) | ||
77 | -train_transform.transforms.append(transforms.ToTensor()) | ||
78 | -train_transform.transforms.append(normalize) | ||
79 | -if args.cutout: | ||
80 | - train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length)) | ||
81 | - | ||
82 | - | ||
83 | -test_transform = transforms.Compose([ | ||
84 | - transforms.ToTensor(), | ||
85 | - normalize]) | ||
86 | - | ||
87 | -if args.dataset == 'cifar10': | ||
88 | - num_classes = 10 | ||
89 | - train_dataset = datasets.CIFAR10(root='data/', | ||
90 | - train=True, | ||
91 | - transform=train_transform, | ||
92 | - download=True) | ||
93 | - | ||
94 | - test_dataset = datasets.CIFAR10(root='data/', | ||
95 | - train=False, | ||
96 | - transform=test_transform, | ||
97 | - download=True) | ||
98 | -elif args.dataset == 'cifar100': | ||
99 | - num_classes = 100 | ||
100 | - train_dataset = datasets.CIFAR100(root='data/', | ||
101 | - train=True, | ||
102 | - transform=train_transform, | ||
103 | - download=True) | ||
104 | - | ||
105 | - test_dataset = datasets.CIFAR100(root='data/', | ||
106 | - train=False, | ||
107 | - transform=test_transform, | ||
108 | - download=True) | ||
109 | -elif args.dataset == 'svhn': | ||
110 | - num_classes = 10 | ||
111 | - train_dataset = datasets.SVHN(root='data/', | ||
112 | - split='train', | ||
113 | - transform=train_transform, | ||
114 | - download=True) | ||
115 | - | ||
116 | - extra_dataset = datasets.SVHN(root='data/', | ||
117 | - split='extra', | ||
118 | - transform=train_transform, | ||
119 | - download=True) | ||
120 | - | ||
121 | - # Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf) | ||
122 | - data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0) | ||
123 | - labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0) | ||
124 | - train_dataset.data = data | ||
125 | - train_dataset.labels = labels | ||
126 | - | ||
127 | - test_dataset = datasets.SVHN(root='data/', | ||
128 | - split='test', | ||
129 | - transform=test_transform, | ||
130 | - download=True) | ||
131 | - | ||
132 | -# Data Loader (Input Pipeline) | ||
133 | -train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | ||
134 | - batch_size=args.batch_size, | ||
135 | - shuffle=False, | ||
136 | - # sampler=RandomSampler(train_dataset, True, 40000), | ||
137 | - pin_memory=True, | ||
138 | - num_workers=0) | ||
139 | - | ||
140 | -test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | ||
141 | - batch_size=args.batch_size, | ||
142 | - shuffle=False, | ||
143 | - pin_memory=True, | ||
144 | - num_workers=0) | ||
145 | - | ||
146 | -if args.model == 'resnet18': | ||
147 | - cnn = ResNet18(num_classes=num_classes) | ||
148 | -elif args.model == 'wideresnet': | ||
149 | - if args.dataset == 'svhn': | ||
150 | - cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8, | ||
151 | - dropRate=0.4) | ||
152 | - else: | ||
153 | - cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10, | ||
154 | - dropRate=0.3) | ||
155 | -checkpoint = torch.load('/content/drive/MyDrive/capstone/Cutout/checkpoints/baseline_cifar10_resnet18.pt', map_location = torch.device('cuda:0')) | ||
156 | -cnn = cnn.cuda() | ||
157 | -cnn.load_state_dict(checkpoint) | ||
158 | -criterion = nn.CrossEntropyLoss().cuda() | ||
159 | -cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate, | ||
160 | - momentum=0.9, nesterov=True, weight_decay=5e-4) | ||
161 | - | ||
162 | -if args.dataset == 'svhn': | ||
163 | - scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1) | ||
164 | -else: | ||
165 | - scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2) | ||
166 | - | ||
167 | -filename = 'logs/' + test_id + '.csv' | ||
168 | -csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename) | ||
169 | - | ||
170 | - | ||
171 | -def test(loader): | ||
172 | - cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var). | ||
173 | - correct = 0. | ||
174 | - total = 0. | ||
175 | - for images, labels in loader: | ||
176 | - images = images.cuda() | ||
177 | - labels = labels.cuda() | ||
178 | - | ||
179 | - with torch.no_grad(): | ||
180 | - pred = cnn(images) | ||
181 | - | ||
182 | - pred = torch.max(pred.data, 1)[1] | ||
183 | - | ||
184 | - total += labels.size(0) | ||
185 | - correct += (pred == labels).sum().item() | ||
186 | - | ||
187 | - val_acc = correct / total | ||
188 | - cnn.train() | ||
189 | - return val_acc | ||
190 | - | ||
191 | -kl_sum = 0 | ||
192 | -y_bar = torch.Tensor([0] * 10).detach().cuda() | ||
193 | - | ||
194 | -# y_bar 구하는 epoch | ||
195 | -for epoch in range(args.epochs): | ||
196 | - | ||
197 | - cnn.eval() | ||
198 | - xentropy_loss_avg = 0. | ||
199 | - correct = 0. | ||
200 | - total = 0. | ||
201 | - norm_const = 0 | ||
202 | - | ||
203 | - kldiv = 0 | ||
204 | - # pred_sum = torch.Tensor([0] * 10).detach().cuda() | ||
205 | - | ||
206 | - progress_bar = tqdm(train_loader) | ||
207 | - for i, (images, labels) in enumerate(progress_bar): | ||
208 | - progress_bar.set_description('Epoch ' + str(epoch)) | ||
209 | - | ||
210 | - images = images.cuda() | ||
211 | - labels = labels.cuda() | ||
212 | - | ||
213 | - cnn.zero_grad() | ||
214 | - pred = cnn(images) | ||
215 | - xentropy_loss = criterion(pred, labels) | ||
216 | - # xentropy_loss.backward() | ||
217 | - # cnn_optimizer.step() | ||
218 | - | ||
219 | - xentropy_loss_avg += xentropy_loss.item() | ||
220 | - | ||
221 | - pred_softmax = nn.functional.softmax(pred).cuda() | ||
222 | - # Calculate running average of accuracy | ||
223 | - pred = torch.max(pred.data, 1)[1] | ||
224 | - total += labels.size(0) | ||
225 | - correct += (pred == labels.data).sum().item() | ||
226 | - accuracy = correct / total | ||
227 | - for a in range(pred_softmax.data.size()[0]): | ||
228 | - for b in range(y_bar.size()[0]): | ||
229 | - y_bar[b] += torch.log(pred_softmax.data[a][b]) | ||
230 | - | ||
231 | - | ||
232 | - # expectation(log y_hat) | ||
233 | - # y_bar = [x / pred.data.size()[0] for x in y_bar] | ||
234 | - | ||
235 | - # print(pred.data.size()[0], y_bar.size()[0]) # 128, 10 | ||
236 | - | ||
237 | - | ||
238 | - # print(pred) | ||
239 | - # y_hat : 모델별 예측값 --> pred_softmax | ||
240 | - # y_bar : 예측값들 평균값 -- > pred / total : pred_sum | ||
241 | - # labes.data : ground_truth | ||
242 | - | ||
243 | - # y_bar = pred_sum / (i+1) | ||
244 | - # kl = torch.nn.functional.kl_div(pred, y_bar) | ||
245 | - # kl_sum += kl | ||
246 | - | ||
247 | - | ||
248 | - | ||
249 | - # for문 추가안하면 epoch별 iter마다 xentropy_loss_avg값의 1/iter이 xentropy값으로 출력 | ||
250 | - # for문 추가하면 epoch 별 iter 마다 xentropy_loss_avg 값은 동일하나 xentropy값 출력이 x_l_avg 값의 1/10으로 출력 | ||
251 | - # for문 상관 없이 pred, labels 값은 동일하게 확인됨. | ||
252 | - | ||
253 | - # for a in range(list(pred_sum.size())[0]): | ||
254 | - # for b in range(list(pred.size())[0]): | ||
255 | - # if pred[b] == a: | ||
256 | - # pred_sum[a] += 1 | ||
257 | - | ||
258 | - # variance calculate : E[KL_div(y_bar, y_hat)] -> expectation of KLDivLoss(pred_sum, pred) | ||
259 | - # 한 epoch마다 계산해서 출력해야 할듯 | ||
260 | - # nn.functional.kl_div(pred_sum, pred) | ||
261 | - | ||
262 | - | ||
263 | - # print('\n',i, ' ', xentropy_loss_avg) | ||
264 | - progress_bar.set_postfix( | ||
265 | - # y_hat = '%.5f' % pred, | ||
266 | - # y_bar = '%.5f' % y_bar, | ||
267 | - # groun_truth = '%.5f' % labels.data, | ||
268 | - # kl = '%.3f' % kl.item(), | ||
269 | - # kl_sum = '%.3f' % (kl_sum.item()), | ||
270 | - # kl_div = '%.3f' % (kl_sum.item() / (i + 1)), # kl_div 호출 | ||
271 | - xentropy='%.3f' % (xentropy_loss_avg / (i + 1)), | ||
272 | - acc='%.3f' % accuracy) | ||
273 | - # pred_sum = [x / 40000 for x in pred_sum] | ||
274 | - y_bar = torch.Tensor([x / 50000 for x in y_bar]).cuda() | ||
275 | - y_bar = torch.exp(y_bar) | ||
276 | - # print(y_bar) | ||
277 | - for index in range(y_bar.size()[0]): | ||
278 | - norm_const += y_bar[index] | ||
279 | - print(y_bar) | ||
280 | - print(norm_const) | ||
281 | - # print(norm_const) | ||
282 | - for index in range(y_bar.size()[0]): | ||
283 | - y_bar[index] = y_bar[index] / norm_const | ||
284 | - print(y_bar) | ||
285 | - # print(y_bar) | ||
286 | - # print(pred_softmax) | ||
287 | - # print(y_bar) | ||
288 | - # kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean') | ||
289 | - # kl_sum += kldiv | ||
290 | - # print(kldiv, kl_sum) | ||
291 | - y_bar_copy = y_bar.clone().detach() | ||
292 | - test_acc = test(test_loader) | ||
293 | - # print(pred, labels.data) | ||
294 | - tqdm.write('test_acc: %.3f' % (test_acc)) | ||
295 | - | ||
296 | - scheduler.step(epoch) # Use this line for PyTorch <1.4 | ||
297 | - # scheduler.step() # Use this line for PyTorch >=1.4 | ||
298 | - | ||
299 | - row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc) | ||
300 | - } | ||
301 | - csv_logger.writerow(row) | ||
302 | - del pred | ||
303 | - torch.cuda.empty_cache() | ||
304 | - | ||
305 | -# kl_div 구하는 epoch | ||
306 | -for epoch in range(args.epochs): | ||
307 | - cnn.eval() | ||
308 | - kldiv = 0 | ||
309 | - for i, (images, labels) in enumerate(progress_bar): | ||
310 | - progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div') | ||
311 | - | ||
312 | - images = images.cuda() | ||
313 | - labels = labels.cuda() | ||
314 | - | ||
315 | - cnn.zero_grad() | ||
316 | - pred = cnn(images) | ||
317 | - | ||
318 | - pred_softmax = nn.functional.softmax(pred).cuda() | ||
319 | - | ||
320 | - # 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환. | ||
321 | - kldiv = torch.nn.functional.kl_div(y_bar_copy, pred_softmax, reduction='sum') | ||
322 | - kl_sum += kldiv.detach() | ||
323 | - # print(y_bar_copy.size(), pred_softmax.size()) | ||
324 | - # print(kl_sum) | ||
325 | - print("Average KL_div : ", abs(kl_sum / 50000)) | ||
326 | - # y_bar = torch.Tensor([x / 40000 for x in y_bar]).cuda() | ||
327 | - # y_bar = torch.exp(y_bar) | ||
328 | - # # print(y_bar) | ||
329 | - # for index in range(y_bar.size()[0]): | ||
330 | - # norm_const += y_bar[index] | ||
331 | - # # print(norm_const) | ||
332 | - # for index in range(y_bar.size()[0]): | ||
333 | - # y_bar[index] = y_bar[index] / norm_const | ||
334 | - # # print(y_bar) | ||
335 | - # # print(pred_softmax) | ||
336 | - # # print(y_bar) | ||
337 | - # kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean') | ||
338 | - # kl_sum += kldiv | ||
339 | - # print(kldiv, kl_sum) | ||
340 | - | ||
341 | -torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt') | ||
342 | -csv_logger.close() |
-
Please register or login to post a comment