이동주

remove:

git commit -m remove:
1 -# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
2 -# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
3 -# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
4 -
5 -import pdb
6 -import argparse
7 -import numpy as np
8 -from tqdm import tqdm
9 -
10 -import torch
11 -import torch.nn as nn
12 -from torch.autograd import Variable
13 -import torch.backends.cudnn as cudnn
14 -from torch.optim.lr_scheduler import MultiStepLR
15 -
16 -from torchvision.utils import make_grid
17 -from torchvision import datasets, transforms
18 -
19 -from torch.utils.data.dataloader import RandomSampler
20 -from util.misc import CSVLogger
21 -from util.cutout import Cutout
22 -
23 -from model.resnet import ResNet18
24 -from model.wide_resnet import WideResNet
25 -
26 -model_options = ['resnet18', 'wideresnet']
27 -dataset_options = ['cifar10', 'cifar100', 'svhn']
28 -
29 -parser = argparse.ArgumentParser(description='CNN')
30 -parser.add_argument('--dataset', '-d', default='cifar10',
31 - choices=dataset_options)
32 -parser.add_argument('--model', '-a', default='resnet18',
33 - choices=model_options)
34 -parser.add_argument('--batch_size', type=int, default=128,
35 - help='input batch size for training (default: 128)')
36 -parser.add_argument('--epochs', type=int, default=200,
37 - help='number of epochs to train (default: 20)')
38 -parser.add_argument('--learning_rate', type=float, default=0.1,
39 - help='learning rate')
40 -parser.add_argument('--data_augmentation', action='store_true', default=False,
41 - help='augment data by flipping and cropping')
42 -parser.add_argument('--cutout', action='store_true', default=False,
43 - help='apply cutout')
44 -parser.add_argument('--n_holes', type=int, default=1,
45 - help='number of holes to cut out from image')
46 -parser.add_argument('--length', type=int, default=16,
47 - help='length of the holes')
48 -parser.add_argument('--no-cuda', action='store_true', default=False,
49 - help='enables CUDA training')
50 -parser.add_argument('--seed', type=int, default=0,
51 - help='random seed (default: 1)')
52 -
53 -args = parser.parse_args()
54 -args.cuda = not args.no_cuda and torch.cuda.is_available()
55 -cudnn.benchmark = True # Should make training should go faster for large models
56 -
57 -torch.manual_seed(args.seed)
58 -if args.cuda:
59 - torch.cuda.manual_seed(args.seed)
60 -
61 -test_id = args.dataset + '_' + args.model
62 -
63 -print(args)
64 -
65 -# Image Preprocessing
66 -if args.dataset == 'svhn':
67 - normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]],
68 - std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
69 -else:
70 - normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
71 - std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
72 -
73 -train_transform = transforms.Compose([])
74 -if args.data_augmentation:
75 - train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
76 - train_transform.transforms.append(transforms.RandomHorizontalFlip())
77 -train_transform.transforms.append(transforms.ToTensor())
78 -train_transform.transforms.append(normalize)
79 -if args.cutout:
80 - train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length))
81 -
82 -
83 -test_transform = transforms.Compose([
84 - transforms.ToTensor(),
85 - normalize])
86 -
87 -if args.dataset == 'cifar10':
88 - num_classes = 10
89 - train_dataset = datasets.CIFAR10(root='data/',
90 - train=True,
91 - transform=train_transform,
92 - download=True)
93 -
94 - test_dataset = datasets.CIFAR10(root='data/',
95 - train=False,
96 - transform=test_transform,
97 - download=True)
98 -elif args.dataset == 'cifar100':
99 - num_classes = 100
100 - train_dataset = datasets.CIFAR100(root='data/',
101 - train=True,
102 - transform=train_transform,
103 - download=True)
104 -
105 - test_dataset = datasets.CIFAR100(root='data/',
106 - train=False,
107 - transform=test_transform,
108 - download=True)
109 -elif args.dataset == 'svhn':
110 - num_classes = 10
111 - train_dataset = datasets.SVHN(root='data/',
112 - split='train',
113 - transform=train_transform,
114 - download=True)
115 -
116 - extra_dataset = datasets.SVHN(root='data/',
117 - split='extra',
118 - transform=train_transform,
119 - download=True)
120 -
121 - # Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
122 - data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
123 - labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0)
124 - train_dataset.data = data
125 - train_dataset.labels = labels
126 -
127 - test_dataset = datasets.SVHN(root='data/',
128 - split='test',
129 - transform=test_transform,
130 - download=True)
131 -
132 -# Data Loader (Input Pipeline)
133 -train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
134 - batch_size=args.batch_size,
135 - shuffle=False,
136 - # sampler=RandomSampler(train_dataset, True, 40000),
137 - pin_memory=True,
138 - num_workers=0)
139 -
140 -test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
141 - batch_size=args.batch_size,
142 - shuffle=False,
143 - pin_memory=True,
144 - num_workers=0)
145 -
146 -if args.model == 'resnet18':
147 - cnn = ResNet18(num_classes=num_classes)
148 -elif args.model == 'wideresnet':
149 - if args.dataset == 'svhn':
150 - cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8,
151 - dropRate=0.4)
152 - else:
153 - cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10,
154 - dropRate=0.3)
155 -checkpoint = torch.load('/content/drive/MyDrive/capstone/Cutout/checkpoints/baseline_cifar10_resnet18.pt', map_location = torch.device('cuda:0'))
156 -cnn = cnn.cuda()
157 -cnn.load_state_dict(checkpoint)
158 -criterion = nn.CrossEntropyLoss().cuda()
159 -cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
160 - momentum=0.9, nesterov=True, weight_decay=5e-4)
161 -
162 -if args.dataset == 'svhn':
163 - scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
164 -else:
165 - scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
166 -
167 -filename = 'logs/' + test_id + '.csv'
168 -csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename)
169 -
170 -
171 -def test(loader):
172 - cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
173 - correct = 0.
174 - total = 0.
175 - for images, labels in loader:
176 - images = images.cuda()
177 - labels = labels.cuda()
178 -
179 - with torch.no_grad():
180 - pred = cnn(images)
181 -
182 - pred = torch.max(pred.data, 1)[1]
183 -
184 - total += labels.size(0)
185 - correct += (pred == labels).sum().item()
186 -
187 - val_acc = correct / total
188 - cnn.train()
189 - return val_acc
190 -
191 -kl_sum = 0
192 -y_bar = torch.Tensor([0] * 10).detach().cuda()
193 -
194 -# y_bar 구하는 epoch
195 -for epoch in range(args.epochs):
196 -
197 - cnn.eval()
198 - xentropy_loss_avg = 0.
199 - correct = 0.
200 - total = 0.
201 - norm_const = 0
202 -
203 - kldiv = 0
204 - # pred_sum = torch.Tensor([0] * 10).detach().cuda()
205 -
206 - progress_bar = tqdm(train_loader)
207 - for i, (images, labels) in enumerate(progress_bar):
208 - progress_bar.set_description('Epoch ' + str(epoch))
209 -
210 - images = images.cuda()
211 - labels = labels.cuda()
212 -
213 - cnn.zero_grad()
214 - pred = cnn(images)
215 - xentropy_loss = criterion(pred, labels)
216 - # xentropy_loss.backward()
217 - # cnn_optimizer.step()
218 -
219 - xentropy_loss_avg += xentropy_loss.item()
220 -
221 - pred_softmax = nn.functional.softmax(pred).cuda()
222 - # Calculate running average of accuracy
223 - pred = torch.max(pred.data, 1)[1]
224 - total += labels.size(0)
225 - correct += (pred == labels.data).sum().item()
226 - accuracy = correct / total
227 - for a in range(pred_softmax.data.size()[0]):
228 - for b in range(y_bar.size()[0]):
229 - y_bar[b] += torch.log(pred_softmax.data[a][b])
230 -
231 -
232 - # expectation(log y_hat)
233 - # y_bar = [x / pred.data.size()[0] for x in y_bar]
234 -
235 - # print(pred.data.size()[0], y_bar.size()[0]) # 128, 10
236 -
237 -
238 - # print(pred)
239 - # y_hat : 모델별 예측값 --> pred_softmax
240 - # y_bar : 예측값들 평균값 -- > pred / total : pred_sum
241 - # labes.data : ground_truth
242 -
243 - # y_bar = pred_sum / (i+1)
244 - # kl = torch.nn.functional.kl_div(pred, y_bar)
245 - # kl_sum += kl
246 -
247 -
248 -
249 - # for문 추가안하면 epoch별 iter마다 xentropy_loss_avg값의 1/iter이 xentropy값으로 출력
250 - # for문 추가하면 epoch 별 iter 마다 xentropy_loss_avg 값은 동일하나 xentropy값 출력이 x_l_avg 값의 1/10으로 출력
251 - # for문 상관 없이 pred, labels 값은 동일하게 확인됨.
252 -
253 - # for a in range(list(pred_sum.size())[0]):
254 - # for b in range(list(pred.size())[0]):
255 - # if pred[b] == a:
256 - # pred_sum[a] += 1
257 -
258 - # variance calculate : E[KL_div(y_bar, y_hat)] -> expectation of KLDivLoss(pred_sum, pred)
259 - # 한 epoch마다 계산해서 출력해야 할듯
260 - # nn.functional.kl_div(pred_sum, pred)
261 -
262 -
263 - # print('\n',i, ' ', xentropy_loss_avg)
264 - progress_bar.set_postfix(
265 - # y_hat = '%.5f' % pred,
266 - # y_bar = '%.5f' % y_bar,
267 - # groun_truth = '%.5f' % labels.data,
268 - # kl = '%.3f' % kl.item(),
269 - # kl_sum = '%.3f' % (kl_sum.item()),
270 - # kl_div = '%.3f' % (kl_sum.item() / (i + 1)), # kl_div 호출
271 - xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
272 - acc='%.3f' % accuracy)
273 - # pred_sum = [x / 40000 for x in pred_sum]
274 - y_bar = torch.Tensor([x / 50000 for x in y_bar]).cuda()
275 - y_bar = torch.exp(y_bar)
276 - # print(y_bar)
277 - for index in range(y_bar.size()[0]):
278 - norm_const += y_bar[index]
279 - print(y_bar)
280 - print(norm_const)
281 - # print(norm_const)
282 - for index in range(y_bar.size()[0]):
283 - y_bar[index] = y_bar[index] / norm_const
284 - print(y_bar)
285 - # print(y_bar)
286 - # print(pred_softmax)
287 - # print(y_bar)
288 - # kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean')
289 - # kl_sum += kldiv
290 - # print(kldiv, kl_sum)
291 - y_bar_copy = y_bar.clone().detach()
292 - test_acc = test(test_loader)
293 - # print(pred, labels.data)
294 - tqdm.write('test_acc: %.3f' % (test_acc))
295 -
296 - scheduler.step(epoch) # Use this line for PyTorch <1.4
297 - # scheduler.step() # Use this line for PyTorch >=1.4
298 -
299 - row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)
300 - }
301 - csv_logger.writerow(row)
302 - del pred
303 - torch.cuda.empty_cache()
304 -
305 -# kl_div 구하는 epoch
306 -for epoch in range(args.epochs):
307 - cnn.eval()
308 - kldiv = 0
309 - for i, (images, labels) in enumerate(progress_bar):
310 - progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div')
311 -
312 - images = images.cuda()
313 - labels = labels.cuda()
314 -
315 - cnn.zero_grad()
316 - pred = cnn(images)
317 -
318 - pred_softmax = nn.functional.softmax(pred).cuda()
319 -
320 - # 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환.
321 - kldiv = torch.nn.functional.kl_div(y_bar_copy, pred_softmax, reduction='sum')
322 - kl_sum += kldiv.detach()
323 - # print(y_bar_copy.size(), pred_softmax.size())
324 - # print(kl_sum)
325 - print("Average KL_div : ", abs(kl_sum / 50000))
326 - # y_bar = torch.Tensor([x / 40000 for x in y_bar]).cuda()
327 - # y_bar = torch.exp(y_bar)
328 - # # print(y_bar)
329 - # for index in range(y_bar.size()[0]):
330 - # norm_const += y_bar[index]
331 - # # print(norm_const)
332 - # for index in range(y_bar.size()[0]):
333 - # y_bar[index] = y_bar[index] / norm_const
334 - # # print(y_bar)
335 - # # print(pred_softmax)
336 - # # print(y_bar)
337 - # kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean')
338 - # kl_sum += kldiv
339 - # print(kldiv, kl_sum)
340 -
341 -torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
342 -csv_logger.close()