Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2021-1-capstone-design2
/
2015103278
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
이동주
2021-06-14 14:16:19 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
5c1c7822be4f8094eece098dc5d880a582185156
5c1c7822
1 parent
208e4235
variance_calculate code
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
342 additions
and
0 deletions
code/cal_variance.py
code/cal_variance.py
0 → 100644
View file @
5c1c782
# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
import
pdb
import
argparse
import
numpy
as
np
from
tqdm
import
tqdm
import
torch
import
torch.nn
as
nn
from
torch.autograd
import
Variable
import
torch.backends.cudnn
as
cudnn
from
torch.optim.lr_scheduler
import
MultiStepLR
from
torchvision.utils
import
make_grid
from
torchvision
import
datasets
,
transforms
from
torch.utils.data.dataloader
import
RandomSampler
from
util.misc
import
CSVLogger
from
util.cutout
import
Cutout
from
model.resnet
import
ResNet18
from
model.wide_resnet
import
WideResNet
model_options
=
[
'resnet18'
,
'wideresnet'
]
dataset_options
=
[
'cifar10'
,
'cifar100'
,
'svhn'
]
parser
=
argparse
.
ArgumentParser
(
description
=
'CNN'
)
parser
.
add_argument
(
'--dataset'
,
'-d'
,
default
=
'cifar10'
,
choices
=
dataset_options
)
parser
.
add_argument
(
'--model'
,
'-a'
,
default
=
'resnet18'
,
choices
=
model_options
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
128
,
help
=
'input batch size for training (default: 128)'
)
parser
.
add_argument
(
'--epochs'
,
type
=
int
,
default
=
200
,
help
=
'number of epochs to train (default: 20)'
)
parser
.
add_argument
(
'--learning_rate'
,
type
=
float
,
default
=
0.1
,
help
=
'learning rate'
)
parser
.
add_argument
(
'--data_augmentation'
,
action
=
'store_true'
,
default
=
False
,
help
=
'augment data by flipping and cropping'
)
parser
.
add_argument
(
'--cutout'
,
action
=
'store_true'
,
default
=
False
,
help
=
'apply cutout'
)
parser
.
add_argument
(
'--n_holes'
,
type
=
int
,
default
=
1
,
help
=
'number of holes to cut out from image'
)
parser
.
add_argument
(
'--length'
,
type
=
int
,
default
=
16
,
help
=
'length of the holes'
)
parser
.
add_argument
(
'--no-cuda'
,
action
=
'store_true'
,
default
=
False
,
help
=
'enables CUDA training'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
0
,
help
=
'random seed (default: 1)'
)
args
=
parser
.
parse_args
()
args
.
cuda
=
not
args
.
no_cuda
and
torch
.
cuda
.
is_available
()
cudnn
.
benchmark
=
True
# Should make training should go faster for large models
torch
.
manual_seed
(
args
.
seed
)
if
args
.
cuda
:
torch
.
cuda
.
manual_seed
(
args
.
seed
)
test_id
=
args
.
dataset
+
'_'
+
args
.
model
print
(
args
)
# Image Preprocessing
if
args
.
dataset
==
'svhn'
:
normalize
=
transforms
.
Normalize
(
mean
=
[
x
/
255.0
for
x
in
[
109.9
,
109.7
,
113.8
]],
std
=
[
x
/
255.0
for
x
in
[
50.1
,
50.6
,
50.8
]])
else
:
normalize
=
transforms
.
Normalize
(
mean
=
[
x
/
255.0
for
x
in
[
125.3
,
123.0
,
113.9
]],
std
=
[
x
/
255.0
for
x
in
[
63.0
,
62.1
,
66.7
]])
train_transform
=
transforms
.
Compose
([])
if
args
.
data_augmentation
:
train_transform
.
transforms
.
append
(
transforms
.
RandomCrop
(
32
,
padding
=
4
))
train_transform
.
transforms
.
append
(
transforms
.
RandomHorizontalFlip
())
train_transform
.
transforms
.
append
(
transforms
.
ToTensor
())
train_transform
.
transforms
.
append
(
normalize
)
if
args
.
cutout
:
train_transform
.
transforms
.
append
(
Cutout
(
n_holes
=
args
.
n_holes
,
length
=
args
.
length
))
test_transform
=
transforms
.
Compose
([
transforms
.
ToTensor
(),
normalize
])
if
args
.
dataset
==
'cifar10'
:
num_classes
=
10
train_dataset
=
datasets
.
CIFAR10
(
root
=
'data/'
,
train
=
True
,
transform
=
train_transform
,
download
=
True
)
test_dataset
=
datasets
.
CIFAR10
(
root
=
'data/'
,
train
=
False
,
transform
=
test_transform
,
download
=
True
)
elif
args
.
dataset
==
'cifar100'
:
num_classes
=
100
train_dataset
=
datasets
.
CIFAR100
(
root
=
'data/'
,
train
=
True
,
transform
=
train_transform
,
download
=
True
)
test_dataset
=
datasets
.
CIFAR100
(
root
=
'data/'
,
train
=
False
,
transform
=
test_transform
,
download
=
True
)
elif
args
.
dataset
==
'svhn'
:
num_classes
=
10
train_dataset
=
datasets
.
SVHN
(
root
=
'data/'
,
split
=
'train'
,
transform
=
train_transform
,
download
=
True
)
extra_dataset
=
datasets
.
SVHN
(
root
=
'data/'
,
split
=
'extra'
,
transform
=
train_transform
,
download
=
True
)
# Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
data
=
np
.
concatenate
([
train_dataset
.
data
,
extra_dataset
.
data
],
axis
=
0
)
labels
=
np
.
concatenate
([
train_dataset
.
labels
,
extra_dataset
.
labels
],
axis
=
0
)
train_dataset
.
data
=
data
train_dataset
.
labels
=
labels
test_dataset
=
datasets
.
SVHN
(
root
=
'data/'
,
split
=
'test'
,
transform
=
test_transform
,
download
=
True
)
# Data Loader (Input Pipeline)
train_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
train_dataset
,
batch_size
=
args
.
batch_size
,
shuffle
=
False
,
# sampler=RandomSampler(train_dataset, True, 40000),
pin_memory
=
True
,
num_workers
=
0
)
test_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
test_dataset
,
batch_size
=
args
.
batch_size
,
shuffle
=
False
,
pin_memory
=
True
,
num_workers
=
0
)
if
args
.
model
==
'resnet18'
:
cnn
=
ResNet18
(
num_classes
=
num_classes
)
elif
args
.
model
==
'wideresnet'
:
if
args
.
dataset
==
'svhn'
:
cnn
=
WideResNet
(
depth
=
16
,
num_classes
=
num_classes
,
widen_factor
=
8
,
dropRate
=
0.4
)
else
:
cnn
=
WideResNet
(
depth
=
28
,
num_classes
=
num_classes
,
widen_factor
=
10
,
dropRate
=
0.3
)
checkpoint
=
torch
.
load
(
'/content/drive/MyDrive/capstone/Cutout/checkpoints/baseline_cifar10_resnet18.pt'
,
map_location
=
torch
.
device
(
'cuda:0'
))
cnn
=
cnn
.
cuda
()
cnn
.
load_state_dict
(
checkpoint
)
criterion
=
nn
.
CrossEntropyLoss
()
.
cuda
()
cnn_optimizer
=
torch
.
optim
.
SGD
(
cnn
.
parameters
(),
lr
=
args
.
learning_rate
,
momentum
=
0.9
,
nesterov
=
True
,
weight_decay
=
5e-4
)
if
args
.
dataset
==
'svhn'
:
scheduler
=
MultiStepLR
(
cnn_optimizer
,
milestones
=
[
80
,
120
],
gamma
=
0.1
)
else
:
scheduler
=
MultiStepLR
(
cnn_optimizer
,
milestones
=
[
60
,
120
,
160
],
gamma
=
0.2
)
filename
=
'logs/'
+
test_id
+
'.csv'
csv_logger
=
CSVLogger
(
args
=
args
,
fieldnames
=
[
'epoch'
,
'train_acc'
,
'test_acc'
],
filename
=
filename
)
def
test
(
loader
):
cnn
.
eval
()
# Change model to 'eval' mode (BN uses moving mean/var).
correct
=
0.
total
=
0.
for
images
,
labels
in
loader
:
images
=
images
.
cuda
()
labels
=
labels
.
cuda
()
with
torch
.
no_grad
():
pred
=
cnn
(
images
)
pred
=
torch
.
max
(
pred
.
data
,
1
)[
1
]
total
+=
labels
.
size
(
0
)
correct
+=
(
pred
==
labels
)
.
sum
()
.
item
()
val_acc
=
correct
/
total
cnn
.
train
()
return
val_acc
kl_sum
=
0
y_bar
=
torch
.
Tensor
([
0
]
*
10
)
.
detach
()
.
cuda
()
# y_bar 구하는 epoch
for
epoch
in
range
(
1
):
cnn
.
eval
()
xentropy_loss_avg
=
0.
correct
=
0.
total
=
0.
norm_const
=
0
kldiv
=
0
# pred_sum = torch.Tensor([0] * 10).detach().cuda()
progress_bar
=
tqdm
(
train_loader
)
for
i
,
(
images
,
labels
)
in
enumerate
(
progress_bar
):
progress_bar
.
set_description
(
'Epoch '
+
str
(
epoch
))
images
=
images
.
cuda
()
labels
=
labels
.
cuda
()
cnn
.
zero_grad
()
pred
=
cnn
(
images
)
xentropy_loss
=
criterion
(
pred
,
labels
)
# xentropy_loss.backward()
# cnn_optimizer.step()
xentropy_loss_avg
+=
xentropy_loss
.
item
()
pred_softmax
=
nn
.
functional
.
softmax
(
pred
)
.
cuda
()
# Calculate running average of accuracy
pred
=
torch
.
max
(
pred
.
data
,
1
)[
1
]
total
+=
labels
.
size
(
0
)
correct
+=
(
pred
==
labels
.
data
)
.
sum
()
.
item
()
accuracy
=
correct
/
total
for
a
in
range
(
pred_softmax
.
data
.
size
()[
0
]):
for
b
in
range
(
y_bar
.
size
()[
0
]):
y_bar
[
b
]
+=
torch
.
log
(
pred_softmax
.
data
[
a
][
b
])
# expectation(log y_hat)
# y_bar = [x / pred.data.size()[0] for x in y_bar]
# print(pred.data.size()[0], y_bar.size()[0]) # 128, 10
# print(pred)
# y_hat : 모델별 예측값 --> pred_softmax
# y_bar : 예측값들 평균값 -- > pred / total : pred_sum
# labes.data : ground_truth
# y_bar = pred_sum / (i+1)
# kl = torch.nn.functional.kl_div(pred, y_bar)
# kl_sum += kl
# for문 추가안하면 epoch별 iter마다 xentropy_loss_avg값의 1/iter이 xentropy값으로 출력
# for문 추가하면 epoch 별 iter 마다 xentropy_loss_avg 값은 동일하나 xentropy값 출력이 x_l_avg 값의 1/10으로 출력
# for문 상관 없이 pred, labels 값은 동일하게 확인됨.
# for a in range(list(pred_sum.size())[0]):
# for b in range(list(pred.size())[0]):
# if pred[b] == a:
# pred_sum[a] += 1
# variance calculate : E[KL_div(y_bar, y_hat)] -> expectation of KLDivLoss(pred_sum, pred)
# 한 epoch마다 계산해서 출력해야 할듯
# nn.functional.kl_div(pred_sum, pred)
# print('\n',i, ' ', xentropy_loss_avg)
progress_bar
.
set_postfix
(
# y_hat = '%.5f' % pred,
# y_bar = '%.5f' % y_bar,
# groun_truth = '%.5f' % labels.data,
# kl = '%.3f' % kl.item(),
# kl_sum = '%.3f' % (kl_sum.item()),
# kl_div = '%.3f' % (kl_sum.item() / (i + 1)), # kl_div 호출
xentropy
=
'
%.3
f'
%
(
xentropy_loss_avg
/
(
i
+
1
)),
acc
=
'
%.3
f'
%
accuracy
)
# pred_sum = [x / 40000 for x in pred_sum]
y_bar
=
torch
.
Tensor
([
x
/
50000
for
x
in
y_bar
])
.
cuda
()
y_bar
=
torch
.
exp
(
y_bar
)
# print(y_bar)
for
index
in
range
(
y_bar
.
size
()[
0
]):
norm_const
+=
y_bar
[
index
]
print
(
y_bar
)
print
(
norm_const
)
# print(norm_const)
for
index
in
range
(
y_bar
.
size
()[
0
]):
y_bar
[
index
]
=
y_bar
[
index
]
/
norm_const
print
(
y_bar
)
# print(y_bar)
# print(pred_softmax)
# print(y_bar)
# kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean')
# kl_sum += kldiv
# print(kldiv, kl_sum)
y_bar_copy
=
y_bar
.
clone
()
.
detach
()
test_acc
=
test
(
test_loader
)
# print(pred, labels.data)
tqdm
.
write
(
'test_acc:
%.3
f'
%
(
test_acc
))
scheduler
.
step
(
epoch
)
# Use this line for PyTorch <1.4
# scheduler.step() # Use this line for PyTorch >=1.4
row
=
{
'epoch'
:
str
(
epoch
),
'train_acc'
:
str
(
accuracy
),
'test_acc'
:
str
(
test_acc
)
}
csv_logger
.
writerow
(
row
)
del
pred
torch
.
cuda
.
empty_cache
()
# kl_div 구하는 epoch
for
epoch
in
range
(
1
):
cnn
.
eval
()
kldiv
=
0
for
i
,
(
images
,
labels
)
in
enumerate
(
progress_bar
):
progress_bar
.
set_description
(
'Epoch '
+
str
(
epoch
)
+
': Calculate kl_div'
)
images
=
images
.
cuda
()
labels
=
labels
.
cuda
()
cnn
.
zero_grad
()
pred
=
cnn
(
images
)
pred_softmax
=
nn
.
functional
.
softmax
(
pred
)
.
cuda
()
# 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환.
kldiv
=
torch
.
nn
.
functional
.
kl_div
(
y_bar_copy
,
pred_softmax
,
reduction
=
'sum'
)
kl_sum
+=
kldiv
.
detach
()
# print(y_bar_copy.size(), pred_softmax.size())
# print(kl_sum)
print
(
"Average KL_div : "
,
abs
(
kl_sum
/
50000
))
# y_bar = torch.Tensor([x / 40000 for x in y_bar]).cuda()
# y_bar = torch.exp(y_bar)
# # print(y_bar)
# for index in range(y_bar.size()[0]):
# norm_const += y_bar[index]
# # print(norm_const)
# for index in range(y_bar.size()[0]):
# y_bar[index] = y_bar[index] / norm_const
# # print(y_bar)
# # print(pred_softmax)
# # print(y_bar)
# kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean')
# kl_sum += kldiv
# print(kldiv, kl_sum)
torch
.
save
(
cnn
.
state_dict
(),
'checkpoints/'
+
test_id
+
'.pt'
)
csv_logger
.
close
()
Please
register
or
login
to post a comment