Showing
1 changed file
with
390 additions
and
0 deletions
code/test_n%.py
0 → 100644
1 | +# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16 | ||
2 | +# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8 | ||
3 | +# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20 | ||
4 | + | ||
5 | +import pdb | ||
6 | +import argparse | ||
7 | +import numpy as np | ||
8 | +from tqdm import tqdm | ||
9 | +import os | ||
10 | + | ||
11 | +import torch | ||
12 | +import torch.nn as nn | ||
13 | +from torch.autograd import Variable | ||
14 | +import torch.backends.cudnn as cudnn | ||
15 | +from torch.optim.lr_scheduler import MultiStepLR | ||
16 | + | ||
17 | +from torchvision.utils import make_grid, save_image | ||
18 | +from torchvision import datasets, transforms | ||
19 | +from torchvision.transforms.transforms import ToTensor | ||
20 | +from torchvision.datasets import ImageFolder | ||
21 | +from torch.utils.data import Dataset, DataLoader | ||
22 | + | ||
23 | +from torch.utils.data.dataloader import RandomSampler | ||
24 | +from util.misc import CSVLogger | ||
25 | +from util.cutout import Cutout | ||
26 | + | ||
27 | +from model.resnet import ResNet18 | ||
28 | +from model.wide_resnet import WideResNet | ||
29 | + | ||
30 | +from PIL import Image | ||
31 | +from matplotlib.pyplot import imshow | ||
32 | +import time | ||
33 | + | ||
34 | +def csv2list(filename): | ||
35 | + lists = [] | ||
36 | + file = open(filename, 'r', encoding='utf-8-sig') | ||
37 | + while True: | ||
38 | + line = file.readline().strip("\n") | ||
39 | + # int_list = [int(i) for i in line] | ||
40 | + if line: | ||
41 | + line = line.split(",") | ||
42 | + lists.append(line) | ||
43 | + else: | ||
44 | + break | ||
45 | + return lists | ||
46 | + | ||
47 | +# variance순으로 정렬된 logs파일에서 읽어오기 | ||
48 | +filelist = csv2list("C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/cutout/logs/image_save/1_5000_deleted.csv") | ||
49 | +for i in range(len(filelist)): | ||
50 | + for j in range(len(filelist[0])): | ||
51 | + filelist[i][j] = float(filelist[i][j]) | ||
52 | +transposelist = np.transpose(filelist) | ||
53 | + | ||
54 | +# print(list) | ||
55 | +list_tensor = torch.tensor(transposelist, dtype=torch.long) | ||
56 | +target = list(list_tensor[2]) | ||
57 | +train_img_list = list() | ||
58 | + | ||
59 | +for img_idx in transposelist[1]: | ||
60 | + img_path = "C:/Users/82109/Desktop/model1/img" + str(int(img_idx)) + ".png" | ||
61 | + train_img_list.append(img_path) | ||
62 | + | ||
63 | + | ||
64 | +class Img_Dataset(Dataset): | ||
65 | + | ||
66 | + def __init__(self,file_list,transform): | ||
67 | + self.file_list = file_list | ||
68 | + self.transform = transform | ||
69 | + | ||
70 | + def __len__(self): | ||
71 | + return len(self.file_list) | ||
72 | + | ||
73 | + def __getitem__(self, index): | ||
74 | + img_path = self.file_list[index] | ||
75 | + images = np.array(Image.open(img_path)) | ||
76 | + # img_transformed = self.transform(images) | ||
77 | + | ||
78 | + labels = target[index] | ||
79 | + | ||
80 | + return images, labels | ||
81 | +# print(list_tensor) | ||
82 | +# topk 갯수 설정 | ||
83 | +# k = 5000 | ||
84 | +# values, indices = torch.topk(list_tensor[0], k) | ||
85 | +# # print(values) | ||
86 | +# image_list = [] | ||
87 | +# for i in range(k): | ||
88 | +# image_list.append(int(list_tensor[1][49999-i].item())) | ||
89 | + | ||
90 | +# for i in image_list: | ||
91 | +# file = "C:/Users/82109/Desktop/1/1/img{0}.png".format(i) | ||
92 | +# if os.path.isfile(file): | ||
93 | +# os.remove(file) | ||
94 | + | ||
95 | +# transform_train = transforms.Compose([ transforms.ToTensor(), ]) | ||
96 | + | ||
97 | + | ||
98 | + | ||
99 | + | ||
100 | +# normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], | ||
101 | +# std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) | ||
102 | + | ||
103 | + | ||
104 | + | ||
105 | + | ||
106 | +model_options = ['resnet18', 'wideresnet'] | ||
107 | +dataset_options = ['cifar10', 'cifar100', 'svhn'] | ||
108 | + | ||
109 | +parser = argparse.ArgumentParser(description='CNN') | ||
110 | +parser.add_argument('--dataset', '-d', default='cifar10', | ||
111 | + choices=dataset_options) | ||
112 | +parser.add_argument('--model', '-a', default='resnet18', | ||
113 | + choices=model_options) | ||
114 | +parser.add_argument('--batch_size', type=int, default=100, | ||
115 | + help='input batch size for training (default: 128)') | ||
116 | +parser.add_argument('--epochs', type=int, default=200, | ||
117 | + help='number of epochs to train (default: 20)') | ||
118 | +parser.add_argument('--learning_rate', type=float, default=0.1, | ||
119 | + help='learning rate') | ||
120 | +parser.add_argument('--data_augmentation', action='store_true', default=False, | ||
121 | + help='augment data by flipping and cropping') | ||
122 | +parser.add_argument('--cutout', action='store_true', default=False, | ||
123 | + help='apply cutout') | ||
124 | +parser.add_argument('--n_holes', type=int, default=0, | ||
125 | + help='number of holes to cut out from image') | ||
126 | +parser.add_argument('--length', type=int, default=0, | ||
127 | + help='length of the holes') | ||
128 | +parser.add_argument('--no-cuda', action='store_true', default=False, | ||
129 | + help='enables CUDA training') | ||
130 | +parser.add_argument('--seed', type=int, default=0, | ||
131 | + help='random seed (default: 1)') | ||
132 | + | ||
133 | +args = parser.parse_args() | ||
134 | +args.cuda = not args.no_cuda and torch.cuda.is_available() | ||
135 | +cudnn.benchmark = True # Should make training should go faster for large models | ||
136 | + | ||
137 | +torch.manual_seed(args.seed) | ||
138 | +if args.cuda: | ||
139 | + torch.cuda.manual_seed(args.seed) | ||
140 | + | ||
141 | +test_id = args.dataset + '_' + args.model | ||
142 | + | ||
143 | +print(args) | ||
144 | + | ||
145 | +# Image Preprocessing | ||
146 | +if args.dataset == 'svhn': | ||
147 | + normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]], | ||
148 | + std=[x / 255.0 for x in [50.1, 50.6, 50.8]]) | ||
149 | +else: | ||
150 | + normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], | ||
151 | + std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) | ||
152 | + | ||
153 | +train_transform = transforms.Compose([]) | ||
154 | +if args.data_augmentation: | ||
155 | + train_transform.transforms.append(transforms.RandomCrop(32, padding=4)) | ||
156 | + train_transform.transforms.append(transforms.RandomHorizontalFlip()) | ||
157 | +train_transform.transforms.append(transforms.ToTensor()) | ||
158 | +train_transform.transforms.append(normalize) | ||
159 | +if args.cutout: | ||
160 | + train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length)) | ||
161 | + | ||
162 | +test_transform = transforms.Compose([ | ||
163 | + transforms.ToTensor(), | ||
164 | + normalize]) | ||
165 | + | ||
166 | + | ||
167 | +if args.dataset == 'cifar10': | ||
168 | + num_classes = 10 | ||
169 | + train_dataset = Img_Dataset(file_list = train_img_list, | ||
170 | + transform=train_transform) | ||
171 | + # custom_dataset = ImageFolder(root='C:/Users/82109/Desktop/1/', transform = transform_train) | ||
172 | + | ||
173 | + # train_dataset = datasets.CIFAR10(root='data/', | ||
174 | + # train=True, | ||
175 | + # transform=train_transform, | ||
176 | + # download=True) | ||
177 | + | ||
178 | + test_dataset = datasets.CIFAR10(root='data/', | ||
179 | + train=False, | ||
180 | + transform=test_transform, | ||
181 | + download=True) | ||
182 | +# elif args.dataset == 'cifar100': | ||
183 | +# num_classes = 100 | ||
184 | +# train_dataset = datasets.CIFAR100(root='data/', | ||
185 | +# train=True, | ||
186 | +# transform=train_transform, | ||
187 | +# download=True) | ||
188 | + | ||
189 | +# test_dataset = datasets.CIFAR100(root='data/', | ||
190 | +# train=False, | ||
191 | +# transform=test_transform, | ||
192 | +# download=True) | ||
193 | +# elif args.dataset == 'svhn': | ||
194 | +# num_classes = 10 | ||
195 | +# train_dataset = datasets.SVHN(root='data/', | ||
196 | +# split='train', | ||
197 | +# transform=train_transform, | ||
198 | +# download=True) | ||
199 | + | ||
200 | +# extra_dataset = datasets.SVHN(root='data/', | ||
201 | +# split='extra', | ||
202 | +# transform=train_transform, | ||
203 | +# download=True) | ||
204 | + | ||
205 | +# # Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf) | ||
206 | +# data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0) | ||
207 | +# labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0) | ||
208 | +# train_dataset.data = data | ||
209 | +# train_dataset.labels = labels | ||
210 | + | ||
211 | +# test_dataset = datasets.SVHN(root='data/', | ||
212 | +# split='test', | ||
213 | +# transform=test_transform, | ||
214 | +# download=True) | ||
215 | + | ||
216 | +# # Data Loader (Input Pipeline) | ||
217 | +# train_loader = torch.utils.data.DataLoader(custom_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True,num_workers=0) | ||
218 | +train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | ||
219 | + batch_size=args.batch_size, | ||
220 | + shuffle=False, | ||
221 | + # sampler=RandomSampler(train_dataset, True, 40000), | ||
222 | + pin_memory=True, | ||
223 | + num_workers=0) | ||
224 | + | ||
225 | +test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | ||
226 | + batch_size=args.batch_size, | ||
227 | + shuffle=False, | ||
228 | + pin_memory=True, | ||
229 | + num_workers=0) | ||
230 | + | ||
231 | +if args.model == 'resnet18': | ||
232 | + cnn = ResNet18(num_classes=num_classes) | ||
233 | +elif args.model == 'wideresnet': | ||
234 | + if args.dataset == 'svhn': | ||
235 | + cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8, | ||
236 | + dropRate=0.4) | ||
237 | + else: | ||
238 | + cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10, | ||
239 | + dropRate=0.3) | ||
240 | + | ||
241 | + | ||
242 | +cnn = cnn.cuda() | ||
243 | + | ||
244 | +criterion = nn.CrossEntropyLoss().cuda() | ||
245 | +cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate, | ||
246 | + momentum=0.9, nesterov=True, weight_decay=5e-4) | ||
247 | + | ||
248 | +# scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2) | ||
249 | +if args.dataset == 'svhn': | ||
250 | + scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1) | ||
251 | +else: | ||
252 | + scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2) | ||
253 | + | ||
254 | +test_id = 'custom_dataset_resnet18' | ||
255 | + | ||
256 | +filename = 'logs/' + test_id + '.csv' | ||
257 | +csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename) | ||
258 | + | ||
259 | + | ||
260 | +def test(loader): | ||
261 | + cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var). | ||
262 | + correct = 0. | ||
263 | + total = 0. | ||
264 | + count = 0 | ||
265 | + for images, labels in loader: | ||
266 | + images = images.cuda() | ||
267 | + labels = labels.cuda() | ||
268 | + | ||
269 | + with torch.no_grad(): | ||
270 | + pred = cnn(images) | ||
271 | + | ||
272 | + pred = torch.max(pred.data, 1)[1] | ||
273 | + | ||
274 | + total += labels.size(0) | ||
275 | + # if (pred == labels).sum().item(): | ||
276 | + # print('match') | ||
277 | + # count +=1 | ||
278 | + correct += (pred == labels).sum().item() | ||
279 | + val_acc = correct / total | ||
280 | + cnn.train() | ||
281 | + return val_acc | ||
282 | + | ||
283 | +# kl_sum = 0 | ||
284 | +# y_bar = torch.zeros(8, 10).detach().cuda() | ||
285 | + | ||
286 | +# y_bar 구하는 epoch | ||
287 | +for epoch in range(1): | ||
288 | + xentropy_loss_avg = 0. | ||
289 | + correct = 0. | ||
290 | + total = 0. | ||
291 | + norm_const = 0 | ||
292 | + | ||
293 | + kldiv = 0 | ||
294 | + # pred_sum = torch.Tensor([0] * 10).detach().cuda() | ||
295 | + count = 0 | ||
296 | + progress_bar = tqdm(train_loader) | ||
297 | + for i, (images, labels) in enumerate(progress_bar): | ||
298 | + progress_bar.set_description('Epoch ' + str(epoch)) | ||
299 | + | ||
300 | + images = Variable(images.view([args.batch_size,3,32,32]).float().cuda()) | ||
301 | + labels = Variable(labels.float().cuda()) | ||
302 | + labels = torch.tensor(labels, dtype=torch.long, device=torch.device('cuda:0')) | ||
303 | + cnn.zero_grad() | ||
304 | + pred = cnn(images) | ||
305 | + xentropy_loss = criterion(pred, labels) | ||
306 | + xentropy_loss.backward() | ||
307 | + cnn_optimizer.step() | ||
308 | + | ||
309 | + xentropy_loss_avg += xentropy_loss.item() | ||
310 | + | ||
311 | + pred_softmax = nn.functional.softmax(pred).cuda() | ||
312 | + # Calculate running average of accuracy | ||
313 | + pred = torch.max(pred.data, 1)[1] | ||
314 | + | ||
315 | + total += labels.size(0) | ||
316 | + correct += (pred == labels.data).sum().item() | ||
317 | + accuracy = correct / total | ||
318 | + # for a in range(pred_softmax.data.size()[0]): | ||
319 | + # for b in range(y_bar.size()[1]): | ||
320 | + # y_bar[epoch][b] += torch.log(pred_softmax.data[a][b]) | ||
321 | + | ||
322 | + | ||
323 | + progress_bar.set_postfix( | ||
324 | + xentropy='%.3f' % (xentropy_loss_avg / (i + 1)), | ||
325 | + acc='%.3f' % accuracy) | ||
326 | + # count += 1 | ||
327 | + # xentropy = xentropy_loss_avg / count | ||
328 | + # y_bar[epoch] = torch.Tensor([x / 50000 for x in y_bar[epoch]]).cuda() | ||
329 | + # y_bar[epoch] = torch.exp(y_bar[epoch]) | ||
330 | + # for index in range(y_bar.size()[1]): | ||
331 | + # norm_const += y_bar[epoch][index] | ||
332 | + # for index in range(y_bar.size()[1]): | ||
333 | + # y_bar[epoch][index] = y_bar[epoch][index] / norm_const | ||
334 | + # print("y_bar[{0}] : ".format(epoch), y_bar[epoch]) | ||
335 | + test_acc = test(test_loader) | ||
336 | + # print(pred, labels.data) | ||
337 | + tqdm.write('test_acc: %.3f' % (test_acc)) | ||
338 | + | ||
339 | + scheduler.step() # Use this line for PyTorch <1.4 | ||
340 | + # scheduler.step() # Use this line for PyTorch >=1.4 | ||
341 | + | ||
342 | + row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)} | ||
343 | + csv_logger.writerow(row) | ||
344 | + # del pred | ||
345 | + # torch.cuda.empty_cache() | ||
346 | + | ||
347 | + | ||
348 | +# var_tensor = torch.zeros(8, 50000).detach().cuda() | ||
349 | +# var_addeachcol = torch.zeros(1, 50000).detach().cuda() | ||
350 | + | ||
351 | +# # kl_div 구하는 epoch | ||
352 | +# for epoch in range(1): | ||
353 | +# checkpoint = torch.load('C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/Cutout/checkpoints/sampling/sampling_{0}.pt'.format(8), map_location = torch.device('cuda:0')) | ||
354 | +# cnn.load_state_dict(checkpoint) | ||
355 | +# cnn.eval() | ||
356 | +# kldiv = 0 | ||
357 | +# for i, (images, labels) in enumerate(progress_bar): | ||
358 | +# progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div') | ||
359 | + | ||
360 | +# images = images.cuda() | ||
361 | +# labels = labels.cuda() | ||
362 | + | ||
363 | +# cnn.zero_grad() | ||
364 | +# pred = cnn(images) | ||
365 | + | ||
366 | +# pred_softmax = nn.functional.softmax(pred).cuda() | ||
367 | + | ||
368 | +# # 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환. | ||
369 | +# kldiv = torch.nn.functional.kl_div(y_bar[epoch], pred_softmax, reduction='sum') | ||
370 | +# # 1 * 50000에 한 모델의 데이터별 variance 저장 | ||
371 | +# var_tensor[epoch][i] += abs(kldiv).detach() | ||
372 | +# var_addeachcol[0][i] += var_tensor[epoch][i] | ||
373 | +# kl_sum += kldiv.detach() | ||
374 | +# # print(y_bar_copy.size(), pred_softmax.size()) | ||
375 | +# # print(kl_sum) | ||
376 | +# var = abs(kl_sum.item() / 50000) | ||
377 | +# print("Variance : ", var) | ||
378 | +# csv_logger.writerow({'var' : float(var)}) | ||
379 | +# # print(var_tensor) | ||
380 | +# for i in range(var_addeachcol.size()[1]): | ||
381 | +# var_addeachcol[0][i] = var_addeachcol[0][i] / 8 | ||
382 | + | ||
383 | +# print(var_addeachcol) | ||
384 | +# # var_addeachcol[0] = torch.Tensor([x / 8 for x in var_addeachcol]).cuda() | ||
385 | +# var_sorted = torch.argsort(var_addeachcol) | ||
386 | +# print(var_sorted) | ||
387 | +# for i in range(var_addeachcol.size()[1]): | ||
388 | +# csv_logger.writerow({'avg_var' : float(var_addeachcol[0][i]), 'arg_var' : float(var_sorted[0][i]), 'index' : float(i + 1)}) | ||
389 | +torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt') | ||
390 | +csv_logger.close() |
-
Please register or login to post a comment