이동주

remove

# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
import pdb
import argparse
import numpy as np
from tqdm import tqdm
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.utils import make_grid, save_image
from torchvision import datasets, transforms
from torch.utils.data.dataloader import RandomSampler
from util.misc import CSVLogger
from util.cutout import Cutout
from model.resnet import ResNet18
from model.wide_resnet import WideResNet
model_options = ['resnet18', 'wideresnet']
dataset_options = ['cifar10', 'cifar100', 'svhn']
parser = argparse.ArgumentParser(description='CNN')
parser.add_argument('--dataset', '-d', default='cifar10',
choices=dataset_options)
parser.add_argument('--model', '-a', default='resnet18',
choices=model_options)
parser.add_argument('--batch_size', type=int, default=1,
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 20)')
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--data_augmentation', action='store_true', default=False,
help='augment data by flipping and cropping')
parser.add_argument('--cutout', action='store_true', default=False,
help='apply cutout')
parser.add_argument('--n_holes', type=int, default=1,
help='number of holes to cut out from image')
parser.add_argument('--length', type=int, default=16,
help='length of the holes')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
cudnn.benchmark = True # Should make training should go faster for large models
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
test_id = args.dataset + '_' + args.model
print(args)
# Image Preprocessing
if args.dataset == 'svhn':
normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]],
std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
else:
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
train_transform = transforms.Compose([])
if args.data_augmentation:
train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
train_transform.transforms.append(transforms.RandomHorizontalFlip())
train_transform.transforms.append(transforms.ToTensor())
train_transform.transforms.append(normalize)
if args.cutout:
train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length))
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize])
if args.dataset == 'cifar10':
num_classes = 10
train_dataset = datasets.CIFAR10(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR10(root='data/',
train=False,
transform=test_transform,
download=True)
elif args.dataset == 'cifar100':
num_classes = 100
train_dataset = datasets.CIFAR100(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR100(root='data/',
train=False,
transform=test_transform,
download=True)
elif args.dataset == 'svhn':
num_classes = 10
train_dataset = datasets.SVHN(root='data/',
split='train',
transform=train_transform,
download=True)
extra_dataset = datasets.SVHN(root='data/',
split='extra',
transform=train_transform,
download=True)
# Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0)
train_dataset.data = data
train_dataset.labels = labels
test_dataset = datasets.SVHN(root='data/',
split='test',
transform=test_transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=False,
# sampler=RandomSampler(train_dataset, True, 40000),
pin_memory=True,
num_workers=0)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
pin_memory=True,
num_workers=0)
if args.model == 'resnet18':
cnn = ResNet18(num_classes=num_classes)
elif args.model == 'wideresnet':
if args.dataset == 'svhn':
cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8,
dropRate=0.4)
else:
cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10,
dropRate=0.3)
cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
momentum=0.9, nesterov=True, weight_decay=5e-4)
if args.dataset == 'svhn':
scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
else:
scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
filename = 'logs/' + test_id + '.csv'
csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc', 'xentropy', 'var', 'avg_var', 'arg_var', 'index', 'labels'], filename=filename)
def test(loader):
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0.
total = 0.
for images, labels in loader:
images = images.cuda()
labels = labels.cuda()
with torch.no_grad():
pred = cnn(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels).sum().item()
val_acc = correct / total
cnn.train()
return val_acc
kl_sum = 0
y_bar = torch.zeros(8, 10).detach().cuda()
# y_bar 구하는 epoch
for epoch in range(1):
checkpoint = torch.load('C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/cutout/checkpoints/sampling/sampling_{0}.pt'.format(8), map_location = torch.device('cuda:0'))
cnn.load_state_dict(checkpoint)
cnn.eval()
xentropy_loss_avg = 0.
correct = 0.
total = 0.
norm_const = 0
kldiv = 0
# pred_sum = torch.Tensor([0] * 10).detach().cuda()
count = 0
label_list = []
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = images.cuda()
labels = labels.cuda()
label_list.append(labels.item())
save_image(images[0], os.path.join('C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/cutout/augmented_images/{0}/'.format(8), 'img{0}.png'.format(i)))
cnn.zero_grad()
pred = cnn(images)
xentropy_loss = criterion(pred, labels)
# xentropy_loss.backward()
# cnn_optimizer.step()
xentropy_loss_avg += xentropy_loss.item()
pred_softmax = nn.functional.softmax(pred).cuda()
# Calculate running average of accuracy
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum().item()
accuracy = correct / total
for a in range(pred_softmax.data.size()[0]):
for b in range(y_bar.size()[1]):
y_bar[epoch][b] += torch.log(pred_softmax.data[a][b])
progress_bar.set_postfix(
xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
acc='%.3f' % accuracy)
count += 1
xentropy = xentropy_loss_avg / count
y_bar[epoch] = torch.Tensor([x / 50000 for x in y_bar[epoch]]).cuda()
y_bar[epoch] = torch.exp(y_bar[epoch])
for index in range(y_bar.size()[1]):
norm_const += y_bar[epoch][index]
for index in range(y_bar.size()[1]):
y_bar[epoch][index] = y_bar[epoch][index] / norm_const
print("y_bar[{0}] : ".format(epoch), y_bar[epoch])
test_acc = test(test_loader)
# print(pred, labels.data)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step(epoch) # Use this line for PyTorch <1.4
# scheduler.step() # Use this line for PyTorch >=1.4
row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc), 'xentropy' : float(xentropy)
}
csv_logger.writerow(row)
# del pred
# torch.cuda.empty_cache()
var_tensor = torch.zeros(8, 50000).detach().cuda()
var_addeachcol = torch.zeros(1, 50000).detach().cuda()
# kl_div 구하는 epoch
for epoch in range(1):
checkpoint = torch.load('C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/cutout/checkpoints/sampling/sampling_{0}.pt'.format(8), map_location = torch.device('cuda:0'))
cnn.load_state_dict(checkpoint)
cnn.eval()
kldiv = 0
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div')
images = images.cuda()
labels = labels.cuda()
cnn.zero_grad()
pred = cnn(images)
pred_softmax = nn.functional.softmax(pred).cuda()
# 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환.
kldiv = torch.nn.functional.kl_div(y_bar[epoch], pred_softmax, reduction='sum')
# 1 * 50000에 한 모델의 데이터별 variance 저장
var_tensor[epoch][i] += abs(kldiv).detach()
var_addeachcol[0][i] += var_tensor[epoch][i]
kl_sum += kldiv.detach()
# print(y_bar_copy.size(), pred_softmax.size())
# print(kl_sum)
var = abs(kl_sum.item() / 50000)
print("Variance : ", var)
csv_logger.writerow({'var' : float(var)})
# print(var_tensor)
for i in range(var_addeachcol.size()[1]):
var_addeachcol[0][i] = var_addeachcol[0][i] / 8
print(var_addeachcol)
# var_addeachcol[0] = torch.Tensor([x / 8 for x in var_addeachcol]).cuda()
var_sorted = torch.argsort(var_addeachcol)
print(var_sorted)
for i in range(var_addeachcol.size()[1]):
csv_logger.writerow({'avg_var' : float(var_addeachcol[0][i]), 'arg_var' : float(var_sorted[0][i]), 'index' : float(i + 1), 'labels' : float(label_list[i])})
torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
csv_logger.close()
# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
import pdb
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.utils import make_grid
from torchvision import datasets, transforms
from torch.utils.data.dataloader import RandomSampler
from util.misc import CSVLogger
from util.cutout import Cutout
from model.resnet import ResNet18
from model.wide_resnet import WideResNet
model_options = ['resnet18', 'wideresnet']
dataset_options = ['cifar10', 'cifar100', 'svhn']
parser = argparse.ArgumentParser(description='CNN')
parser.add_argument('--dataset', '-d', default='cifar10',
choices=dataset_options)
parser.add_argument('--model', '-a', default='resnet18',
choices=model_options)
parser.add_argument('--batch_size', type=int, default=128,
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 20)')
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--data_augmentation', action='store_true', default=False,
help='augment data by flipping and cropping')
parser.add_argument('--cutout', action='store_true', default=False,
help='apply cutout')
parser.add_argument('--n_holes', type=int, default=1,
help='number of holes to cut out from image')
parser.add_argument('--length', type=int, default=16,
help='length of the holes')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
cudnn.benchmark = True # Should make training should go faster for large models
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
test_id = args.dataset + '_' + args.model
print(args)
# Image Preprocessing
if args.dataset == 'svhn':
normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]],
std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
else:
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
train_transform = transforms.Compose([])
if args.data_augmentation:
train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
train_transform.transforms.append(transforms.RandomHorizontalFlip())
train_transform.transforms.append(transforms.ToTensor())
train_transform.transforms.append(normalize)
if args.cutout:
train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length))
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize])
if args.dataset == 'cifar10':
num_classes = 10
train_dataset = datasets.CIFAR10(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR10(root='data/',
train=False,
transform=test_transform,
download=True)
elif args.dataset == 'cifar100':
num_classes = 100
train_dataset = datasets.CIFAR100(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR100(root='data/',
train=False,
transform=test_transform,
download=True)
elif args.dataset == 'svhn':
num_classes = 10
train_dataset = datasets.SVHN(root='data/',
split='train',
transform=train_transform,
download=True)
extra_dataset = datasets.SVHN(root='data/',
split='extra',
transform=train_transform,
download=True)
# Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0)
train_dataset.data = data
train_dataset.labels = labels
test_dataset = datasets.SVHN(root='data/',
split='test',
transform=test_transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=False,
# sampler=RandomSampler(train_dataset, True, 40000),
pin_memory=True,
num_workers=0)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
pin_memory=True,
num_workers=0)
if args.model == 'resnet18':
cnn = ResNet18(num_classes=num_classes)
elif args.model == 'wideresnet':
if args.dataset == 'svhn':
cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8,
dropRate=0.4)
else:
cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10,
dropRate=0.3)
checkpoint = torch.load('/content/drive/MyDrive/capstone/Cutout/checkpoints/baseline_cifar10_resnet18.pt', map_location = torch.device('cuda:0'))
cnn = cnn.cuda()
cnn.load_state_dict(checkpoint)
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
momentum=0.9, nesterov=True, weight_decay=5e-4)
if args.dataset == 'svhn':
scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
else:
scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
filename = 'logs/' + test_id + '.csv'
csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename)
def test(loader):
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0.
total = 0.
for images, labels in loader:
images = images.cuda()
labels = labels.cuda()
with torch.no_grad():
pred = cnn(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels).sum().item()
val_acc = correct / total
cnn.train()
return val_acc
kl_sum = 0
y_bar = torch.Tensor([0] * 10).detach().cuda()
# y_bar 구하는 epoch
for epoch in range(args.epochs):
cnn.eval()
xentropy_loss_avg = 0.
correct = 0.
total = 0.
norm_const = 0
kldiv = 0
# pred_sum = torch.Tensor([0] * 10).detach().cuda()
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = images.cuda()
labels = labels.cuda()
cnn.zero_grad()
pred = cnn(images)
xentropy_loss = criterion(pred, labels)
# xentropy_loss.backward()
# cnn_optimizer.step()
xentropy_loss_avg += xentropy_loss.item()
pred_softmax = nn.functional.softmax(pred).cuda()
# Calculate running average of accuracy
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum().item()
accuracy = correct / total
for a in range(pred_softmax.data.size()[0]):
for b in range(y_bar.size()[0]):
y_bar[b] += torch.log(pred_softmax.data[a][b])
# expectation(log y_hat)
# y_bar = [x / pred.data.size()[0] for x in y_bar]
# print(pred.data.size()[0], y_bar.size()[0]) # 128, 10
# print(pred)
# y_hat : 모델별 예측값 --> pred_softmax
# y_bar : 예측값들 평균값 -- > pred / total : pred_sum
# labes.data : ground_truth
# y_bar = pred_sum / (i+1)
# kl = torch.nn.functional.kl_div(pred, y_bar)
# kl_sum += kl
# for문 추가안하면 epoch별 iter마다 xentropy_loss_avg값의 1/iter이 xentropy값으로 출력
# for문 추가하면 epoch 별 iter 마다 xentropy_loss_avg 값은 동일하나 xentropy값 출력이 x_l_avg 값의 1/10으로 출력
# for문 상관 없이 pred, labels 값은 동일하게 확인됨.
# for a in range(list(pred_sum.size())[0]):
# for b in range(list(pred.size())[0]):
# if pred[b] == a:
# pred_sum[a] += 1
# variance calculate : E[KL_div(y_bar, y_hat)] -> expectation of KLDivLoss(pred_sum, pred)
# 한 epoch마다 계산해서 출력해야 할듯
# nn.functional.kl_div(pred_sum, pred)
# print('\n',i, ' ', xentropy_loss_avg)
progress_bar.set_postfix(
# y_hat = '%.5f' % pred,
# y_bar = '%.5f' % y_bar,
# groun_truth = '%.5f' % labels.data,
# kl = '%.3f' % kl.item(),
# kl_sum = '%.3f' % (kl_sum.item()),
# kl_div = '%.3f' % (kl_sum.item() / (i + 1)), # kl_div 호출
xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
acc='%.3f' % accuracy)
# pred_sum = [x / 40000 for x in pred_sum]
y_bar = torch.Tensor([x / 50000 for x in y_bar]).cuda()
y_bar = torch.exp(y_bar)
# print(y_bar)
for index in range(y_bar.size()[0]):
norm_const += y_bar[index]
print(y_bar)
print(norm_const)
# print(norm_const)
for index in range(y_bar.size()[0]):
y_bar[index] = y_bar[index] / norm_const
print(y_bar)
# print(y_bar)
# print(pred_softmax)
# print(y_bar)
# kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean')
# kl_sum += kldiv
# print(kldiv, kl_sum)
y_bar_copy = y_bar.clone().detach()
test_acc = test(test_loader)
# print(pred, labels.data)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step(epoch) # Use this line for PyTorch <1.4
# scheduler.step() # Use this line for PyTorch >=1.4
row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)
}
csv_logger.writerow(row)
del pred
torch.cuda.empty_cache()
# kl_div 구하는 epoch
for epoch in range(args.epochs):
cnn.eval()
kldiv = 0
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div')
images = images.cuda()
labels = labels.cuda()
cnn.zero_grad()
pred = cnn(images)
pred_softmax = nn.functional.softmax(pred).cuda()
# 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환.
kldiv = torch.nn.functional.kl_div(y_bar_copy, pred_softmax, reduction='sum')
kl_sum += kldiv.detach()
# print(y_bar_copy.size(), pred_softmax.size())
# print(kl_sum)
print("Average KL_div : ", abs(kl_sum / 50000))
# y_bar = torch.Tensor([x / 40000 for x in y_bar]).cuda()
# y_bar = torch.exp(y_bar)
# # print(y_bar)
# for index in range(y_bar.size()[0]):
# norm_const += y_bar[index]
# # print(norm_const)
# for index in range(y_bar.size()[0]):
# y_bar[index] = y_bar[index] / norm_const
# # print(y_bar)
# # print(pred_softmax)
# # print(y_bar)
# kldiv = torch.nn.functional.kl_div(y_bar, pred_softmax, reduction='batchmean')
# kl_sum += kldiv
# print(kldiv, kl_sum)
torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
csv_logger.close()
# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
import pdb
import argparse
import numpy as np
from tqdm import tqdm
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.utils import make_grid, save_image
from torchvision import datasets, transforms
from torchvision.transforms.transforms import ToTensor
from torchvision.datasets import ImageFolder
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.dataloader import RandomSampler
from util.misc import CSVLogger
from util.cutout import Cutout
from model.resnet import ResNet18
from model.wide_resnet import WideResNet
from PIL import Image
from matplotlib.pyplot import imshow
import time
def csv2list(filename):
lists = []
file = open(filename, 'r', encoding='utf-8-sig')
while True:
line = file.readline().strip("\n")
# int_list = [int(i) for i in line]
if line:
line = line.split(",")
lists.append(line)
else:
break
return lists
# variance순으로 정렬된 logs파일에서 읽어오기
filelist = csv2list("C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/cutout/logs/image_save/1_5000_deleted.csv")
for i in range(len(filelist)):
for j in range(len(filelist[0])):
filelist[i][j] = float(filelist[i][j])
transposelist = np.transpose(filelist)
# print(list)
list_tensor = torch.tensor(transposelist, dtype=torch.long)
target = list(list_tensor[2])
train_img_list = list()
for img_idx in transposelist[1]:
img_path = "C:/Users/82109/Desktop/model1/img" + str(int(img_idx)) + ".png"
train_img_list.append(img_path)
class Img_Dataset(Dataset):
def __init__(self,file_list,transform):
self.file_list = file_list
self.transform = transform
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path = self.file_list[index]
images = np.array(Image.open(img_path))
# img_transformed = self.transform(images)
labels = target[index]
return images, labels
# print(list_tensor)
# topk 갯수 설정
# k = 5000
# values, indices = torch.topk(list_tensor[0], k)
# # print(values)
# image_list = []
# for i in range(k):
# image_list.append(int(list_tensor[1][49999-i].item()))
# for i in image_list:
# file = "C:/Users/82109/Desktop/1/1/img{0}.png".format(i)
# if os.path.isfile(file):
# os.remove(file)
# transform_train = transforms.Compose([ transforms.ToTensor(), ])
# normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
# std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
model_options = ['resnet18', 'wideresnet']
dataset_options = ['cifar10', 'cifar100', 'svhn']
parser = argparse.ArgumentParser(description='CNN')
parser.add_argument('--dataset', '-d', default='cifar10',
choices=dataset_options)
parser.add_argument('--model', '-a', default='resnet18',
choices=model_options)
parser.add_argument('--batch_size', type=int, default=100,
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 20)')
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--data_augmentation', action='store_true', default=False,
help='augment data by flipping and cropping')
parser.add_argument('--cutout', action='store_true', default=False,
help='apply cutout')
parser.add_argument('--n_holes', type=int, default=0,
help='number of holes to cut out from image')
parser.add_argument('--length', type=int, default=0,
help='length of the holes')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
cudnn.benchmark = True # Should make training should go faster for large models
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
test_id = args.dataset + '_' + args.model
print(args)
# Image Preprocessing
if args.dataset == 'svhn':
normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]],
std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
else:
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
train_transform = transforms.Compose([])
if args.data_augmentation:
train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
train_transform.transforms.append(transforms.RandomHorizontalFlip())
train_transform.transforms.append(transforms.ToTensor())
train_transform.transforms.append(normalize)
if args.cutout:
train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length))
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize])
if args.dataset == 'cifar10':
num_classes = 10
train_dataset = Img_Dataset(file_list = train_img_list,
transform=train_transform)
# custom_dataset = ImageFolder(root='C:/Users/82109/Desktop/1/', transform = transform_train)
# train_dataset = datasets.CIFAR10(root='data/',
# train=True,
# transform=train_transform,
# download=True)
test_dataset = datasets.CIFAR10(root='data/',
train=False,
transform=test_transform,
download=True)
# elif args.dataset == 'cifar100':
# num_classes = 100
# train_dataset = datasets.CIFAR100(root='data/',
# train=True,
# transform=train_transform,
# download=True)
# test_dataset = datasets.CIFAR100(root='data/',
# train=False,
# transform=test_transform,
# download=True)
# elif args.dataset == 'svhn':
# num_classes = 10
# train_dataset = datasets.SVHN(root='data/',
# split='train',
# transform=train_transform,
# download=True)
# extra_dataset = datasets.SVHN(root='data/',
# split='extra',
# transform=train_transform,
# download=True)
# # Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
# data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
# labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0)
# train_dataset.data = data
# train_dataset.labels = labels
# test_dataset = datasets.SVHN(root='data/',
# split='test',
# transform=test_transform,
# download=True)
# # Data Loader (Input Pipeline)
# train_loader = torch.utils.data.DataLoader(custom_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True,num_workers=0)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=False,
# sampler=RandomSampler(train_dataset, True, 40000),
pin_memory=True,
num_workers=0)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
pin_memory=True,
num_workers=0)
if args.model == 'resnet18':
cnn = ResNet18(num_classes=num_classes)
elif args.model == 'wideresnet':
if args.dataset == 'svhn':
cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8,
dropRate=0.4)
else:
cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10,
dropRate=0.3)
cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
momentum=0.9, nesterov=True, weight_decay=5e-4)
# scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
if args.dataset == 'svhn':
scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
else:
scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
test_id = 'custom_dataset_resnet18'
filename = 'logs/' + test_id + '.csv'
csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename)
def test(loader):
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0.
total = 0.
count = 0
for images, labels in loader:
images = images.cuda()
labels = labels.cuda()
with torch.no_grad():
pred = cnn(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
# if (pred == labels).sum().item():
# print('match')
# count +=1
correct += (pred == labels).sum().item()
val_acc = correct / total
cnn.train()
return val_acc
# kl_sum = 0
# y_bar = torch.zeros(8, 10).detach().cuda()
# y_bar 구하는 epoch
for epoch in range(1):
xentropy_loss_avg = 0.
correct = 0.
total = 0.
norm_const = 0
kldiv = 0
# pred_sum = torch.Tensor([0] * 10).detach().cuda()
count = 0
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = Variable(images.view([args.batch_size,3,32,32]).float().cuda())
labels = Variable(labels.float().cuda())
labels = torch.tensor(labels, dtype=torch.long, device=torch.device('cuda:0'))
cnn.zero_grad()
pred = cnn(images)
xentropy_loss = criterion(pred, labels)
xentropy_loss.backward()
cnn_optimizer.step()
xentropy_loss_avg += xentropy_loss.item()
pred_softmax = nn.functional.softmax(pred).cuda()
# Calculate running average of accuracy
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum().item()
accuracy = correct / total
# for a in range(pred_softmax.data.size()[0]):
# for b in range(y_bar.size()[1]):
# y_bar[epoch][b] += torch.log(pred_softmax.data[a][b])
progress_bar.set_postfix(
xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
acc='%.3f' % accuracy)
# count += 1
# xentropy = xentropy_loss_avg / count
# y_bar[epoch] = torch.Tensor([x / 50000 for x in y_bar[epoch]]).cuda()
# y_bar[epoch] = torch.exp(y_bar[epoch])
# for index in range(y_bar.size()[1]):
# norm_const += y_bar[epoch][index]
# for index in range(y_bar.size()[1]):
# y_bar[epoch][index] = y_bar[epoch][index] / norm_const
# print("y_bar[{0}] : ".format(epoch), y_bar[epoch])
test_acc = test(test_loader)
# print(pred, labels.data)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step() # Use this line for PyTorch <1.4
# scheduler.step() # Use this line for PyTorch >=1.4
row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)}
csv_logger.writerow(row)
# del pred
# torch.cuda.empty_cache()
# var_tensor = torch.zeros(8, 50000).detach().cuda()
# var_addeachcol = torch.zeros(1, 50000).detach().cuda()
# # kl_div 구하는 epoch
# for epoch in range(1):
# checkpoint = torch.load('C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/Cutout/checkpoints/sampling/sampling_{0}.pt'.format(8), map_location = torch.device('cuda:0'))
# cnn.load_state_dict(checkpoint)
# cnn.eval()
# kldiv = 0
# for i, (images, labels) in enumerate(progress_bar):
# progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div')
# images = images.cuda()
# labels = labels.cuda()
# cnn.zero_grad()
# pred = cnn(images)
# pred_softmax = nn.functional.softmax(pred).cuda()
# # 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환.
# kldiv = torch.nn.functional.kl_div(y_bar[epoch], pred_softmax, reduction='sum')
# # 1 * 50000에 한 모델의 데이터별 variance 저장
# var_tensor[epoch][i] += abs(kldiv).detach()
# var_addeachcol[0][i] += var_tensor[epoch][i]
# kl_sum += kldiv.detach()
# # print(y_bar_copy.size(), pred_softmax.size())
# # print(kl_sum)
# var = abs(kl_sum.item() / 50000)
# print("Variance : ", var)
# csv_logger.writerow({'var' : float(var)})
# # print(var_tensor)
# for i in range(var_addeachcol.size()[1]):
# var_addeachcol[0][i] = var_addeachcol[0][i] / 8
# print(var_addeachcol)
# # var_addeachcol[0] = torch.Tensor([x / 8 for x in var_addeachcol]).cuda()
# var_sorted = torch.argsort(var_addeachcol)
# print(var_sorted)
# for i in range(var_addeachcol.size()[1]):
# csv_logger.writerow({'avg_var' : float(var_addeachcol[0][i]), 'arg_var' : float(var_sorted[0][i]), 'index' : float(i + 1)})
torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
csv_logger.close()