이민규

add code

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <math.h>
#include <stdbool.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
uint8_t rx2_data = 0;
uint32_t desired_speed = 3000;
uint32_t MOTER_PWM[4] = {0};
uint32_t Kp = 1;
uint32_t encoder_cnt[4] = {0};
uint32_t encoder_speed[4] = {0};
int32_t error_speed[4] = {0};
int32_t PID_speed[4] = {0};
uint32_t old_PID_speed[4] = {3000, 3000, 3000, 3000};
/***********lidar************/
//response data
bool scan_start = false;
uint8_t rx3_start[7] = {0};
uint8_t rx3_data[5] = {0};
uint8_t Q = 0;
bool S = false;
uint16_t angle;
uint16_t d;
uint16_t distance[360] = {0};
int16_t avg_DIFF = 0;
//protocal
uint8_t scan_command[2] = {0xA5,0x20};
uint8_t stop_command[2] = {0xA5,0x25};
uint8_t soft_reboot[2] = {0xA5,0x40};
uint8_t scan_express[2] = {0xA5,0x82};
uint8_t scan_force[2] = {0xA5,0x21};
uint8_t device_info[2] = {0xA5,0x50};
uint8_t health_status[2] = {0xA5,0x52};
uint8_t sample_rate[2] = {0xA5,0x59};
uint8_t scan_response[7] = {0xa5, 0x5a, 0x5, 0x0, 0x0, 0x40, 0x81};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_NVIC_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
bool array_element_of_index_equal(uint8_t a[], uint8_t b[], uint8_t size) {
uint8_t i;
for(i=0; i<size; i++){
if( a[i] != b[i] )
return false;
}
return true;
}
int16_t array_avg_compare(uint16_t distance[]){
uint32_t sum_R = 0;
uint32_t sum_L = 0;
uint8_t len_L = 0;
uint8_t len_R = 0;
uint16_t avg_R = 0;
uint16_t avg_L = 0;
int16_t avg_diff = 0;
for(int i=0; i<90; i++){
sum_R += distance[i];
if(distance[i]!=0){
len_R++;
}
}
avg_R = sum_R/len_R;
for(int i=270; i<360; i++){
sum_L += distance[i];
if(distance[i]!=0){
len_L++;
}
}
avg_L = sum_L/len_L;
avg_diff = avg_R - avg_L;
return avg_diff;
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) //Timer interrupt every 20ms
{
if(htim->Instance == TIM6){
//HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_SET);
encoder_cnt[0] = TIM2->CNT;
TIM2->CNT=0;
encoder_cnt[1] = TIM3->CNT;
TIM3->CNT=0;
encoder_cnt[2] = TIM4->CNT;
TIM4->CNT=0;
encoder_cnt[3] = TIM5->CNT;
TIM5->CNT=0;
encoder_speed[0] = 164.18 * exp(0.0112*encoder_cnt[0]);
encoder_speed[1] = 164.18 * exp(0.0112*encoder_cnt[1]);
encoder_speed[2] = 164.18 * exp(0.0112*encoder_cnt[2]);
encoder_speed[3] = 164.18 * exp(0.0112*encoder_cnt[3]);
error_speed[0] = desired_speed - encoder_speed[0];
error_speed[1] = desired_speed - encoder_speed[1];
error_speed[2] = desired_speed - encoder_speed[2];
error_speed[3] = desired_speed - encoder_speed[3];
PID_speed[0] = old_PID_speed[0] + Kp*error_speed[0];
PID_speed[1] = old_PID_speed[1] + Kp*error_speed[1];
PID_speed[2] = old_PID_speed[2] + Kp*error_speed[2];
PID_speed[3] = old_PID_speed[3] + Kp*error_speed[3];
old_PID_speed[0] = PID_speed[0];
old_PID_speed[1] = PID_speed[1];
old_PID_speed[2] = PID_speed[2];
old_PID_speed[3] = PID_speed[3];
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_TIM6_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_TIM5_Init();
/* Initialize interrupts */
MX_NVIC_Init();
/* USER CODE BEGIN 2 */
HAL_Delay(3000);
//Initialize for motor PWM
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4);
//Initialize for motor direction
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, RESET);
//Initialize for encoder count value
TIM2->CNT = 0;
TIM3->CNT = 0;
TIM4->CNT = 0;
TIM5->CNT = 0;
//Initialize for Encoder
HAL_TIM_Encoder_Start(&htim2, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim5, TIM_CHANNEL_ALL);
//Initialize for timer interrupt initialization for Encoder (50ms)
HAL_TIM_Base_Start_IT(&htim6);
//LIDAR_scan_start
//HAL_UART_Transmit(&huart3, &scan_command, 2, 100);
//robotArm to Cart
HAL_UART_Receive_IT(&huart2,&rx2_data,1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while(1){
if(rx2_data == 1){
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4, RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_5, SET);
//go left
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, RESET);
/*
TIM1->CCR1 = 6000;
TIM1->CCR2 = 4500;
TIM1->CCR3 = 8000;
TIM1->CCR4 = 9999;
*/
TIM1->CCR1 = 8000;
TIM1->CCR2 = 9999;
TIM1->CCR3 = 6000;
TIM1->CCR4 = 4500;
HAL_Delay(100);
rx2_data = 5;
//HAL_Delay(2000);
}else if(rx2_data == 2){
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4, SET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_5, RESET);
//go right
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, SET);
TIM1->CCR1 = 8000;
TIM1->CCR2 = 9999;
TIM1->CCR3 = 6000;
TIM1->CCR4 = 4500;
HAL_Delay(100);
rx2_data = 5;
//HAL_Delay(2000);
}else if(rx2_data == 5){
//stop
TIM1->CCR1 = 0;
TIM1->CCR2 = 0;
TIM1->CCR3 = 0;
TIM1->CCR4 = 0;
}else if(rx2_data == 3){
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, RESET);
TIM1->CCR1 = 3000;
TIM1->CCR2 = 3000;
TIM1->CCR3 = 3000;
TIM1->CCR4 = 3000;
}else if(rx2_data == 6){
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, RESET);
TIM1->CCR1 = 4000;
TIM1->CCR2 = 4000;
TIM1->CCR3 = 4000;
TIM1->CCR4 = 4000;
HAL_Delay(2000);
rx2_data = 5;
}
/*
}else if(rx2_data == 11){
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, RESET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11, SET);
TIM1->CCR1 = 3000;
TIM1->CCR2 = 9999;
TIM1->CCR3 = 8000;
TIM1->CCR4 = 3000;
HAL_Delay(100);
rx2_data = 5;
//HAL_Delay(2000);
}*/
// rx2_data = 0;
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief NVIC Configuration.
* @retval None
*/
static void MX_NVIC_Init(void)
{
/* USART2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* TIM6_DAC_IRQn interrupt configuration */
HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);
}
/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART2){
HAL_UART_Receive_IT(&huart2,&rx2_data,1);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/