expression.js 24.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
// A recursive descent parser operates by defining functions for all
// syntactic elements, and recursively calling those, each function
// advancing the input stream and returning an AST node. Precedence
// of constructs (for example, the fact that `!x[1]` means `!(x[1])`
// instead of `(!x)[1]` is handled by the fact that the parser
// function that parses unary prefix operators is called first, and
// in turn calls the function that parses `[]` subscripts — that
// way, it'll receive the node for `x[1]` already parsed, and wraps
// *that* in the unary operator node.
//
// Acorn uses an [operator precedence parser][opp] to handle binary
// operator precedence, because it is much more compact than using
// the technique outlined above, which uses different, nesting
// functions to specify precedence, for all of the ten binary
// precedence levels that JavaScript defines.
//
// [opp]: http://en.wikipedia.org/wiki/Operator-precedence_parser

import {types as tt} from "./tokentype"
import {Parser} from "./state"
import {DestructuringErrors} from "./parseutil"

const pp = Parser.prototype

// Check if property name clashes with already added.
// Object/class getters and setters are not allowed to clash —
// either with each other or with an init property — and in
// strict mode, init properties are also not allowed to be repeated.

pp.checkPropClash = function(prop, propHash) {
  if (this.options.ecmaVersion >= 6 && (prop.computed || prop.method || prop.shorthand))
    return
  let {key} = prop, name
  switch (key.type) {
  case "Identifier": name = key.name; break
  case "Literal": name = String(key.value); break
  default: return
  }
  let {kind} = prop
  if (this.options.ecmaVersion >= 6) {
    if (name === "__proto__" && kind === "init") {
      if (propHash.proto) this.raiseRecoverable(key.start, "Redefinition of __proto__ property")
      propHash.proto = true
    }
    return
  }
  name = "$" + name
  let other = propHash[name]
  if (other) {
    let isGetSet = kind !== "init"
    if ((this.strict || isGetSet) && other[kind] || !(isGetSet ^ other.init))
      this.raiseRecoverable(key.start, "Redefinition of property")
  } else {
    other = propHash[name] = {
      init: false,
      get: false,
      set: false
    }
  }
  other[kind] = true
}

// ### Expression parsing

// These nest, from the most general expression type at the top to
// 'atomic', nondivisible expression types at the bottom. Most of
// the functions will simply let the function(s) below them parse,
// and, *if* the syntactic construct they handle is present, wrap
// the AST node that the inner parser gave them in another node.

// Parse a full expression. The optional arguments are used to
// forbid the `in` operator (in for loops initalization expressions)
// and provide reference for storing '=' operator inside shorthand
// property assignment in contexts where both object expression
// and object pattern might appear (so it's possible to raise
// delayed syntax error at correct position).

pp.parseExpression = function(noIn, refDestructuringErrors) {
  let startPos = this.start, startLoc = this.startLoc
  let expr = this.parseMaybeAssign(noIn, refDestructuringErrors)
  if (this.type === tt.comma) {
    let node = this.startNodeAt(startPos, startLoc)
    node.expressions = [expr]
    while (this.eat(tt.comma)) node.expressions.push(this.parseMaybeAssign(noIn, refDestructuringErrors))
    return this.finishNode(node, "SequenceExpression")
  }
  return expr
}

// Parse an assignment expression. This includes applications of
// operators like `+=`.

pp.parseMaybeAssign = function(noIn, refDestructuringErrors, afterLeftParse) {
  if (this.inGenerator && this.isContextual("yield")) return this.parseYield()

  let ownDestructuringErrors = false
  if (!refDestructuringErrors) {
    refDestructuringErrors = new DestructuringErrors
    ownDestructuringErrors = true
  }
  let startPos = this.start, startLoc = this.startLoc
  if (this.type == tt.parenL || this.type == tt.name)
    this.potentialArrowAt = this.start
  let left = this.parseMaybeConditional(noIn, refDestructuringErrors)
  if (afterLeftParse) left = afterLeftParse.call(this, left, startPos, startLoc)
  if (this.type.isAssign) {
    this.checkPatternErrors(refDestructuringErrors, true)
    if (!ownDestructuringErrors) DestructuringErrors.call(refDestructuringErrors)
    let node = this.startNodeAt(startPos, startLoc)
    node.operator = this.value
    node.left = this.type === tt.eq ? this.toAssignable(left) : left
    refDestructuringErrors.shorthandAssign = 0 // reset because shorthand default was used correctly
    this.checkLVal(left)
    this.next()
    node.right = this.parseMaybeAssign(noIn)
    return this.finishNode(node, "AssignmentExpression")
  } else {
    if (ownDestructuringErrors) this.checkExpressionErrors(refDestructuringErrors, true)
  }
  return left
}

// Parse a ternary conditional (`?:`) operator.

pp.parseMaybeConditional = function(noIn, refDestructuringErrors) {
  let startPos = this.start, startLoc = this.startLoc
  let expr = this.parseExprOps(noIn, refDestructuringErrors)
  if (this.checkExpressionErrors(refDestructuringErrors)) return expr
  if (this.eat(tt.question)) {
    let node = this.startNodeAt(startPos, startLoc)
    node.test = expr
    node.consequent = this.parseMaybeAssign()
    this.expect(tt.colon)
    node.alternate = this.parseMaybeAssign(noIn)
    return this.finishNode(node, "ConditionalExpression")
  }
  return expr
}

// Start the precedence parser.

pp.parseExprOps = function(noIn, refDestructuringErrors) {
  let startPos = this.start, startLoc = this.startLoc
  let expr = this.parseMaybeUnary(refDestructuringErrors, false)
  if (this.checkExpressionErrors(refDestructuringErrors)) return expr
  return this.parseExprOp(expr, startPos, startLoc, -1, noIn)
}

// Parse binary operators with the operator precedence parsing
// algorithm. `left` is the left-hand side of the operator.
// `minPrec` provides context that allows the function to stop and
// defer further parser to one of its callers when it encounters an
// operator that has a lower precedence than the set it is parsing.

pp.parseExprOp = function(left, leftStartPos, leftStartLoc, minPrec, noIn) {
  let prec = this.type.binop
  if (prec != null && (!noIn || this.type !== tt._in)) {
    if (prec > minPrec) {
      let logical = this.type === tt.logicalOR || this.type === tt.logicalAND
      let op = this.value
      this.next()
      let startPos = this.start, startLoc = this.startLoc
      let right = this.parseExprOp(this.parseMaybeUnary(null, false), startPos, startLoc, prec, noIn)
      let node = this.buildBinary(leftStartPos, leftStartLoc, left, right, op, logical)
      return this.parseExprOp(node, leftStartPos, leftStartLoc, minPrec, noIn)
    }
  }
  return left
}

pp.buildBinary = function(startPos, startLoc, left, right, op, logical) {
  let node = this.startNodeAt(startPos, startLoc)
  node.left = left
  node.operator = op
  node.right = right
  return this.finishNode(node, logical ? "LogicalExpression" : "BinaryExpression")
}

// Parse unary operators, both prefix and postfix.

pp.parseMaybeUnary = function(refDestructuringErrors, sawUnary) {
  let startPos = this.start, startLoc = this.startLoc, expr
  if (this.type.prefix) {
    let node = this.startNode(), update = this.type === tt.incDec
    node.operator = this.value
    node.prefix = true
    this.next()
    node.argument = this.parseMaybeUnary(null, true)
    this.checkExpressionErrors(refDestructuringErrors, true)
    if (update) this.checkLVal(node.argument)
    else if (this.strict && node.operator === "delete" &&
             node.argument.type === "Identifier")
      this.raiseRecoverable(node.start, "Deleting local variable in strict mode")
    else sawUnary = true
    expr = this.finishNode(node, update ? "UpdateExpression" : "UnaryExpression")
  } else {
    expr = this.parseExprSubscripts(refDestructuringErrors)
    if (this.checkExpressionErrors(refDestructuringErrors)) return expr
    while (this.type.postfix && !this.canInsertSemicolon()) {
      let node = this.startNodeAt(startPos, startLoc)
      node.operator = this.value
      node.prefix = false
      node.argument = expr
      this.checkLVal(expr)
      this.next()
      expr = this.finishNode(node, "UpdateExpression")
    }
  }

  if (!sawUnary && this.eat(tt.starstar))
    return this.buildBinary(startPos, startLoc, expr, this.parseMaybeUnary(null, false), "**", false)
  else
    return expr
}

// Parse call, dot, and `[]`-subscript expressions.

pp.parseExprSubscripts = function(refDestructuringErrors) {
  let startPos = this.start, startLoc = this.startLoc
  let expr = this.parseExprAtom(refDestructuringErrors)
  let skipArrowSubscripts = expr.type === "ArrowFunctionExpression" && this.input.slice(this.lastTokStart, this.lastTokEnd) !== ")"
  if (this.checkExpressionErrors(refDestructuringErrors) || skipArrowSubscripts) return expr
  return this.parseSubscripts(expr, startPos, startLoc)
}

pp.parseSubscripts = function(base, startPos, startLoc, noCalls) {
  for (;;) {
    if (this.eat(tt.dot)) {
      let node = this.startNodeAt(startPos, startLoc)
      node.object = base
      node.property = this.parseIdent(true)
      node.computed = false
      base = this.finishNode(node, "MemberExpression")
    } else if (this.eat(tt.bracketL)) {
      let node = this.startNodeAt(startPos, startLoc)
      node.object = base
      node.property = this.parseExpression()
      node.computed = true
      this.expect(tt.bracketR)
      base = this.finishNode(node, "MemberExpression")
    } else if (!noCalls && this.eat(tt.parenL)) {
      let node = this.startNodeAt(startPos, startLoc)
      node.callee = base
      node.arguments = this.parseExprList(tt.parenR, false)
      base = this.finishNode(node, "CallExpression")
    } else if (this.type === tt.backQuote) {
      let node = this.startNodeAt(startPos, startLoc)
      node.tag = base
      node.quasi = this.parseTemplate()
      base = this.finishNode(node, "TaggedTemplateExpression")
    } else {
      return base
    }
  }
}

// Parse an atomic expression — either a single token that is an
// expression, an expression started by a keyword like `function` or
// `new`, or an expression wrapped in punctuation like `()`, `[]`,
// or `{}`.

pp.parseExprAtom = function(refDestructuringErrors) {
  let node, canBeArrow = this.potentialArrowAt == this.start
  switch (this.type) {
  case tt._super:
    if (!this.inFunction)
      this.raise(this.start, "'super' outside of function or class")

  case tt._this:
    let type = this.type === tt._this ? "ThisExpression" : "Super"
    node = this.startNode()
    this.next()
    return this.finishNode(node, type)

  case tt.name:
    let startPos = this.start, startLoc = this.startLoc
    let id = this.parseIdent(this.type !== tt.name)
    if (canBeArrow && !this.canInsertSemicolon() && this.eat(tt.arrow))
      return this.parseArrowExpression(this.startNodeAt(startPos, startLoc), [id])
    return id

  case tt.regexp:
    let value = this.value
    node = this.parseLiteral(value.value)
    node.regex = {pattern: value.pattern, flags: value.flags}
    return node

  case tt.num: case tt.string:
    return this.parseLiteral(this.value)

  case tt._null: case tt._true: case tt._false:
    node = this.startNode()
    node.value = this.type === tt._null ? null : this.type === tt._true
    node.raw = this.type.keyword
    this.next()
    return this.finishNode(node, "Literal")

  case tt.parenL:
    return this.parseParenAndDistinguishExpression(canBeArrow)

  case tt.bracketL:
    node = this.startNode()
    this.next()
    node.elements = this.parseExprList(tt.bracketR, true, true, refDestructuringErrors)
    return this.finishNode(node, "ArrayExpression")

  case tt.braceL:
    return this.parseObj(false, refDestructuringErrors)

  case tt._function:
    node = this.startNode()
    this.next()
    return this.parseFunction(node, false)

  case tt._class:
    return this.parseClass(this.startNode(), false)

  case tt._new:
    return this.parseNew()

  case tt.backQuote:
    return this.parseTemplate()

  default:
    this.unexpected()
  }
}

pp.parseLiteral = function(value) {
  let node = this.startNode()
  node.value = value
  node.raw = this.input.slice(this.start, this.end)
  this.next()
  return this.finishNode(node, "Literal")
}

pp.parseParenExpression = function() {
  this.expect(tt.parenL)
  let val = this.parseExpression()
  this.expect(tt.parenR)
  return val
}

pp.parseParenAndDistinguishExpression = function(canBeArrow) {
  let startPos = this.start, startLoc = this.startLoc, val
  if (this.options.ecmaVersion >= 6) {
    this.next()

    let innerStartPos = this.start, innerStartLoc = this.startLoc
    let exprList = [], first = true
    let refDestructuringErrors = new DestructuringErrors, spreadStart, innerParenStart
    while (this.type !== tt.parenR) {
      first ? first = false : this.expect(tt.comma)
      if (this.type === tt.ellipsis) {
        spreadStart = this.start
        exprList.push(this.parseParenItem(this.parseRest()))
        break
      } else {
        if (this.type === tt.parenL && !innerParenStart) {
          innerParenStart = this.start
        }
        exprList.push(this.parseMaybeAssign(false, refDestructuringErrors, this.parseParenItem))
      }
    }
    let innerEndPos = this.start, innerEndLoc = this.startLoc
    this.expect(tt.parenR)

    if (canBeArrow && !this.canInsertSemicolon() && this.eat(tt.arrow)) {
      this.checkPatternErrors(refDestructuringErrors, true)
      if (innerParenStart) this.unexpected(innerParenStart)
      return this.parseParenArrowList(startPos, startLoc, exprList)
    }

    if (!exprList.length) this.unexpected(this.lastTokStart)
    if (spreadStart) this.unexpected(spreadStart)
    this.checkExpressionErrors(refDestructuringErrors, true)

    if (exprList.length > 1) {
      val = this.startNodeAt(innerStartPos, innerStartLoc)
      val.expressions = exprList
      this.finishNodeAt(val, "SequenceExpression", innerEndPos, innerEndLoc)
    } else {
      val = exprList[0]
    }
  } else {
    val = this.parseParenExpression()
  }

  if (this.options.preserveParens) {
    let par = this.startNodeAt(startPos, startLoc)
    par.expression = val
    return this.finishNode(par, "ParenthesizedExpression")
  } else {
    return val
  }
}

pp.parseParenItem = function(item) {
  return item
}

pp.parseParenArrowList = function(startPos, startLoc, exprList) {
  return this.parseArrowExpression(this.startNodeAt(startPos, startLoc), exprList)
}

// New's precedence is slightly tricky. It must allow its argument to
// be a `[]` or dot subscript expression, but not a call — at least,
// not without wrapping it in parentheses. Thus, it uses the noCalls
// argument to parseSubscripts to prevent it from consuming the
// argument list.

const empty = []

pp.parseNew = function() {
  let node = this.startNode()
  let meta = this.parseIdent(true)
  if (this.options.ecmaVersion >= 6 && this.eat(tt.dot)) {
    node.meta = meta
    node.property = this.parseIdent(true)
    if (node.property.name !== "target")
      this.raiseRecoverable(node.property.start, "The only valid meta property for new is new.target")
    if (!this.inFunction)
      this.raiseRecoverable(node.start, "new.target can only be used in functions")
    return this.finishNode(node, "MetaProperty")
  }
  let startPos = this.start, startLoc = this.startLoc
  node.callee = this.parseSubscripts(this.parseExprAtom(), startPos, startLoc, true)
  if (this.eat(tt.parenL)) node.arguments = this.parseExprList(tt.parenR, false)
  else node.arguments = empty
  return this.finishNode(node, "NewExpression")
}

// Parse template expression.

pp.parseTemplateElement = function() {
  let elem = this.startNode()
  elem.value = {
    raw: this.input.slice(this.start, this.end).replace(/\r\n?/g, '\n'),
    cooked: this.value
  }
  this.next()
  elem.tail = this.type === tt.backQuote
  return this.finishNode(elem, "TemplateElement")
}

pp.parseTemplate = function() {
  let node = this.startNode()
  this.next()
  node.expressions = []
  let curElt = this.parseTemplateElement()
  node.quasis = [curElt]
  while (!curElt.tail) {
    this.expect(tt.dollarBraceL)
    node.expressions.push(this.parseExpression())
    this.expect(tt.braceR)
    node.quasis.push(curElt = this.parseTemplateElement())
  }
  this.next()
  return this.finishNode(node, "TemplateLiteral")
}

// Parse an object literal or binding pattern.

pp.parseObj = function(isPattern, refDestructuringErrors) {
  let node = this.startNode(), first = true, propHash = {}
  node.properties = []
  this.next()
  while (!this.eat(tt.braceR)) {
    if (!first) {
      this.expect(tt.comma)
      if (this.afterTrailingComma(tt.braceR)) break
    } else first = false

    let prop = this.startNode(), isGenerator, startPos, startLoc
    if (this.options.ecmaVersion >= 6) {
      prop.method = false
      prop.shorthand = false
      if (isPattern || refDestructuringErrors) {
        startPos = this.start
        startLoc = this.startLoc
      }
      if (!isPattern)
        isGenerator = this.eat(tt.star)
    }
    this.parsePropertyName(prop)
    this.parsePropertyValue(prop, isPattern, isGenerator, startPos, startLoc, refDestructuringErrors)
    this.checkPropClash(prop, propHash)
    node.properties.push(this.finishNode(prop, "Property"))
  }
  return this.finishNode(node, isPattern ? "ObjectPattern" : "ObjectExpression")
}

pp.parsePropertyValue = function(prop, isPattern, isGenerator, startPos, startLoc, refDestructuringErrors) {
  if (this.eat(tt.colon)) {
    prop.value = isPattern ? this.parseMaybeDefault(this.start, this.startLoc) : this.parseMaybeAssign(false, refDestructuringErrors)
    prop.kind = "init"
  } else if (this.options.ecmaVersion >= 6 && this.type === tt.parenL) {
    if (isPattern) this.unexpected()
    prop.kind = "init"
    prop.method = true
    prop.value = this.parseMethod(isGenerator)
  } else if (this.options.ecmaVersion >= 5 && !prop.computed && prop.key.type === "Identifier" &&
             (prop.key.name === "get" || prop.key.name === "set") &&
             (this.type != tt.comma && this.type != tt.braceR)) {
    if (isGenerator || isPattern) this.unexpected()
    prop.kind = prop.key.name
    this.parsePropertyName(prop)
    prop.value = this.parseMethod(false)
    let paramCount = prop.kind === "get" ? 0 : 1
    if (prop.value.params.length !== paramCount) {
      let start = prop.value.start
      if (prop.kind === "get")
        this.raiseRecoverable(start, "getter should have no params")
      else
        this.raiseRecoverable(start, "setter should have exactly one param")
    }
    if (prop.kind === "set" && prop.value.params[0].type === "RestElement")
      this.raiseRecoverable(prop.value.params[0].start, "Setter cannot use rest params")
  } else if (this.options.ecmaVersion >= 6 && !prop.computed && prop.key.type === "Identifier") {
    if (this.keywords.test(prop.key.name) ||
        (this.strict ? this.reservedWordsStrictBind : this.reservedWords).test(prop.key.name) ||
        (this.inGenerator && prop.key.name == "yield"))
      this.raiseRecoverable(prop.key.start, "'" + prop.key.name + "' can not be used as shorthand property")
    prop.kind = "init"
    if (isPattern) {
      prop.value = this.parseMaybeDefault(startPos, startLoc, prop.key)
    } else if (this.type === tt.eq && refDestructuringErrors) {
      if (!refDestructuringErrors.shorthandAssign)
        refDestructuringErrors.shorthandAssign = this.start
      prop.value = this.parseMaybeDefault(startPos, startLoc, prop.key)
    } else {
      prop.value = prop.key
    }
    prop.shorthand = true
  } else this.unexpected()
}

pp.parsePropertyName = function(prop) {
  if (this.options.ecmaVersion >= 6) {
    if (this.eat(tt.bracketL)) {
      prop.computed = true
      prop.key = this.parseMaybeAssign()
      this.expect(tt.bracketR)
      return prop.key
    } else {
      prop.computed = false
    }
  }
  return prop.key = this.type === tt.num || this.type === tt.string ? this.parseExprAtom() : this.parseIdent(true)
}

// Initialize empty function node.

pp.initFunction = function(node) {
  node.id = null
  if (this.options.ecmaVersion >= 6) {
    node.generator = false
    node.expression = false
  }
}

// Parse object or class method.

pp.parseMethod = function(isGenerator) {
  let node = this.startNode(), oldInGen = this.inGenerator
  this.inGenerator = isGenerator
  this.initFunction(node)
  this.expect(tt.parenL)
  node.params = this.parseBindingList(tt.parenR, false, false)
  if (this.options.ecmaVersion >= 6)
    node.generator = isGenerator
  this.parseFunctionBody(node, false)
  this.inGenerator = oldInGen
  return this.finishNode(node, "FunctionExpression")
}

// Parse arrow function expression with given parameters.

pp.parseArrowExpression = function(node, params) {
  let oldInGen = this.inGenerator
  this.inGenerator = false
  this.initFunction(node)
  node.params = this.toAssignableList(params, true)
  this.parseFunctionBody(node, true)
  this.inGenerator = oldInGen
  return this.finishNode(node, "ArrowFunctionExpression")
}

// Parse function body and check parameters.

pp.parseFunctionBody = function(node, isArrowFunction) {
  let isExpression = isArrowFunction && this.type !== tt.braceL

  if (isExpression) {
    node.body = this.parseMaybeAssign()
    node.expression = true
  } else {
    // Start a new scope with regard to labels and the `inFunction`
    // flag (restore them to their old value afterwards).
    let oldInFunc = this.inFunction, oldLabels = this.labels
    this.inFunction = true; this.labels = []
    node.body = this.parseBlock(true)
    node.expression = false
    this.inFunction = oldInFunc; this.labels = oldLabels
  }

  // If this is a strict mode function, verify that argument names
  // are not repeated, and it does not try to bind the words `eval`
  // or `arguments`.
  let useStrict = (!isExpression && node.body.body.length && this.isUseStrict(node.body.body[0])) ? node.body.body[0] : null;
  if (this.strict || useStrict) {
    let oldStrict = this.strict
    this.strict = true
    if (node.id)
      this.checkLVal(node.id, true)
    this.checkParams(node, useStrict)
    this.strict = oldStrict
  } else if (isArrowFunction) {
    this.checkParams(node, useStrict)
  }
}

// Checks function params for various disallowed patterns such as using "eval"
// or "arguments" and duplicate parameters.

pp.checkParams = function(node, useStrict) {
    let nameHash = {}
    for (let i = 0; i < node.params.length; i++) {
      if (useStrict && this.options.ecmaVersion >= 7 && node.params[i].type !== "Identifier")
        this.raiseRecoverable(useStrict.start, "Illegal 'use strict' directive in function with non-simple parameter list");
      this.checkLVal(node.params[i], true, nameHash)
    }
}

// Parses a comma-separated list of expressions, and returns them as
// an array. `close` is the token type that ends the list, and
// `allowEmpty` can be turned on to allow subsequent commas with
// nothing in between them to be parsed as `null` (which is needed
// for array literals).

pp.parseExprList = function(close, allowTrailingComma, allowEmpty, refDestructuringErrors) {
  let elts = [], first = true
  while (!this.eat(close)) {
    if (!first) {
      this.expect(tt.comma)
      if (allowTrailingComma && this.afterTrailingComma(close)) break
    } else first = false

    let elt
    if (allowEmpty && this.type === tt.comma)
      elt = null
    else if (this.type === tt.ellipsis) {
      elt = this.parseSpread(refDestructuringErrors)
      if (this.type === tt.comma && refDestructuringErrors && !refDestructuringErrors.trailingComma) {
        refDestructuringErrors.trailingComma = this.lastTokStart
      }
    } else
      elt = this.parseMaybeAssign(false, refDestructuringErrors)
    elts.push(elt)
  }
  return elts
}

// Parse the next token as an identifier. If `liberal` is true (used
// when parsing properties), it will also convert keywords into
// identifiers.

pp.parseIdent = function(liberal) {
  let node = this.startNode()
  if (liberal && this.options.allowReserved == "never") liberal = false
  if (this.type === tt.name) {
    if (!liberal && (this.strict ? this.reservedWordsStrict : this.reservedWords).test(this.value) &&
        (this.options.ecmaVersion >= 6 ||
         this.input.slice(this.start, this.end).indexOf("\\") == -1))
      this.raiseRecoverable(this.start, "The keyword '" + this.value + "' is reserved")
    if (!liberal && this.inGenerator && this.value === "yield")
      this.raiseRecoverable(this.start, "Can not use 'yield' as identifier inside a generator")
    node.name = this.value
  } else if (liberal && this.type.keyword) {
    node.name = this.type.keyword
  } else {
    this.unexpected()
  }
  this.next()
  return this.finishNode(node, "Identifier")
}

// Parses yield expression inside generator.

pp.parseYield = function() {
  let node = this.startNode()
  this.next()
  if (this.type == tt.semi || this.canInsertSemicolon() || (this.type != tt.star && !this.type.startsExpr)) {
    node.delegate = false
    node.argument = null
  } else {
    node.delegate = this.eat(tt.star)
    node.argument = this.parseMaybeAssign()
  }
  return this.finishNode(node, "YieldExpression")
}