Toggle navigation
Toggle navigation
This project
Loading...
Sign in
MotherProject
/
Learning Images
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
최예리
2019-11-17 18:46:44 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
dfc01a8144797fe89a5ddf443d19e8d2738c0164
dfc01a81
1 parent
62452b41
tensorflow-inception file upload
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1405 additions
and
0 deletions
tensorflow/retrain.py
tensorflow/retrain_run_inference.py
tensorflow/retrain.py
0 → 100644
View file @
dfc01a8
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# NOTICE: This work was derived from tensorflow/examples/image_retraining
# and modified to use TensorFlow Hub modules.
# pylint: disable=line-too-long
r"""Simple transfer learning with image modules from TensorFlow Hub.
This example shows how to train an image classifier based on any
TensorFlow Hub module that computes image feature vectors. By default,
it uses the feature vectors computed by Inception V3 trained on ImageNet.
For more options, search https://tfhub.dev for image feature vector modules.
The top layer receives as input a 2048-dimensional vector (assuming
Inception V3) for each image. We train a softmax layer on top of this
representation. If the softmax layer contains N labels, this corresponds
to learning N + 2048*N model parameters for the biases and weights.
Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:
~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
...
~/flower_photos/rose/anotherphoto77.jpg
...
~/flower_photos/sunflower/somepicture.jpg
The subfolder names are important, since they define what label is applied to
each image, but the filenames themselves don't matter. (For a working example,
download http://download.tensorflow.org/example_images/flower_photos.tgz
and run tar xzf flower_photos.tgz to unpack it.)
Once your images are prepared, and you have pip-installed tensorflow-hub and
a sufficiently recent version of tensorflow, you can run the training with a
command like this:
```bash
python retrain.py --image_dir ~/flower_photos
```
You can replace the image_dir argument with any folder containing subfolders of
images. The label for each image is taken from the name of the subfolder it's
in.
This produces a new model file that can be loaded and run by any TensorFlow
program, for example the tensorflow/examples/label_image sample code.
By default this script will use the highly accurate, but comparatively large and
slow Inception V3 model architecture. It's recommended that you start with this
to validate that you have gathered good training data, but if you want to deploy
on resource-limited platforms, you can try the `--tfhub_module` flag with a
Mobilenet model. For more information on Mobilenet, see
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
For example:
Run floating-point version of Mobilenet:
```bash
python retrain.py --image_dir ~/flower_photos
\
--tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/feature_vector/3
```
Run Mobilenet, instrumented for quantization:
```bash
python retrain.py --image_dir ~/flower_photos/
\
--tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/quantops/feature_vector/3
```
These instrumented models can be converted to fully quantized mobile models via
TensorFlow Lite.
There are different Mobilenet models to choose from, with a variety of file
size and latency options.
- The first number can be '100', '075', '050', or '025' to control the number
of neurons (activations of hidden layers); the number of weights (and hence
to some extent the file size and speed) shrinks with the square of that
fraction.
- The second number is the input image size. You can choose '224', '192',
'160', or '128', with smaller sizes giving faster speeds.
To use with TensorBoard:
By default, this script will log summaries to /tmp/retrain_logs directory
Visualize the summaries with this command:
tensorboard --logdir /tmp/retrain_logs
To use with Tensorflow Serving, run this tool with --saved_model_dir set
to some increasingly numbered export location under the model base path, e.g.:
```bash
python retrain.py (... other args as before ...)
\
--saved_model_dir=/tmp/saved_models/$(date +
%
s)/
tensorflow_model_server --port=9000 --model_name=my_image_classifier
\
--model_base_path=/tmp/saved_models/
```
"""
# pylint: enable=line-too-long
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
absl
import
logging
import
argparse
import
collections
from
datetime
import
datetime
import
hashlib
import
os.path
import
random
import
re
import
sys
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow_hub
as
hub
from
tensorflow.contrib
import
quantize
as
contrib_quantize
FLAGS
=
None
MAX_NUM_IMAGES_PER_CLASS
=
2
**
27
-
1
# ~134M
# A module is understood as instrumented for quantization with TF-Lite
# if it contains any of these ops.
FAKE_QUANT_OPS
=
(
'FakeQuantWithMinMaxVars'
,
'FakeQuantWithMinMaxVarsPerChannel'
)
def
create_image_lists
(
image_dir
,
testing_percentage
,
validation_percentage
):
"""Builds a list of training images from the file system.
Analyzes the sub folders in the image directory, splits them into stable
training, testing, and validation sets, and returns a data structure
describing the lists of images for each label and their paths.
Args:
image_dir: String path to a folder containing subfolders of images.
testing_percentage: Integer percentage of the images to reserve for tests.
validation_percentage: Integer percentage of images reserved for validation.
Returns:
An OrderedDict containing an entry for each label subfolder, with images
split into training, testing, and validation sets within each label.
The order of items defines the class indices.
"""
if
not
tf
.
gfile
.
Exists
(
image_dir
):
logging
.
error
(
"Image directory '"
+
image_dir
+
"' not found."
)
return
None
result
=
collections
.
OrderedDict
()
sub_dirs
=
sorted
(
x
[
0
]
for
x
in
tf
.
gfile
.
Walk
(
image_dir
))
# The root directory comes first, so skip it.
is_root_dir
=
True
for
sub_dir
in
sub_dirs
:
if
is_root_dir
:
is_root_dir
=
False
continue
extensions
=
sorted
(
set
(
os
.
path
.
normcase
(
ext
)
# Smash case on Windows.
for
ext
in
[
'JPEG'
,
'JPG'
,
'jpeg'
,
'jpg'
,
'png'
]))
file_list
=
[]
dir_name
=
os
.
path
.
basename
(
# tf.gfile.Walk() returns sub-directory with trailing '/' when it is in
# Google Cloud Storage, which confuses os.path.basename().
sub_dir
[:
-
1
]
if
sub_dir
.
endswith
(
'/'
)
else
sub_dir
)
if
dir_name
==
image_dir
:
continue
logging
.
info
(
"Looking for images in '
%
s'"
,
dir_name
)
for
extension
in
extensions
:
file_glob
=
os
.
path
.
join
(
image_dir
,
dir_name
,
'*.'
+
extension
)
file_list
.
extend
(
tf
.
gfile
.
Glob
(
file_glob
))
if
not
file_list
:
logging
.
warning
(
'No files found'
)
continue
if
len
(
file_list
)
<
20
:
logging
.
warning
(
'WARNING: Folder has less than 20 images, which may cause issues.'
)
elif
len
(
file_list
)
>
MAX_NUM_IMAGES_PER_CLASS
:
logging
.
warning
(
'WARNING: Folder
%
s has more than
%
s images. Some images will '
'never be selected.'
,
dir_name
,
MAX_NUM_IMAGES_PER_CLASS
)
label_name
=
re
.
sub
(
r'[^a-z0-9]+'
,
' '
,
dir_name
.
lower
())
training_images
=
[]
testing_images
=
[]
validation_images
=
[]
for
file_name
in
file_list
:
base_name
=
os
.
path
.
basename
(
file_name
)
# We want to ignore anything after '_nohash_' in the file name when
# deciding which set to put an image in, the data set creator has a way of
# grouping photos that are close variations of each other. For example
# this is used in the plant disease data set to group multiple pictures of
# the same leaf.
hash_name
=
re
.
sub
(
r'_nohash_.*$'
,
''
,
file_name
)
# This looks a bit magical, but we need to decide whether this file should
# go into the training, testing, or validation sets, and we want to keep
# existing files in the same set even if more files are subsequently
# added.
# To do that, we need a stable way of deciding based on just the file name
# itself, so we do a hash of that and then use that to generate a
# probability value that we use to assign it.
hash_name_hashed
=
hashlib
.
sha1
(
tf
.
compat
.
as_bytes
(
hash_name
))
.
hexdigest
()
percentage_hash
=
((
int
(
hash_name_hashed
,
16
)
%
(
MAX_NUM_IMAGES_PER_CLASS
+
1
))
*
(
100.0
/
MAX_NUM_IMAGES_PER_CLASS
))
if
percentage_hash
<
validation_percentage
:
validation_images
.
append
(
base_name
)
elif
percentage_hash
<
(
testing_percentage
+
validation_percentage
):
testing_images
.
append
(
base_name
)
else
:
training_images
.
append
(
base_name
)
result
[
label_name
]
=
{
'dir'
:
dir_name
,
'training'
:
training_images
,
'testing'
:
testing_images
,
'validation'
:
validation_images
,
}
return
result
def
get_image_path
(
image_lists
,
label_name
,
index
,
image_dir
,
category
):
"""Returns a path to an image for a label at the given index.
Args:
image_lists: OrderedDict of training images for each label.
label_name: Label string we want to get an image for.
index: Int offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of set to pull images from - training, testing, or
validation.
Returns:
File system path string to an image that meets the requested parameters.
"""
if
label_name
not
in
image_lists
:
logging
.
fatal
(
'Label does not exist
%
s.'
,
label_name
)
label_lists
=
image_lists
[
label_name
]
if
category
not
in
label_lists
:
logging
.
fatal
(
'Category does not exist
%
s.'
,
category
)
category_list
=
label_lists
[
category
]
if
not
category_list
:
logging
.
fatal
(
'Label
%
s has no images in the category
%
s.'
,
label_name
,
category
)
mod_index
=
index
%
len
(
category_list
)
base_name
=
category_list
[
mod_index
]
sub_dir
=
label_lists
[
'dir'
]
full_path
=
os
.
path
.
join
(
image_dir
,
sub_dir
,
base_name
)
return
full_path
def
get_bottleneck_path
(
image_lists
,
label_name
,
index
,
bottleneck_dir
,
category
,
module_name
):
"""Returns a path to a bottleneck file for a label at the given index.
Args:
image_lists: OrderedDict of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
bottleneck_dir: Folder string holding cached files of bottleneck values.
category: Name string of set to pull images from - training, testing, or
validation.
module_name: The name of the image module being used.
Returns:
File system path string to an image that meets the requested parameters.
"""
module_name
=
(
module_name
.
replace
(
'://'
,
'~'
)
# URL scheme.
.
replace
(
'/'
,
'~'
)
# URL and Unix paths.
.
replace
(
':'
,
'~'
)
.
replace
(
'
\\
'
,
'~'
))
# Windows paths.
return
get_image_path
(
image_lists
,
label_name
,
index
,
bottleneck_dir
,
category
)
+
'_'
+
module_name
+
'.txt'
def
create_module_graph
(
module_spec
):
"""Creates a graph and loads Hub Module into it.
Args:
module_spec: the hub.ModuleSpec for the image module being used.
Returns:
graph: the tf.Graph that was created.
bottleneck_tensor: the bottleneck values output by the module.
resized_input_tensor: the input images, resized as expected by the module.
wants_quantization: a boolean, whether the module has been instrumented
with fake quantization ops.
"""
height
,
width
=
hub
.
get_expected_image_size
(
module_spec
)
with
tf
.
Graph
()
.
as_default
()
as
graph
:
resized_input_tensor
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
height
,
width
,
3
])
m
=
hub
.
Module
(
module_spec
)
bottleneck_tensor
=
m
(
resized_input_tensor
)
wants_quantization
=
any
(
node
.
op
in
FAKE_QUANT_OPS
for
node
in
graph
.
as_graph_def
()
.
node
)
return
graph
,
bottleneck_tensor
,
resized_input_tensor
,
wants_quantization
def
run_bottleneck_on_image
(
sess
,
image_data
,
image_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
):
"""Runs inference on an image to extract the 'bottleneck' summary layer.
Args:
sess: Current active TensorFlow Session.
image_data: String of raw JPEG data.
image_data_tensor: Input data layer in the graph.
decoded_image_tensor: Output of initial image resizing and preprocessing.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: Layer before the final softmax.
Returns:
Numpy array of bottleneck values.
"""
# First decode the JPEG image, resize it, and rescale the pixel values.
resized_input_values
=
sess
.
run
(
decoded_image_tensor
,
{
image_data_tensor
:
image_data
})
# Then run it through the recognition network.
bottleneck_values
=
sess
.
run
(
bottleneck_tensor
,
{
resized_input_tensor
:
resized_input_values
})
bottleneck_values
=
np
.
squeeze
(
bottleneck_values
)
return
bottleneck_values
def
ensure_dir_exists
(
dir_name
):
"""Makes sure the folder exists on disk.
Args:
dir_name: Path string to the folder we want to create.
"""
if
not
os
.
path
.
exists
(
dir_name
):
os
.
makedirs
(
dir_name
)
def
create_bottleneck_file
(
bottleneck_path
,
image_lists
,
label_name
,
index
,
image_dir
,
category
,
sess
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
):
"""Create a single bottleneck file."""
logging
.
debug
(
'Creating bottleneck at
%
s'
,
bottleneck_path
)
image_path
=
get_image_path
(
image_lists
,
label_name
,
index
,
image_dir
,
category
)
if
not
tf
.
gfile
.
Exists
(
image_path
):
logging
.
fatal
(
'File does not exist
%
s'
,
image_path
)
image_data
=
tf
.
gfile
.
GFile
(
image_path
,
'rb'
)
.
read
()
try
:
bottleneck_values
=
run_bottleneck_on_image
(
sess
,
image_data
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
)
except
Exception
as
e
:
raise
RuntimeError
(
'Error during processing file
%
s (
%
s)'
%
(
image_path
,
str
(
e
)))
bottleneck_string
=
','
.
join
(
str
(
x
)
for
x
in
bottleneck_values
)
with
tf
.
gfile
.
GFile
(
bottleneck_path
,
'w'
)
as
bottleneck_file
:
bottleneck_file
.
write
(
bottleneck_string
)
def
get_or_create_bottleneck
(
sess
,
image_lists
,
label_name
,
index
,
image_dir
,
category
,
bottleneck_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
,
module_name
):
"""Retrieves or calculates bottleneck values for an image.
If a cached version of the bottleneck data exists on-disk, return that,
otherwise calculate the data and save it to disk for future use.
Args:
sess: The current active TensorFlow Session.
image_lists: OrderedDict of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be modulo-ed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of which set to pull images from - training, testing,
or validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: The tensor to feed loaded jpeg data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The output tensor for the bottleneck values.
module_name: The name of the image module being used.
Returns:
Numpy array of values produced by the bottleneck layer for the image.
"""
label_lists
=
image_lists
[
label_name
]
sub_dir
=
label_lists
[
'dir'
]
sub_dir_path
=
os
.
path
.
join
(
bottleneck_dir
,
sub_dir
)
ensure_dir_exists
(
sub_dir_path
)
bottleneck_path
=
get_bottleneck_path
(
image_lists
,
label_name
,
index
,
bottleneck_dir
,
category
,
module_name
)
if
not
os
.
path
.
exists
(
bottleneck_path
):
create_bottleneck_file
(
bottleneck_path
,
image_lists
,
label_name
,
index
,
image_dir
,
category
,
sess
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
)
with
tf
.
gfile
.
GFile
(
bottleneck_path
,
'r'
)
as
bottleneck_file
:
bottleneck_string
=
bottleneck_file
.
read
()
did_hit_error
=
False
try
:
bottleneck_values
=
[
float
(
x
)
for
x
in
bottleneck_string
.
split
(
','
)]
except
ValueError
:
logging
.
warning
(
'Invalid float found, recreating bottleneck'
)
did_hit_error
=
True
if
did_hit_error
:
create_bottleneck_file
(
bottleneck_path
,
image_lists
,
label_name
,
index
,
image_dir
,
category
,
sess
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
)
with
tf
.
gfile
.
GFile
(
bottleneck_path
,
'r'
)
as
bottleneck_file
:
bottleneck_string
=
bottleneck_file
.
read
()
# Allow exceptions to propagate here, since they shouldn't happen after a
# fresh creation
bottleneck_values
=
[
float
(
x
)
for
x
in
bottleneck_string
.
split
(
','
)]
return
bottleneck_values
def
cache_bottlenecks
(
sess
,
image_lists
,
image_dir
,
bottleneck_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
,
module_name
):
"""Ensures all the training, testing, and validation bottlenecks are cached.
Because we're likely to read the same image multiple times (if there are no
distortions applied during training) it can speed things up a lot if we
calculate the bottleneck layer values once for each image during
preprocessing, and then just read those cached values repeatedly during
training. Here we go through all the images we've found, calculate those
values, and save them off.
Args:
sess: The current active TensorFlow Session.
image_lists: OrderedDict of training images for each label.
image_dir: Root folder string of the subfolders containing the training
images.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: Input tensor for jpeg data from file.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The penultimate output layer of the graph.
module_name: The name of the image module being used.
Returns:
Nothing.
"""
how_many_bottlenecks
=
0
ensure_dir_exists
(
bottleneck_dir
)
for
label_name
,
label_lists
in
image_lists
.
items
():
for
category
in
[
'training'
,
'testing'
,
'validation'
]:
category_list
=
label_lists
[
category
]
for
index
,
unused_base_name
in
enumerate
(
category_list
):
get_or_create_bottleneck
(
sess
,
image_lists
,
label_name
,
index
,
image_dir
,
category
,
bottleneck_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
,
module_name
)
how_many_bottlenecks
+=
1
if
how_many_bottlenecks
%
100
==
0
:
logging
.
info
(
'
%
s bottleneck files created.'
,
how_many_bottlenecks
)
def
get_random_cached_bottlenecks
(
sess
,
image_lists
,
how_many
,
category
,
bottleneck_dir
,
image_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
,
module_name
):
"""Retrieves bottleneck values for cached images.
If no distortions are being applied, this function can retrieve the cached
bottleneck values directly from disk for images. It picks a random set of
images from the specified category.
Args:
sess: Current TensorFlow Session.
image_lists: OrderedDict of training images for each label.
how_many: If positive, a random sample of this size will be chosen.
If negative, all bottlenecks will be retrieved.
category: Name string of which set to pull from - training, testing, or
validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
image_dir: Root folder string of the subfolders containing the training
images.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
module_name: The name of the image module being used.
Returns:
List of bottleneck arrays, their corresponding ground truths, and the
relevant filenames.
"""
class_count
=
len
(
image_lists
.
keys
())
bottlenecks
=
[]
ground_truths
=
[]
filenames
=
[]
if
how_many
>=
0
:
# Retrieve a random sample of bottlenecks.
for
unused_i
in
range
(
how_many
):
label_index
=
random
.
randrange
(
class_count
)
label_name
=
list
(
image_lists
.
keys
())[
label_index
]
image_index
=
random
.
randrange
(
MAX_NUM_IMAGES_PER_CLASS
+
1
)
image_name
=
get_image_path
(
image_lists
,
label_name
,
image_index
,
image_dir
,
category
)
bottleneck
=
get_or_create_bottleneck
(
sess
,
image_lists
,
label_name
,
image_index
,
image_dir
,
category
,
bottleneck_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
,
module_name
)
bottlenecks
.
append
(
bottleneck
)
ground_truths
.
append
(
label_index
)
filenames
.
append
(
image_name
)
else
:
# Retrieve all bottlenecks.
for
label_index
,
label_name
in
enumerate
(
image_lists
.
keys
()):
for
image_index
,
image_name
in
enumerate
(
image_lists
[
label_name
][
category
]):
image_name
=
get_image_path
(
image_lists
,
label_name
,
image_index
,
image_dir
,
category
)
bottleneck
=
get_or_create_bottleneck
(
sess
,
image_lists
,
label_name
,
image_index
,
image_dir
,
category
,
bottleneck_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_input_tensor
,
bottleneck_tensor
,
module_name
)
bottlenecks
.
append
(
bottleneck
)
ground_truths
.
append
(
label_index
)
filenames
.
append
(
image_name
)
return
bottlenecks
,
ground_truths
,
filenames
def
get_random_distorted_bottlenecks
(
sess
,
image_lists
,
how_many
,
category
,
image_dir
,
input_jpeg_tensor
,
distorted_image
,
resized_input_tensor
,
bottleneck_tensor
):
"""Retrieves bottleneck values for training images, after distortions.
If we're training with distortions like crops, scales, or flips, we have to
recalculate the full model for every image, and so we can't use cached
bottleneck values. Instead we find random images for the requested category,
run them through the distortion graph, and then the full graph to get the
bottleneck results for each.
Args:
sess: Current TensorFlow Session.
image_lists: OrderedDict of training images for each label.
how_many: The integer number of bottleneck values to return.
category: Name string of which set of images to fetch - training, testing,
or validation.
image_dir: Root folder string of the subfolders containing the training
images.
input_jpeg_tensor: The input layer we feed the image data to.
distorted_image: The output node of the distortion graph.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
Returns:
List of bottleneck arrays and their corresponding ground truths.
"""
class_count
=
len
(
image_lists
.
keys
())
bottlenecks
=
[]
ground_truths
=
[]
for
unused_i
in
range
(
how_many
):
label_index
=
random
.
randrange
(
class_count
)
label_name
=
list
(
image_lists
.
keys
())[
label_index
]
image_index
=
random
.
randrange
(
MAX_NUM_IMAGES_PER_CLASS
+
1
)
image_path
=
get_image_path
(
image_lists
,
label_name
,
image_index
,
image_dir
,
category
)
if
not
tf
.
gfile
.
Exists
(
image_path
):
logging
.
fatal
(
'File does not exist
%
s'
,
image_path
)
jpeg_data
=
tf
.
gfile
.
GFile
(
image_path
,
'rb'
)
.
read
()
# Note that we materialize the distorted_image_data as a numpy array before
# sending running inference on the image. This involves 2 memory copies and
# might be optimized in other implementations.
distorted_image_data
=
sess
.
run
(
distorted_image
,
{
input_jpeg_tensor
:
jpeg_data
})
bottleneck_values
=
sess
.
run
(
bottleneck_tensor
,
{
resized_input_tensor
:
distorted_image_data
})
bottleneck_values
=
np
.
squeeze
(
bottleneck_values
)
bottlenecks
.
append
(
bottleneck_values
)
ground_truths
.
append
(
label_index
)
return
bottlenecks
,
ground_truths
def
should_distort_images
(
flip_left_right
,
random_crop
,
random_scale
,
random_brightness
):
"""Whether any distortions are enabled, from the input flags.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
Returns:
Boolean value indicating whether any distortions should be applied.
"""
return
(
flip_left_right
or
(
random_crop
!=
0
)
or
(
random_scale
!=
0
)
or
(
random_brightness
!=
0
))
def
add_input_distortions
(
flip_left_right
,
random_crop
,
random_scale
,
random_brightness
,
module_spec
):
"""Creates the operations to apply the specified distortions.
During training it can help to improve the results if we run the images
through simple distortions like crops, scales, and flips. These reflect the
kind of variations we expect in the real world, and so can help train the
model to cope with natural data more effectively. Here we take the supplied
parameters and construct a network of operations to apply them to an image.
Cropping
~~~~~~~~
Cropping is done by placing a bounding box at a random position in the full
image. The cropping parameter controls the size of that box relative to the
input image. If it's zero, then the box is the same size as the input and no
cropping is performed. If the value is 50
%
, then the crop box will be half the
width and height of the input. In a diagram it looks like this:
< width >
+---------------------+
| |
| width - crop
%
|
| < > |
| +------+ |
| | | |
| | | |
| | | |
| +------+ |
| |
| |
+---------------------+
Scaling
~~~~~~~
Scaling is a lot like cropping, except that the bounding box is always
centered and its size varies randomly within the given range. For example if
the scale percentage is zero, then the bounding box is the same size as the
input and no scaling is applied. If it's 50
%
, then the bounding box will be in
a random range between half the width and height and full size.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
graph.
module_spec: The hub.ModuleSpec for the image module being used.
Returns:
The jpeg input layer and the distorted result tensor.
"""
input_height
,
input_width
=
hub
.
get_expected_image_size
(
module_spec
)
input_depth
=
hub
.
get_num_image_channels
(
module_spec
)
jpeg_data
=
tf
.
placeholder
(
tf
.
string
,
name
=
'DistortJPGInput'
)
decoded_image
=
tf
.
image
.
decode_jpeg
(
jpeg_data
,
channels
=
input_depth
)
# Convert from full range of uint8 to range [0,1] of float32.
decoded_image_as_float
=
tf
.
image
.
convert_image_dtype
(
decoded_image
,
tf
.
float32
)
decoded_image_4d
=
tf
.
expand_dims
(
decoded_image_as_float
,
0
)
margin_scale
=
1.0
+
(
random_crop
/
100.0
)
resize_scale
=
1.0
+
(
random_scale
/
100.0
)
margin_scale_value
=
tf
.
constant
(
margin_scale
)
resize_scale_value
=
tf
.
random_uniform
(
shape
=
[],
minval
=
1.0
,
maxval
=
resize_scale
)
scale_value
=
tf
.
multiply
(
margin_scale_value
,
resize_scale_value
)
precrop_width
=
tf
.
multiply
(
scale_value
,
input_width
)
precrop_height
=
tf
.
multiply
(
scale_value
,
input_height
)
precrop_shape
=
tf
.
stack
([
precrop_height
,
precrop_width
])
precrop_shape_as_int
=
tf
.
cast
(
precrop_shape
,
dtype
=
tf
.
int32
)
precropped_image
=
tf
.
image
.
resize_bilinear
(
decoded_image_4d
,
precrop_shape_as_int
)
precropped_image_3d
=
tf
.
squeeze
(
precropped_image
,
axis
=
[
0
])
cropped_image
=
tf
.
random_crop
(
precropped_image_3d
,
[
input_height
,
input_width
,
input_depth
])
if
flip_left_right
:
flipped_image
=
tf
.
image
.
random_flip_left_right
(
cropped_image
)
else
:
flipped_image
=
cropped_image
brightness_min
=
1.0
-
(
random_brightness
/
100.0
)
brightness_max
=
1.0
+
(
random_brightness
/
100.0
)
brightness_value
=
tf
.
random_uniform
(
shape
=
[],
minval
=
brightness_min
,
maxval
=
brightness_max
)
brightened_image
=
tf
.
multiply
(
flipped_image
,
brightness_value
)
distort_result
=
tf
.
expand_dims
(
brightened_image
,
0
,
name
=
'DistortResult'
)
return
jpeg_data
,
distort_result
def
variable_summaries
(
var
):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with
tf
.
name_scope
(
'summaries'
):
mean
=
tf
.
reduce_mean
(
var
)
tf
.
summary
.
scalar
(
'mean'
,
mean
)
with
tf
.
name_scope
(
'stddev'
):
stddev
=
tf
.
sqrt
(
tf
.
reduce_mean
(
tf
.
square
(
var
-
mean
)))
tf
.
summary
.
scalar
(
'stddev'
,
stddev
)
tf
.
summary
.
scalar
(
'max'
,
tf
.
reduce_max
(
var
))
tf
.
summary
.
scalar
(
'min'
,
tf
.
reduce_min
(
var
))
tf
.
summary
.
histogram
(
'histogram'
,
var
)
def
add_final_retrain_ops
(
class_count
,
final_tensor_name
,
bottleneck_tensor
,
quantize_layer
,
is_training
):
"""Adds a new softmax and fully-connected layer for training and eval.
We need to retrain the top layer to identify our new classes, so this function
adds the right operations to the graph, along with some variables to hold the
weights, and then sets up all the gradients for the backward pass.
The set up for the softmax and fully-connected layers is based on:
https://www.tensorflow.org/tutorials/mnist/beginners/index.html
Args:
class_count: Integer of how many categories of things we're trying to
recognize.
final_tensor_name: Name string for the new final node that produces results.
bottleneck_tensor: The output of the main CNN graph.
quantize_layer: Boolean, specifying whether the newly added layer should be
instrumented for quantization with TF-Lite.
is_training: Boolean, specifying whether the newly add layer is for training
or eval.
Returns:
The tensors for the training and cross entropy results, and tensors for the
bottleneck input and ground truth input.
"""
batch_size
,
bottleneck_tensor_size
=
bottleneck_tensor
.
get_shape
()
.
as_list
()
assert
batch_size
is
None
,
'We want to work with arbitrary batch size.'
with
tf
.
name_scope
(
'input'
):
bottleneck_input
=
tf
.
placeholder_with_default
(
bottleneck_tensor
,
shape
=
[
batch_size
,
bottleneck_tensor_size
],
name
=
'BottleneckInputPlaceholder'
)
ground_truth_input
=
tf
.
placeholder
(
tf
.
int64
,
[
batch_size
],
name
=
'GroundTruthInput'
)
# Organizing the following ops so they are easier to see in TensorBoard.
layer_name
=
'final_retrain_ops'
with
tf
.
name_scope
(
layer_name
):
with
tf
.
name_scope
(
'weights'
):
initial_value
=
tf
.
truncated_normal
(
[
bottleneck_tensor_size
,
class_count
],
stddev
=
0.001
)
layer_weights
=
tf
.
Variable
(
initial_value
,
name
=
'final_weights'
)
variable_summaries
(
layer_weights
)
with
tf
.
name_scope
(
'biases'
):
layer_biases
=
tf
.
Variable
(
tf
.
zeros
([
class_count
]),
name
=
'final_biases'
)
variable_summaries
(
layer_biases
)
with
tf
.
name_scope
(
'Wx_plus_b'
):
logits
=
tf
.
matmul
(
bottleneck_input
,
layer_weights
)
+
layer_biases
tf
.
summary
.
histogram
(
'pre_activations'
,
logits
)
final_tensor
=
tf
.
nn
.
softmax
(
logits
,
name
=
final_tensor_name
)
# The tf.contrib.quantize functions rewrite the graph in place for
# quantization. The imported model graph has already been rewritten, so upon
# calling these rewrites, only the newly added final layer will be
# transformed.
if
quantize_layer
:
if
is_training
:
contrib_quantize
.
create_training_graph
()
else
:
contrib_quantize
.
create_eval_graph
()
tf
.
summary
.
histogram
(
'activations'
,
final_tensor
)
# If this is an eval graph, we don't need to add loss ops or an optimizer.
if
not
is_training
:
return
None
,
None
,
bottleneck_input
,
ground_truth_input
,
final_tensor
with
tf
.
name_scope
(
'cross_entropy'
):
cross_entropy_mean
=
tf
.
losses
.
sparse_softmax_cross_entropy
(
labels
=
ground_truth_input
,
logits
=
logits
)
tf
.
summary
.
scalar
(
'cross_entropy'
,
cross_entropy_mean
)
with
tf
.
name_scope
(
'train'
):
optimizer
=
tf
.
train
.
GradientDescentOptimizer
(
FLAGS
.
learning_rate
)
train_step
=
optimizer
.
minimize
(
cross_entropy_mean
)
return
(
train_step
,
cross_entropy_mean
,
bottleneck_input
,
ground_truth_input
,
final_tensor
)
def
add_evaluation_step
(
result_tensor
,
ground_truth_tensor
):
"""Inserts the operations we need to evaluate the accuracy of our results.
Args:
result_tensor: The new final node that produces results.
ground_truth_tensor: The node we feed ground truth data
into.
Returns:
Tuple of (evaluation step, prediction).
"""
with
tf
.
name_scope
(
'accuracy'
):
with
tf
.
name_scope
(
'correct_prediction'
):
prediction
=
tf
.
argmax
(
result_tensor
,
1
)
correct_prediction
=
tf
.
equal
(
prediction
,
ground_truth_tensor
)
with
tf
.
name_scope
(
'accuracy'
):
evaluation_step
=
tf
.
reduce_mean
(
tf
.
cast
(
correct_prediction
,
tf
.
float32
))
tf
.
summary
.
scalar
(
'accuracy'
,
evaluation_step
)
return
evaluation_step
,
prediction
def
run_final_eval
(
train_session
,
module_spec
,
class_count
,
image_lists
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
):
"""Runs a final evaluation on an eval graph using the test data set.
Args:
train_session: Session for the train graph with the tensors below.
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
image_lists: OrderedDict of training images for each label.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_image_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
"""
test_bottlenecks
,
test_ground_truth
,
test_filenames
=
(
get_random_cached_bottlenecks
(
train_session
,
image_lists
,
FLAGS
.
test_batch_size
,
'testing'
,
FLAGS
.
bottleneck_dir
,
FLAGS
.
image_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
,
FLAGS
.
tfhub_module
))
(
eval_session
,
_
,
bottleneck_input
,
ground_truth_input
,
evaluation_step
,
prediction
)
=
build_eval_session
(
module_spec
,
class_count
)
test_accuracy
,
predictions
=
eval_session
.
run
(
[
evaluation_step
,
prediction
],
feed_dict
=
{
bottleneck_input
:
test_bottlenecks
,
ground_truth_input
:
test_ground_truth
})
logging
.
info
(
'Final test accuracy =
%.1
f
%%
(N=
%
d)'
,
test_accuracy
*
100
,
len
(
test_bottlenecks
))
if
FLAGS
.
print_misclassified_test_images
:
logging
.
info
(
'=== MISCLASSIFIED TEST IMAGES ==='
)
for
i
,
test_filename
in
enumerate
(
test_filenames
):
if
predictions
[
i
]
!=
test_ground_truth
[
i
]:
logging
.
info
(
'
%70
s
%
s'
,
test_filename
,
list
(
image_lists
.
keys
())[
predictions
[
i
]])
def
build_eval_session
(
module_spec
,
class_count
):
"""Builds an restored eval session without train operations for exporting.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
Returns:
Eval session containing the restored eval graph.
The bottleneck input, ground truth, eval step, and prediction tensors.
"""
# If quantized, we need to create the correct eval graph for exporting.
eval_graph
,
bottleneck_tensor
,
resized_input_tensor
,
wants_quantization
=
(
create_module_graph
(
module_spec
))
eval_sess
=
tf
.
Session
(
graph
=
eval_graph
)
with
eval_graph
.
as_default
():
# Add the new layer for exporting.
(
_
,
_
,
bottleneck_input
,
ground_truth_input
,
final_tensor
)
=
add_final_retrain_ops
(
class_count
,
FLAGS
.
final_tensor_name
,
bottleneck_tensor
,
wants_quantization
,
is_training
=
False
)
# Now we need to restore the values from the training graph to the eval
# graph.
tf
.
train
.
Saver
()
.
restore
(
eval_sess
,
FLAGS
.
checkpoint_path
)
evaluation_step
,
prediction
=
add_evaluation_step
(
final_tensor
,
ground_truth_input
)
return
(
eval_sess
,
resized_input_tensor
,
bottleneck_input
,
ground_truth_input
,
evaluation_step
,
prediction
)
def
save_graph_to_file
(
graph_file_name
,
module_spec
,
class_count
):
"""Saves an graph to file, creating a valid quantized one if necessary."""
sess
,
_
,
_
,
_
,
_
,
_
=
build_eval_session
(
module_spec
,
class_count
)
graph
=
sess
.
graph
output_graph_def
=
tf
.
graph_util
.
convert_variables_to_constants
(
sess
,
graph
.
as_graph_def
(),
[
FLAGS
.
final_tensor_name
])
with
tf
.
gfile
.
GFile
(
graph_file_name
,
'wb'
)
as
f
:
f
.
write
(
output_graph_def
.
SerializeToString
())
def
prepare_file_system
():
# Set up the directory we'll write summaries to for TensorBoard
if
tf
.
gfile
.
Exists
(
FLAGS
.
summaries_dir
):
tf
.
gfile
.
DeleteRecursively
(
FLAGS
.
summaries_dir
)
tf
.
gfile
.
MakeDirs
(
FLAGS
.
summaries_dir
)
if
FLAGS
.
intermediate_store_frequency
>
0
:
ensure_dir_exists
(
FLAGS
.
intermediate_output_graphs_dir
)
return
def
add_jpeg_decoding
(
module_spec
):
"""Adds operations that perform JPEG decoding and resizing to the graph..
Args:
module_spec: The hub.ModuleSpec for the image module being used.
Returns:
Tensors for the node to feed JPEG data into, and the output of the
preprocessing steps.
"""
input_height
,
input_width
=
hub
.
get_expected_image_size
(
module_spec
)
input_depth
=
hub
.
get_num_image_channels
(
module_spec
)
jpeg_data
=
tf
.
placeholder
(
tf
.
string
,
name
=
'DecodeJPGInput'
)
decoded_image
=
tf
.
image
.
decode_jpeg
(
jpeg_data
,
channels
=
input_depth
)
# Convert from full range of uint8 to range [0,1] of float32.
decoded_image_as_float
=
tf
.
image
.
convert_image_dtype
(
decoded_image
,
tf
.
float32
)
decoded_image_4d
=
tf
.
expand_dims
(
decoded_image_as_float
,
0
)
resize_shape
=
tf
.
stack
([
input_height
,
input_width
])
resize_shape_as_int
=
tf
.
cast
(
resize_shape
,
dtype
=
tf
.
int32
)
resized_image
=
tf
.
image
.
resize_bilinear
(
decoded_image_4d
,
resize_shape_as_int
)
return
jpeg_data
,
resized_image
def
export_model
(
module_spec
,
class_count
,
saved_model_dir
):
"""Exports model for serving.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: The number of classes.
saved_model_dir: Directory in which to save exported model and variables.
"""
# The SavedModel should hold the eval graph.
sess
,
in_image
,
_
,
_
,
_
,
_
=
build_eval_session
(
module_spec
,
class_count
)
with
sess
.
graph
.
as_default
()
as
graph
:
tf
.
saved_model
.
simple_save
(
sess
,
saved_model_dir
,
inputs
=
{
'image'
:
in_image
},
outputs
=
{
'prediction'
:
graph
.
get_tensor_by_name
(
'final_result:0'
)},
legacy_init_op
=
tf
.
group
(
tf
.
tables_initializer
(),
name
=
'legacy_init_op'
)
)
def
logging_level_verbosity
(
logging_verbosity
):
"""Converts logging_level into TensorFlow logging verbosity value.
Args:
logging_verbosity: String value representing logging level: 'DEBUG', 'INFO',
'WARN', 'ERROR', 'FATAL'
"""
name_to_level
=
{
'FATAL'
:
logging
.
FATAL
,
'ERROR'
:
logging
.
ERROR
,
'WARN'
:
logging
.
WARN
,
'INFO'
:
logging
.
INFO
,
'DEBUG'
:
logging
.
DEBUG
}
try
:
return
name_to_level
[
logging_verbosity
]
except
Exception
as
e
:
raise
RuntimeError
(
'Not supported logs verbosity (
%
s). Use one of
%
s.'
%
(
str
(
e
),
list
(
name_to_level
)))
def
main
(
_
):
# Needed to make sure the logging output is visible.
# See https://github.com/tensorflow/tensorflow/issues/3047
logging_verbosity
=
logging_level_verbosity
(
FLAGS
.
logging_verbosity
)
logging
.
set_verbosity
(
logging_verbosity
)
if
not
FLAGS
.
image_dir
:
logging
.
error
(
'Must set flag --image_dir.'
)
return
-
1
# Prepare necessary directories that can be used during training
prepare_file_system
()
# Look at the folder structure, and create lists of all the images.
image_lists
=
create_image_lists
(
FLAGS
.
image_dir
,
FLAGS
.
testing_percentage
,
FLAGS
.
validation_percentage
)
class_count
=
len
(
image_lists
.
keys
())
if
class_count
==
0
:
logging
.
error
(
'No valid folders of images found at
%
s'
,
FLAGS
.
image_dir
)
return
-
1
if
class_count
==
1
:
logging
.
error
(
'Only one valid folder of images found at
%
s '
' - multiple classes are needed for classification.'
,
FLAGS
.
image_dir
)
return
-
1
# See if the command-line flags mean we're applying any distortions.
do_distort_images
=
should_distort_images
(
FLAGS
.
flip_left_right
,
FLAGS
.
random_crop
,
FLAGS
.
random_scale
,
FLAGS
.
random_brightness
)
# Set up the pre-trained graph.
module_spec
=
hub
.
load_module_spec
(
FLAGS
.
tfhub_module
)
graph
,
bottleneck_tensor
,
resized_image_tensor
,
wants_quantization
=
(
create_module_graph
(
module_spec
))
# Add the new layer that we'll be training.
with
graph
.
as_default
():
(
train_step
,
cross_entropy
,
bottleneck_input
,
ground_truth_input
,
final_tensor
)
=
add_final_retrain_ops
(
class_count
,
FLAGS
.
final_tensor_name
,
bottleneck_tensor
,
wants_quantization
,
is_training
=
True
)
with
tf
.
Session
(
graph
=
graph
)
as
sess
:
# Initialize all weights: for the module to their pretrained values,
# and for the newly added retraining layer to random initial values.
init
=
tf
.
global_variables_initializer
()
sess
.
run
(
init
)
# Set up the image decoding sub-graph.
jpeg_data_tensor
,
decoded_image_tensor
=
add_jpeg_decoding
(
module_spec
)
if
do_distort_images
:
# We will be applying distortions, so set up the operations we'll need.
(
distorted_jpeg_data_tensor
,
distorted_image_tensor
)
=
add_input_distortions
(
FLAGS
.
flip_left_right
,
FLAGS
.
random_crop
,
FLAGS
.
random_scale
,
FLAGS
.
random_brightness
,
module_spec
)
else
:
# We'll make sure we've calculated the 'bottleneck' image summaries and
# cached them on disk.
cache_bottlenecks
(
sess
,
image_lists
,
FLAGS
.
image_dir
,
FLAGS
.
bottleneck_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
,
FLAGS
.
tfhub_module
)
# Create the operations we need to evaluate the accuracy of our new layer.
evaluation_step
,
_
=
add_evaluation_step
(
final_tensor
,
ground_truth_input
)
# Merge all the summaries and write them out to the summaries_dir
merged
=
tf
.
summary
.
merge_all
()
train_writer
=
tf
.
summary
.
FileWriter
(
FLAGS
.
summaries_dir
+
'/train'
,
sess
.
graph
)
validation_writer
=
tf
.
summary
.
FileWriter
(
FLAGS
.
summaries_dir
+
'/validation'
)
# Create a train saver that is used to restore values into an eval graph
# when exporting models.
train_saver
=
tf
.
train
.
Saver
()
# Run the training for as many cycles as requested on the command line.
for
i
in
range
(
FLAGS
.
how_many_training_steps
):
# Get a batch of input bottleneck values, either calculated fresh every
# time with distortions applied, or from the cache stored on disk.
if
do_distort_images
:
(
train_bottlenecks
,
train_ground_truth
)
=
get_random_distorted_bottlenecks
(
sess
,
image_lists
,
FLAGS
.
train_batch_size
,
'training'
,
FLAGS
.
image_dir
,
distorted_jpeg_data_tensor
,
distorted_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
)
else
:
(
train_bottlenecks
,
train_ground_truth
,
_
)
=
get_random_cached_bottlenecks
(
sess
,
image_lists
,
FLAGS
.
train_batch_size
,
'training'
,
FLAGS
.
bottleneck_dir
,
FLAGS
.
image_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
,
FLAGS
.
tfhub_module
)
# Feed the bottlenecks and ground truth into the graph, and run a training
# step. Capture training summaries for TensorBoard with the `merged` op.
train_summary
,
_
=
sess
.
run
(
[
merged
,
train_step
],
feed_dict
=
{
bottleneck_input
:
train_bottlenecks
,
ground_truth_input
:
train_ground_truth
})
train_writer
.
add_summary
(
train_summary
,
i
)
# Every so often, print out how well the graph is training.
is_last_step
=
(
i
+
1
==
FLAGS
.
how_many_training_steps
)
if
(
i
%
FLAGS
.
eval_step_interval
)
==
0
or
is_last_step
:
train_accuracy
,
cross_entropy_value
=
sess
.
run
(
[
evaluation_step
,
cross_entropy
],
feed_dict
=
{
bottleneck_input
:
train_bottlenecks
,
ground_truth_input
:
train_ground_truth
})
logging
.
info
(
'
%
s: Step
%
d: Train accuracy =
%.1
f
%%
'
,
datetime
.
now
(),
i
,
train_accuracy
*
100
)
logging
.
info
(
'
%
s: Step
%
d: Cross entropy =
%
f'
,
datetime
.
now
(),
i
,
cross_entropy_value
)
# TODO: Make this use an eval graph, to avoid quantization
# moving averages being updated by the validation set, though in
# practice this makes a negligable difference.
validation_bottlenecks
,
validation_ground_truth
,
_
=
(
get_random_cached_bottlenecks
(
sess
,
image_lists
,
FLAGS
.
validation_batch_size
,
'validation'
,
FLAGS
.
bottleneck_dir
,
FLAGS
.
image_dir
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
,
FLAGS
.
tfhub_module
))
# Run a validation step and capture training summaries for TensorBoard
# with the `merged` op.
validation_summary
,
validation_accuracy
=
sess
.
run
(
[
merged
,
evaluation_step
],
feed_dict
=
{
bottleneck_input
:
validation_bottlenecks
,
ground_truth_input
:
validation_ground_truth
})
validation_writer
.
add_summary
(
validation_summary
,
i
)
logging
.
info
(
'
%
s: Step
%
d: Validation accuracy =
%.1
f
%%
(N=
%
d)'
,
datetime
.
now
(),
i
,
validation_accuracy
*
100
,
len
(
validation_bottlenecks
))
# Store intermediate results
intermediate_frequency
=
FLAGS
.
intermediate_store_frequency
if
(
intermediate_frequency
>
0
and
(
i
%
intermediate_frequency
==
0
)
and
i
>
0
):
# If we want to do an intermediate save, save a checkpoint of the train
# graph, to restore into the eval graph.
train_saver
.
save
(
sess
,
FLAGS
.
checkpoint_path
)
intermediate_file_name
=
(
FLAGS
.
intermediate_output_graphs_dir
+
'intermediate_'
+
str
(
i
)
+
'.pb'
)
logging
.
info
(
'Save intermediate result to :
%
s'
,
intermediate_file_name
)
save_graph_to_file
(
intermediate_file_name
,
module_spec
,
class_count
)
# After training is complete, force one last save of the train checkpoint.
train_saver
.
save
(
sess
,
FLAGS
.
checkpoint_path
)
# We've completed all our training, so run a final test evaluation on
# some new images we haven't used before.
run_final_eval
(
sess
,
module_spec
,
class_count
,
image_lists
,
jpeg_data_tensor
,
decoded_image_tensor
,
resized_image_tensor
,
bottleneck_tensor
)
# Write out the trained graph and labels with the weights stored as
# constants.
logging
.
info
(
'Save final result to :
%
s'
,
FLAGS
.
output_graph
)
if
wants_quantization
:
logging
.
info
(
'The model is instrumented for quantization with TF-Lite'
)
save_graph_to_file
(
FLAGS
.
output_graph
,
module_spec
,
class_count
)
with
tf
.
gfile
.
GFile
(
FLAGS
.
output_labels
,
'w'
)
as
f
:
f
.
write
(
'
\n
'
.
join
(
image_lists
.
keys
())
+
'
\n
'
)
if
FLAGS
.
saved_model_dir
:
export_model
(
module_spec
,
class_count
,
FLAGS
.
saved_model_dir
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--image_dir'
,
type
=
str
,
default
=
''
,
help
=
'Path to folders of labeled images.'
)
parser
.
add_argument
(
'--output_graph'
,
type
=
str
,
default
=
'/tmp/output_graph.pb'
,
help
=
'Where to save the trained graph.'
)
parser
.
add_argument
(
'--intermediate_output_graphs_dir'
,
type
=
str
,
default
=
'/tmp/intermediate_graph/'
,
help
=
'Where to save the intermediate graphs.'
)
parser
.
add_argument
(
'--intermediate_store_frequency'
,
type
=
int
,
default
=
0
,
help
=
"""
\
How many steps to store intermediate graph. If "0" then will not
store.
\
"""
)
parser
.
add_argument
(
'--output_labels'
,
type
=
str
,
default
=
'/tmp/output_labels.txt'
,
help
=
'Where to save the trained graph
\'
s labels.'
)
parser
.
add_argument
(
'--summaries_dir'
,
type
=
str
,
default
=
'/tmp/retrain_logs'
,
help
=
'Where to save summary logs for TensorBoard.'
)
parser
.
add_argument
(
'--how_many_training_steps'
,
type
=
int
,
default
=
4000
,
help
=
'How many training steps to run before ending.'
)
parser
.
add_argument
(
'--learning_rate'
,
type
=
float
,
default
=
0.01
,
help
=
'How large a learning rate to use when training.'
)
parser
.
add_argument
(
'--testing_percentage'
,
type
=
int
,
default
=
10
,
help
=
'What percentage of images to use as a test set.'
)
parser
.
add_argument
(
'--validation_percentage'
,
type
=
int
,
default
=
10
,
help
=
'What percentage of images to use as a validation set.'
)
parser
.
add_argument
(
'--eval_step_interval'
,
type
=
int
,
default
=
10
,
help
=
'How often to evaluate the training results.'
)
parser
.
add_argument
(
'--train_batch_size'
,
type
=
int
,
default
=
100
,
help
=
'How many images to train on at a time.'
)
parser
.
add_argument
(
'--test_batch_size'
,
type
=
int
,
default
=-
1
,
help
=
"""
\
How many images to test on. This test set is only used once, to evaluate
the final accuracy of the model after training completes.
A value of -1 causes the entire test set to be used, which leads to more
stable results across runs.
\
"""
)
parser
.
add_argument
(
'--validation_batch_size'
,
type
=
int
,
default
=
100
,
help
=
"""
\
How many images to use in an evaluation batch. This validation set is
used much more often than the test set, and is an early indicator of how
accurate the model is during training.
A value of -1 causes the entire validation set to be used, which leads to
more stable results across training iterations, but may be slower on large
training sets.
\
"""
)
parser
.
add_argument
(
'--print_misclassified_test_images'
,
default
=
False
,
help
=
"""
\
Whether to print out a list of all misclassified test images.
\
"""
,
action
=
'store_true'
)
parser
.
add_argument
(
'--bottleneck_dir'
,
type
=
str
,
default
=
'/tmp/bottleneck'
,
help
=
'Path to cache bottleneck layer values as files.'
)
parser
.
add_argument
(
'--final_tensor_name'
,
type
=
str
,
default
=
'final_result'
,
help
=
"""
\
The name of the output classification layer in the retrained graph.
\
"""
)
parser
.
add_argument
(
'--flip_left_right'
,
default
=
False
,
help
=
"""
\
Whether to randomly flip half of the training images horizontally.
\
"""
,
action
=
'store_true'
)
parser
.
add_argument
(
'--random_crop'
,
type
=
int
,
default
=
0
,
help
=
"""
\
A percentage determining how much of a margin to randomly crop off the
training images.
\
"""
)
parser
.
add_argument
(
'--random_scale'
,
type
=
int
,
default
=
0
,
help
=
"""
\
A percentage determining how much to randomly scale up the size of the
training images by.
\
"""
)
parser
.
add_argument
(
'--random_brightness'
,
type
=
int
,
default
=
0
,
help
=
"""
\
A percentage determining how much to randomly multiply the training image
input pixels up or down by.
\
"""
)
parser
.
add_argument
(
'--tfhub_module'
,
type
=
str
,
default
=
(
'https://tfhub.dev/google/imagenet/inception_v3/feature_vector/3'
),
help
=
"""
\
Which TensorFlow Hub module to use. For more options,
search https://tfhub.dev for image feature vector modules.
\
"""
)
parser
.
add_argument
(
'--saved_model_dir'
,
type
=
str
,
default
=
''
,
help
=
'Where to save the exported graph.'
)
parser
.
add_argument
(
'--logging_verbosity'
,
type
=
str
,
default
=
'INFO'
,
choices
=
[
'DEBUG'
,
'INFO'
,
'WARN'
,
'ERROR'
,
'FATAL'
],
help
=
'How much logging output should be produced.'
)
parser
.
add_argument
(
'--checkpoint_path'
,
type
=
str
,
default
=
'/tmp/_retrain_checkpoint'
,
help
=
'Where to save checkpoint files.'
)
FLAGS
,
unparsed
=
parser
.
parse_known_args
()
tf
.
app
.
run
(
main
=
main
,
argv
=
[
sys
.
argv
[
0
]]
+
unparsed
)
tensorflow/retrain_run_inference.py
0 → 100644
View file @
dfc01a8
# -*- coding: utf-8 -*-
"""Inception v3 architecture 모델을 retraining한 모델을 이용해서 이미지에 대한 추론(inference)을 진행하는 예제"""
import
numpy
as
np
import
tensorflow
as
tf
imagePath
=
'/tmp/test_chartreux.jpg'
# 추론을 진행할 이미지 경로
modelFullPath
=
'/tmp/output_graph.pb'
# 읽어들일 graph 파일 경로
labelsFullPath
=
'/tmp/output_labels.txt'
# 읽어들일 labels 파일 경로
def
create_graph
():
"""저장된(saved) GraphDef 파일로부터 graph를 생성하고 saver를 반환한다."""
# 저장된(saved) graph_def.pb로부터 graph를 생성한다.
with
tf
.
gfile
.
FastGFile
(
modelFullPath
,
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
_
=
tf
.
import_graph_def
(
graph_def
,
name
=
''
)
def
run_inference_on_image
():
answer
=
None
if
not
tf
.
gfile
.
Exists
(
imagePath
):
tf
.
logging
.
fatal
(
'File does not exist
%
s'
,
imagePath
)
return
answer
image_data
=
tf
.
gfile
.
FastGFile
(
imagePath
,
'rb'
)
.
read
()
# 저장된(saved) GraphDef 파일로부터 graph를 생성한다.
create_graph
()
with
tf
.
Session
()
as
sess
:
softmax_tensor
=
sess
.
graph
.
get_tensor_by_name
(
'final_result:0'
)
predictions
=
sess
.
run
(
softmax_tensor
,
{
'DecodeJpeg/contents:0'
:
image_data
})
predictions
=
np
.
squeeze
(
predictions
)
top_k
=
predictions
.
argsort
()[
-
5
:][::
-
1
]
# 가장 높은 확률을 가진 5개(top 5)의 예측값(predictions)을 얻는다.
f
=
open
(
labelsFullPath
,
'rb'
)
lines
=
f
.
readlines
()
labels
=
[
str
(
w
)
.
replace
(
"
\n
"
,
""
)
for
w
in
lines
]
for
node_id
in
top_k
:
human_string
=
labels
[
node_id
]
score
=
predictions
[
node_id
]
print
(
'
%
s (score =
%.5
f)'
%
(
human_string
,
score
))
answer
=
labels
[
top_k
[
0
]]
return
answer
if
__name__
==
'__main__'
:
run_inference_on_image
()
\ No newline at end of file
Please
register
or
login
to post a comment