solver.py
9.13 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import pickle
import os
import scipy.io
import scipy.misc
class Solver(object):
def __init__(self, model, batch_size=100, pretrain_iter=10000, train_iter=2000, sample_iter=100,
svhn_dir='svhn', mnist_dir='mnist', log_dir='logs', sample_save_path='sample',
model_save_path='model', pretrained_model='model/svhn_model-10000', test_model='model/dtn-2000'):
self.model = model
self.batch_size = batch_size
self.pretrain_iter = pretrain_iter
self.train_iter = train_iter
self.sample_iter = sample_iter
self.svhn_dir = svhn_dir
self.mnist_dir = mnist_dir
self.log_dir = log_dir
self.sample_save_path = sample_save_path
self.model_save_path = model_save_path
self.pretrained_model = pretrained_model
self.test_model = test_model
self.config = tf.ConfigProto()
self.config.gpu_options.allow_growth=True
def load_svhn(self, image_dir, split='train'):
print ('loading svhn image dataset..')
if self.model.mode == 'pretrain':
image_file = 'extra_32x32.mat' if split=='train' else 'test_32x32.mat'
else:
image_file = 'train_32x32.mat' if split=='train' else 'test_32x32.mat'
image_dir = os.path.join(image_dir, image_file)
svhn = scipy.io.loadmat(image_dir)
images = np.transpose(svhn['X'], [3, 0, 1, 2]) / 127.5 - 1
labels = svhn['y'].reshape(-1)
labels[np.where(labels==10)] = 0
print ('finished loading svhn image dataset..!')
return images, labels
def load_mnist(self, image_dir, split='train'):
print ('loading mnist image dataset..')
image_file = 'train.pkl' if split=='train' else 'test.pkl'
image_dir = os.path.join(image_dir, image_file)
with open(image_dir, 'rb') as f:
mnist = pickle.load(f)
images = mnist['X'] / 127.5 - 1
labels = mnist['y']
print ('finished loading mnist image dataset..!')
return images, labels
def merge_images(self, sources, targets, k=10):
_, h, w, _ = sources.shape
row = int(np.sqrt(self.batch_size))
merged = np.zeros([row*h, row*w*2, 3])
for idx, (s, t) in enumerate(zip(sources, targets)):
i = idx // row
j = idx % row
merged[i*h:(i+1)*h, (j*2)*h:(j*2+1)*h, :] = s
merged[i*h:(i+1)*h, (j*2+1)*h:(j*2+2)*h, :] = t
return merged
def pretrain(self):
# load svhn dataset
train_images, train_labels = self.load_svhn(self.svhn_dir, split='train')
test_images, test_labels = self.load_svhn(self.svhn_dir, split='test')
# build a graph
model = self.model
model.build_model()
with tf.Session(config=self.config) as sess:
tf.global_variables_initializer().run()
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter(logdir=self.log_dir, graph=tf.get_default_graph())
for step in range(self.pretrain_iter+1):
i = step % int(train_images.shape[0] / self.batch_size)
batch_images = train_images[i*self.batch_size:(i+1)*self.batch_size]
batch_labels = train_labels[i*self.batch_size:(i+1)*self.batch_size]
feed_dict = {model.images: batch_images, model.labels: batch_labels}
sess.run(model.train_op, feed_dict)
if (step+1) % 10 == 0:
summary, l, acc = sess.run([model.summary_op, model.loss, model.accuracy], feed_dict)
rand_idxs = np.random.permutation(test_images.shape[0])[:self.batch_size]
test_acc, _ = sess.run(fetches=[model.accuracy, model.loss],
feed_dict={model.images: test_images[rand_idxs],
model.labels: test_labels[rand_idxs]})
summary_writer.add_summary(summary, step)
print ('Step: [%d/%d] loss: [%.6f] train acc: [%.2f] test acc [%.2f]' \
%(step+1, self.pretrain_iter, l, acc, test_acc))
if (step+1) % 1000 == 0:
saver.save(sess, os.path.join(self.model_save_path, 'svhn_model'), global_step=step+1)
print ('svhn_model-%d saved..!' %(step+1))
def train(self):
# load svhn dataset
svhn_images, _ = self.load_svhn(self.svhn_dir, split='train')
mnist_images, _ = self.load_mnist(self.mnist_dir, split='train')
# build a graph
model = self.model
model.build_model()
# make log directory if not exists
if tf.gfile.Exists(self.log_dir):
tf.gfile.DeleteRecursively(self.log_dir)
tf.gfile.MakeDirs(self.log_dir)
with tf.Session(config=self.config) as sess:
# initialize G and D
tf.global_variables_initializer().run()
# restore variables of F
print ('loading pretrained model F..')
variables_to_restore = slim.get_model_variables(scope='content_extractor')
restorer = tf.train.Saver(variables_to_restore)
restorer.restore(sess, self.pretrained_model)
summary_writer = tf.summary.FileWriter(logdir=self.log_dir, graph=tf.get_default_graph())
saver = tf.train.Saver()
print ('start training..!')
for step in range(self.train_iter+1):
i = step % int(svhn_images.shape[0] / self.batch_size)
# train the model for source domain S
src_images = svhn_images[i*self.batch_size:(i+1)*self.batch_size]
feed_dict = {model.src_images: src_images}
sess.run(model.d_train_op_src, feed_dict)
sess.run([model.g_train_op_src], feed_dict)
sess.run([model.g_train_op_src], feed_dict)
sess.run([model.g_train_op_src], feed_dict)
sess.run([model.g_train_op_src], feed_dict)
sess.run([model.g_train_op_src], feed_dict)
sess.run([model.g_train_op_src], feed_dict)
if i % 15 == 0:
sess.run(model.f_train_op_src, feed_dict)
if (step+1) % 10 == 0:
summary, dl, gl, fl = sess.run([model.summary_op_src, \
model.d_loss_src, model.g_loss_src, model.f_loss_src], feed_dict)
summary_writer.add_summary(summary, step)
print ('[Source] step: [%d/%d] d_loss: [%.6f] g_loss: [%.6f] f_loss: [%.6f]' \
%(step+1, self.train_iter, dl, gl, fl))
# train the model for target domain T
j = step % int(mnist_images.shape[0] / self.batch_size)
trg_images = mnist_images[j*self.batch_size:(j+1)*self.batch_size]
feed_dict = {model.src_images: src_images, model.trg_images: trg_images}
sess.run(model.d_train_op_trg, feed_dict)
sess.run(model.d_train_op_trg, feed_dict)
sess.run(model.g_train_op_trg, feed_dict)
sess.run(model.g_train_op_trg, feed_dict)
sess.run(model.g_train_op_trg, feed_dict)
sess.run(model.g_train_op_trg, feed_dict)
if (step+1) % 10 == 0:
summary, dl, gl = sess.run([model.summary_op_trg, \
model.d_loss_trg, model.g_loss_trg], feed_dict)
summary_writer.add_summary(summary, step)
print ('[Target] step: [%d/%d] d_loss: [%.6f] g_loss: [%.6f]' \
%(step+1, self.train_iter, dl, gl))
if (step+1) % 200 == 0:
saver.save(sess, os.path.join(self.model_save_path, 'dtn'), global_step=step+1)
print ('model/dtn-%d saved' %(step+1))
def eval(self):
# build model
model = self.model
model.build_model()
# load svhn dataset
svhn_images, _ = self.load_svhn(self.svhn_dir)
with tf.Session(config=self.config) as sess:
# load trained parameters
print ('loading test model..')
saver = tf.train.Saver()
saver.restore(sess, self.test_model)
print ('start sampling..!')
for i in range(self.sample_iter):
# train model for source domain S
batch_images = svhn_images[i*self.batch_size:(i+1)*self.batch_size]
feed_dict = {model.images: batch_images}
sampled_batch_images = sess.run(model.sampled_images, feed_dict)
# merge and save source images and sampled target images
merged = self.merge_images(batch_images, sampled_batch_images)
path = os.path.join(self.sample_save_path, 'sample-%d-to-%d.png' %(i*self.batch_size, (i+1)*self.batch_size))
scipy.misc.imsave(path, merged)
print ('saved %s' %path)