dash.el 87.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
;;; dash.el --- A modern list library for Emacs  -*- lexical-binding: t -*-

;; Copyright (C) 2012-2016 Free Software Foundation, Inc.

;; Author: Magnar Sveen <magnars@gmail.com>
;; Version: 2.13.0
;; Package-Version: 20170810.137
;; Keywords: lists

;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with this program.  If not, see <http://www.gnu.org/licenses/>.

;;; Commentary:

;; A modern list api for Emacs.
;;
;; See documentation on https://github.com/magnars/dash.el#functions
;;
;; **Please note** The lexical binding in this file is not utilised at the
;; moment. We will take full advantage of lexical binding in an upcoming 3.0
;; release of Dash. In the meantime, we've added the pragma to avoid a bug that
;; you can read more about in https://github.com/magnars/dash.el/issues/130.
;;

;;; Code:

(defgroup dash ()
  "Customize group for dash.el"
  :group 'lisp
  :prefix "dash-")

(defun dash--enable-fontlock (symbol value)
  (when value
    (dash-enable-font-lock))
  (set-default symbol value))

(defcustom dash-enable-fontlock nil
  "If non-nil, enable fontification of dash functions, macros and
special values."
  :type 'boolean
  :set 'dash--enable-fontlock
  :group 'dash)

(defmacro !cons (car cdr)
  "Destructive: Set CDR to the cons of CAR and CDR."
  `(setq ,cdr (cons ,car ,cdr)))

(defmacro !cdr (list)
  "Destructive: Set LIST to the cdr of LIST."
  `(setq ,list (cdr ,list)))

(defmacro --each (list &rest body)
  "Anaphoric form of `-each'."
  (declare (debug (form body))
           (indent 1))
  (let ((l (make-symbol "list")))
    `(let ((,l ,list)
           (it-index 0))
       (while ,l
         (let ((it (car ,l)))
           ,@body)
         (setq it-index (1+ it-index))
         (!cdr ,l)))))

(defmacro -doto (eval-initial-value &rest forms)
  "Eval a form, then insert that form as the 2nd argument to other forms.
The EVAL-INITIAL-VALUE form is evaluated once. Its result is
passed to FORMS, which are then evaluated sequentially. Returns
the target form."
  (declare (indent 1))
  (let ((retval (make-symbol "value")))
    `(let ((,retval ,eval-initial-value))
       ,@(mapcar (lambda (form)
                   (if (sequencep form)
                       `(,(-first-item form) ,retval ,@(cdr form))
                     `(funcall form ,retval)))
                 forms)
       ,retval)))

(defun -each (list fn)
  "Call FN with every item in LIST. Return nil, used for side-effects only."
  (--each list (funcall fn it)))

(put '-each 'lisp-indent-function 1)

(defalias '--each-indexed '--each)

(defun -each-indexed (list fn)
  "Call (FN index item) for each item in LIST.

In the anaphoric form `--each-indexed', the index is exposed as symbol `it-index'.

See also: `-map-indexed'."
  (--each list (funcall fn it-index it)))
(put '-each-indexed 'lisp-indent-function 1)

(defmacro --each-while (list pred &rest body)
  "Anaphoric form of `-each-while'."
  (declare (debug (form form body))
           (indent 2))
  (let ((l (make-symbol "list"))
        (c (make-symbol "continue")))
    `(let ((,l ,list)
           (,c t)
           (it-index 0))
       (while (and ,l ,c)
         (let ((it (car ,l)))
           (if (not ,pred) (setq ,c nil) ,@body))
         (setq it-index (1+ it-index))
         (!cdr ,l)))))

(defun -each-while (list pred fn)
  "Call FN with every item in LIST while (PRED item) is non-nil.
Return nil, used for side-effects only."
  (--each-while list (funcall pred it) (funcall fn it)))

(put '-each-while 'lisp-indent-function 2)

(defmacro --dotimes (num &rest body)
  "Repeatedly executes BODY (presumably for side-effects) with symbol `it' bound to integers from 0 through NUM-1."
  (declare (debug (form body))
           (indent 1))
  (let ((n (make-symbol "num")))
    `(let ((,n ,num)
           (it 0))
       (while (< it ,n)
         ,@body
         (setq it (1+ it))))))

(defun -dotimes (num fn)
  "Repeatedly calls FN (presumably for side-effects) passing in integers from 0 through NUM-1."
  (--dotimes num (funcall fn it)))

(put '-dotimes 'lisp-indent-function 1)

(defun -map (fn list)
  "Return a new list consisting of the result of applying FN to the items in LIST."
  (mapcar fn list))

(defmacro --map (form list)
  "Anaphoric form of `-map'."
  (declare (debug (form form)))
  `(mapcar (lambda (it) ,form) ,list))

(defmacro --reduce-from (form initial-value list)
  "Anaphoric form of `-reduce-from'."
  (declare (debug (form form form)))
  `(let ((acc ,initial-value))
     (--each ,list (setq acc ,form))
     acc))

(defun -reduce-from (fn initial-value list)
  "Return the result of applying FN to INITIAL-VALUE and the
first item in LIST, then applying FN to that result and the 2nd
item, etc. If LIST contains no items, return INITIAL-VALUE and
FN is not called.

In the anaphoric form `--reduce-from', the accumulated value is
exposed as symbol `acc'.

See also: `-reduce', `-reduce-r'"
  (--reduce-from (funcall fn acc it) initial-value list))

(defmacro --reduce (form list)
  "Anaphoric form of `-reduce'."
  (declare (debug (form form)))
  (let ((lv (make-symbol "list-value")))
    `(let ((,lv ,list))
       (if ,lv
           (--reduce-from ,form (car ,lv) (cdr ,lv))
         (let (acc it) ,form)))))

(defun -reduce (fn list)
  "Return the result of applying FN to the first 2 items in LIST,
then applying FN to that result and the 3rd item, etc. If LIST
contains no items, FN must accept no arguments as well, and
reduce return the result of calling FN with no arguments. If
LIST has only 1 item, it is returned and FN is not called.

In the anaphoric form `--reduce', the accumulated value is
exposed as symbol `acc'.

See also: `-reduce-from', `-reduce-r'"
  (if list
      (-reduce-from fn (car list) (cdr list))
    (funcall fn)))

(defun -reduce-r-from (fn initial-value list)
  "Replace conses with FN, nil with INITIAL-VALUE and evaluate
the resulting expression. If LIST is empty, INITIAL-VALUE is
returned and FN is not called.

Note: this function works the same as `-reduce-from' but the
operation associates from right instead of from left.

See also: `-reduce-r', `-reduce'"
  (if (not list) initial-value
    (funcall fn (car list) (-reduce-r-from fn initial-value (cdr list)))))

(defmacro --reduce-r-from (form initial-value list)
  "Anaphoric version of `-reduce-r-from'."
  (declare (debug (form form form)))
  `(-reduce-r-from (lambda (&optional it acc) ,form) ,initial-value ,list))

(defun -reduce-r (fn list)
  "Replace conses with FN and evaluate the resulting expression.
The final nil is ignored. If LIST contains no items, FN must
accept no arguments as well, and reduce return the result of
calling FN with no arguments. If LIST has only 1 item, it is
returned and FN is not called.

The first argument of FN is the new item, the second is the
accumulated value.

Note: this function works the same as `-reduce' but the operation
associates from right instead of from left.

See also: `-reduce-r-from', `-reduce'"
  (cond
   ((not list) (funcall fn))
   ((not (cdr list)) (car list))
   (t (funcall fn (car list) (-reduce-r fn (cdr list))))))

(defmacro --reduce-r (form list)
  "Anaphoric version of `-reduce-r'."
  (declare (debug (form form)))
  `(-reduce-r (lambda (&optional it acc) ,form) ,list))

(defmacro --filter (form list)
  "Anaphoric form of `-filter'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list (when ,form (!cons it ,r)))
       (nreverse ,r))))

(defun -filter (pred list)
  "Return a new list of the items in LIST for which PRED returns a non-nil value.

Alias: `-select'

See also: `-keep'"
  (--filter (funcall pred it) list))

(defalias '-select '-filter)
(defalias '--select '--filter)

(defmacro --remove (form list)
  "Anaphoric form of `-remove'."
  (declare (debug (form form)))
  `(--filter (not ,form) ,list))

(defun -remove (pred list)
  "Return a new list of the items in LIST for which PRED returns nil.

Alias: `-reject'"
  (--remove (funcall pred it) list))

(defalias '-reject '-remove)
(defalias '--reject '--remove)

(defun -remove-first (pred list)
  "Return a new list with the first item matching PRED removed.

Alias: `-reject-first'

See also: `-remove', `-map-first'"
  (let (front)
    (while (and list (not (funcall pred (car list))))
      (push (car list) front)
      (!cdr list))
    (if list
        (-concat (nreverse front) (cdr list))
      (nreverse front))))

(defmacro --remove-first (form list)
  "Anaphoric form of `-remove-first'."
  (declare (debug (form form)))
  `(-remove-first (lambda (it) ,form) ,list))

(defalias '-reject-first '-remove-first)
(defalias '--reject-first '--remove-first)

(defun -remove-last (pred list)
  "Return a new list with the last item matching PRED removed.

Alias: `-reject-last'

See also: `-remove', `-map-last'"
  (nreverse (-remove-first pred (reverse list))))

(defmacro --remove-last (form list)
  "Anaphoric form of `-remove-last'."
  (declare (debug (form form)))
  `(-remove-last (lambda (it) ,form) ,list))

(defalias '-reject-last '-remove-last)
(defalias '--reject-last '--remove-last)

(defun -remove-item (item list)
  "Remove all occurences of ITEM from LIST.

Comparison is done with `equal'."
  (declare (pure t) (side-effect-free t))
  (--remove (equal it item) list))

(defmacro --keep (form list)
  "Anaphoric form of `-keep'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (m (make-symbol "mapped")))
    `(let (,r)
       (--each ,list (let ((,m ,form)) (when ,m (!cons ,m ,r))))
       (nreverse ,r))))

(defun -keep (fn list)
  "Return a new list of the non-nil results of applying FN to the items in LIST.

If you want to select the original items satisfying a predicate use `-filter'."
  (--keep (funcall fn it) list))

(defun -non-nil (list)
  "Return all non-nil elements of LIST."
  (declare (pure t) (side-effect-free t))
  (-remove 'null list))

(defmacro --map-indexed (form list)
  "Anaphoric form of `-map-indexed'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list
         (!cons ,form ,r))
       (nreverse ,r))))

(defun -map-indexed (fn list)
  "Return a new list consisting of the result of (FN index item) for each item in LIST.

In the anaphoric form `--map-indexed', the index is exposed as symbol `it-index'.

See also: `-each-indexed'."
  (--map-indexed (funcall fn it-index it) list))

(defmacro --map-when (pred rep list)
  "Anaphoric form of `-map-when'."
  (declare (debug (form form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list (!cons (if ,pred ,rep it) ,r))
       (nreverse ,r))))

(defun -map-when (pred rep list)
  "Return a new list where the elements in LIST that do not match the PRED function
are unchanged, and where the elements in LIST that do match the PRED function are mapped
through the REP function.

Alias: `-replace-where'

See also: `-update-at'"
  (--map-when (funcall pred it) (funcall rep it) list))

(defalias '-replace-where '-map-when)
(defalias '--replace-where '--map-when)

(defun -map-first (pred rep list)
  "Replace first item in LIST satisfying PRED with result of REP called on this item.

See also: `-map-when', `-replace-first'"
  (let (front)
    (while (and list (not (funcall pred (car list))))
      (push (car list) front)
      (!cdr list))
    (if list
        (-concat (nreverse front) (cons (funcall rep (car list)) (cdr list)))
      (nreverse front))))

(defmacro --map-first (pred rep list)
  "Anaphoric form of `-map-first'."
  `(-map-first (lambda (it) ,pred) (lambda (it) (ignore it) ,rep) ,list))

(defun -map-last (pred rep list)
  "Replace last item in LIST satisfying PRED with result of REP called on this item.

See also: `-map-when', `-replace-last'"
  (nreverse (-map-first pred rep (reverse list))))

(defmacro --map-last (pred rep list)
  "Anaphoric form of `-map-last'."
  `(-map-last (lambda (it) ,pred) (lambda (it) (ignore it) ,rep) ,list))

(defun -replace (old new list)
  "Replace all OLD items in LIST with NEW.

Elements are compared using `equal'.

See also: `-replace-at'"
  (declare (pure t) (side-effect-free t))
  (--map-when (equal it old) new list))

(defun -replace-first (old new list)
  "Replace the first occurence of OLD with NEW in LIST.

Elements are compared using `equal'.

See also: `-map-first'"
  (declare (pure t) (side-effect-free t))
  (--map-first (equal old it) new list))

(defun -replace-last (old new list)
  "Replace the last occurence of OLD with NEW in LIST.

Elements are compared using `equal'.

See also: `-map-last'"
  (declare (pure t) (side-effect-free t))
  (--map-last (equal old it) new list))

(defmacro --mapcat (form list)
  "Anaphoric form of `-mapcat'."
  (declare (debug (form form)))
  `(apply 'append (--map ,form ,list)))

(defun -mapcat (fn list)
  "Return the concatenation of the result of mapping FN over LIST.
Thus function FN should return a list."
  (--mapcat (funcall fn it) list))

(defun -flatten (l)
  "Take a nested list L and return its contents as a single, flat list.

Note that because `nil' represents a list of zero elements (an
empty list), any mention of nil in L will disappear after
flattening.  If you need to preserve nils, consider `-flatten-n'
or map them to some unique symbol and then map them back.

Conses of two atoms are considered \"terminals\", that is, they
aren't flattened further.

See also: `-flatten-n'"
  (declare (pure t) (side-effect-free t))
  (if (and (listp l) (listp (cdr l)))
      (-mapcat '-flatten l)
    (list l)))

(defmacro --iterate (form init n)
  "Anaphoric version of `-iterate'."
  (declare (debug (form form form)))
  `(-iterate (lambda (it) ,form) ,init ,n))

(defun -flatten-n (num list)
  "Flatten NUM levels of a nested LIST.

See also: `-flatten'"
  (declare (pure t) (side-effect-free t))
  (-last-item (--iterate (--mapcat (-list it) it) list (1+ num))))

(defun -concat (&rest lists)
  "Return a new list with the concatenation of the elements in the supplied LISTS."
  (declare (pure t) (side-effect-free t))
  (apply 'append lists))

(defalias '-copy 'copy-sequence
  "Create a shallow copy of LIST.

\(fn LIST)")

(defun -splice (pred fun list)
  "Splice lists generated by FUN in place of elements matching PRED in LIST.

FUN takes the element matching PRED as input.

This function can be used as replacement for `,@' in case you
need to splice several lists at marked positions (for example
with keywords).

See also: `-splice-list', `-insert-at'"
  (let (r)
    (--each list
      (if (funcall pred it)
          (let ((new (funcall fun it)))
            (--each new (!cons it r)))
        (!cons it r)))
    (nreverse r)))

(defmacro --splice (pred form list)
  "Anaphoric form of `-splice'."
  `(-splice (lambda (it) ,pred) (lambda (it) ,form) ,list))

(defun -splice-list (pred new-list list)
  "Splice NEW-LIST in place of elements matching PRED in LIST.

See also: `-splice', `-insert-at'"
  (-splice pred (lambda (_) new-list) list))

(defmacro --splice-list (pred new-list list)
  "Anaphoric form of `-splice-list'."
  `(-splice-list (lambda (it) ,pred) ,new-list ,list))

(defun -cons* (&rest args)
  "Make a new list from the elements of ARGS.

The last 2 members of ARGS are used as the final cons of the
result so if the final member of ARGS is not a list the result is
a dotted list."
  (declare (pure t) (side-effect-free t))
  (-reduce-r 'cons args))

(defun -snoc (list elem &rest elements)
  "Append ELEM to the end of the list.

This is like `cons', but operates on the end of list.

If ELEMENTS is non nil, append these to the list as well."
  (-concat list (list elem) elements))

(defmacro --first (form list)
  "Anaphoric form of `-first'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each-while ,list (not ,n)
         (when ,form (setq ,n it)))
       ,n)))

(defun -first (pred list)
  "Return the first x in LIST where (PRED x) is non-nil, else nil.

To get the first item in the list no questions asked, use `car'.

Alias: `-find'"
  (--first (funcall pred it) list))

(defalias '-find '-first)
(defalias '--find '--first)

(defmacro --some (form list)
  "Anaphoric form of `-some'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each-while ,list (not ,n)
         (setq ,n ,form))
       ,n)))

(defun -some (pred list)
  "Return (PRED x) for the first LIST item where (PRED x) is non-nil, else nil.

Alias: `-any'"
  (--some (funcall pred it) list))

(defalias '-any '-some)
(defalias '--any '--some)

(defmacro --last (form list)
  "Anaphoric form of `-last'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each ,list
         (when ,form (setq ,n it)))
       ,n)))

(defun -last (pred list)
  "Return the last x in LIST where (PRED x) is non-nil, else nil."
  (--last (funcall pred it) list))

(defalias '-first-item 'car
  "Return the first item of LIST, or nil on an empty list.

\(fn LIST)")

;; Ensure that calls to `-first-item' are compiled to a single opcode,
;; just like `car'.
(put '-first-item 'byte-opcode 'byte-car)
(put '-first-item 'byte-compile 'byte-compile-one-arg)

;; TODO: emacs23 support, when dropped remove the condition
(eval-when-compile
  (require 'cl)
  (if (fboundp 'gv-define-simple-setter)
      (gv-define-simple-setter -first-item setcar)
    (require 'cl)
    (with-no-warnings
      (defsetf -first-item (x) (val) `(setcar ,x ,val)))))

(defun -last-item (list)
  "Return the last item of LIST, or nil on an empty list."
  (declare (pure t) (side-effect-free t))
  (car (last list)))

;; TODO: emacs23 support, when dropped remove the condition
(eval-when-compile
  (if (fboundp 'gv-define-setter)
      (gv-define-setter -last-item (val x) `(setcar (last ,x) ,val))
    (with-no-warnings
      (defsetf -last-item (x) (val) `(setcar (last ,x) ,val)))))

(defun -butlast (list)
  "Return a list of all items in list except for the last."
  ;; no alias as we don't want magic optional argument
  (declare (pure t) (side-effect-free t))
  (butlast list))

(defmacro --count (pred list)
  "Anaphoric form of `-count'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let ((,r 0))
       (--each ,list (when ,pred (setq ,r (1+ ,r))))
       ,r)))

(defun -count (pred list)
  "Counts the number of items in LIST where (PRED item) is non-nil."
  (--count (funcall pred it) list))

(defun ---truthy? (val)
  (declare (pure t) (side-effect-free t))
  (not (null val)))

(defmacro --any? (form list)
  "Anaphoric form of `-any?'."
  (declare (debug (form form)))
  `(---truthy? (--first ,form ,list)))

(defun -any? (pred list)
  "Return t if (PRED x) is non-nil for any x in LIST, else nil.

Alias: `-any-p', `-some?', `-some-p'"
  (--any? (funcall pred it) list))

(defalias '-some? '-any?)
(defalias '--some? '--any?)
(defalias '-any-p '-any?)
(defalias '--any-p '--any?)
(defalias '-some-p '-any?)
(defalias '--some-p '--any?)

(defmacro --all? (form list)
  "Anaphoric form of `-all?'."
  (declare (debug (form form)))
  (let ((a (make-symbol "all")))
    `(let ((,a t))
       (--each-while ,list ,a (setq ,a ,form))
       (---truthy? ,a))))

(defun -all? (pred list)
  "Return t if (PRED x) is non-nil for all x in LIST, else nil.

Alias: `-all-p', `-every?', `-every-p'"
  (--all? (funcall pred it) list))

(defalias '-every? '-all?)
(defalias '--every? '--all?)
(defalias '-all-p '-all?)
(defalias '--all-p '--all?)
(defalias '-every-p '-all?)
(defalias '--every-p '--all?)

(defmacro --none? (form list)
  "Anaphoric form of `-none?'."
  (declare (debug (form form)))
  `(--all? (not ,form) ,list))

(defun -none? (pred list)
  "Return t if (PRED x) is nil for all x in LIST, else nil.

Alias: `-none-p'"
  (--none? (funcall pred it) list))

(defalias '-none-p '-none?)
(defalias '--none-p '--none?)

(defmacro --only-some? (form list)
  "Anaphoric form of `-only-some?'."
  (declare (debug (form form)))
  (let ((y (make-symbol "yes"))
        (n (make-symbol "no")))
    `(let (,y ,n)
       (--each-while ,list (not (and ,y ,n))
         (if ,form (setq ,y t) (setq ,n t)))
       (---truthy? (and ,y ,n)))))

(defun -only-some? (pred list)
  "Return `t` if at least one item of LIST matches PRED and at least one item of LIST does not match PRED.
Return `nil` both if all items match the predicate or if none of the items match the predicate.

Alias: `-only-some-p'"
  (--only-some? (funcall pred it) list))

(defalias '-only-some-p '-only-some?)
(defalias '--only-some-p '--only-some?)

(defun -slice (list from &optional to step)
  "Return copy of LIST, starting from index FROM to index TO.

FROM or TO may be negative.  These values are then interpreted
modulo the length of the list.

If STEP is a number, only each STEPth item in the resulting
section is returned.  Defaults to 1."
  (declare (pure t) (side-effect-free t))
  (let ((length (length list))
        (new-list nil))
    ;; to defaults to the end of the list
    (setq to (or to length))
    (setq step (or step 1))
    ;; handle negative indices
    (when (< from 0)
      (setq from (mod from length)))
    (when (< to 0)
      (setq to (mod to length)))

    ;; iterate through the list, keeping the elements we want
    (--each-while list (< it-index to)
      (when (and (>= it-index from)
                 (= (mod (- from it-index) step) 0))
        (push it new-list)))
    (nreverse new-list)))

(defun -take (n list)
  "Return a new list of the first N items in LIST, or all items if there are fewer than N.

See also: `-take-last'"
  (declare (pure t) (side-effect-free t))
  (let (result)
    (--dotimes n
      (when list
        (!cons (car list) result)
        (!cdr list)))
    (nreverse result)))

(defun -take-last (n list)
  "Return the last N items of LIST in order.

See also: `-take'"
  (declare (pure t) (side-effect-free t))
  (copy-sequence (last list n)))

(defalias '-drop 'nthcdr
  "Return the tail of LIST without the first N items.

See also: `-drop-last'

\(fn N LIST)")

(defun -drop-last (n list)
  "Remove the last N items of LIST and return a copy.

See also: `-drop'"
  ;; No alias because we don't want magic optional argument
  (declare (pure t) (side-effect-free t))
  (butlast list n))

(defmacro --take-while (form list)
  "Anaphoric form of `-take-while'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each-while ,list ,form (!cons it ,r))
       (nreverse ,r))))

(defun -take-while (pred list)
  "Return a new list of successive items from LIST while (PRED item) returns a non-nil value."
  (--take-while (funcall pred it) list))

(defmacro --drop-while (form list)
  "Anaphoric form of `-drop-while'."
  (declare (debug (form form)))
  (let ((l (make-symbol "list")))
    `(let ((,l ,list))
       (while (and ,l (let ((it (car ,l))) ,form))
         (!cdr ,l))
       ,l)))

(defun -drop-while (pred list)
  "Return the tail of LIST starting from the first item for which (PRED item) returns nil."
  (--drop-while (funcall pred it) list))

(defun -split-at (n list)
  "Return a list of ((-take N LIST) (-drop N LIST)), in no more than one pass through the list."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (--dotimes n
      (when list
        (!cons (car list) result)
        (!cdr list)))
    (list (nreverse result) list)))

(defun -rotate (n list)
  "Rotate LIST N places to the right.  With N negative, rotate to the left.
The time complexity is O(n)."
  (declare (pure t) (side-effect-free t))
  (if (> n 0)
      (append (last list n) (butlast list n))
    (append (-drop (- n) list) (-take (- n) list))))

(defun -insert-at (n x list)
  "Return a list with X inserted into LIST at position N.

See also: `-splice', `-splice-list'"
  (declare (pure t) (side-effect-free t))
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons x (cadr split-list)))))

(defun -replace-at (n x list)
  "Return a list with element at Nth position in LIST replaced with X.

See also: `-replace'"
  (declare (pure t) (side-effect-free t))
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons x (cdr (cadr split-list))))))

(defun -update-at (n func list)
  "Return a list with element at Nth position in LIST replaced with `(func (nth n list))`.

See also: `-map-when'"
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons (funcall func (car (cadr split-list))) (cdr (cadr split-list))))))

(defmacro --update-at (n form list)
  "Anaphoric version of `-update-at'."
  (declare (debug (form form form)))
  `(-update-at ,n (lambda (it) ,form) ,list))

(defun -remove-at (n list)
  "Return a list with element at Nth position in LIST removed.

See also: `-remove-at-indices', `-remove'"
  (declare (pure t) (side-effect-free t))
  (-remove-at-indices (list n) list))

(defun -remove-at-indices (indices list)
  "Return a list whose elements are elements from LIST without
elements selected as `(nth i list)` for all i
from INDICES.

See also: `-remove-at', `-remove'"
  (declare (pure t) (side-effect-free t))
  (let* ((indices (-sort '< indices))
         (diffs (cons (car indices) (-map '1- (-zip-with '- (cdr indices) indices))))
         r)
    (--each diffs
      (let ((split (-split-at it list)))
        (!cons (car split) r)
        (setq list (cdr (cadr split)))))
    (!cons list r)
    (apply '-concat (nreverse r))))

(defmacro --split-with (pred list)
  "Anaphoric form of `-split-with'."
  (declare (debug (form form)))
  (let ((l (make-symbol "list"))
        (r (make-symbol "result"))
        (c (make-symbol "continue")))
    `(let ((,l ,list)
           (,r nil)
           (,c t))
       (while (and ,l ,c)
         (let ((it (car ,l)))
           (if (not ,pred)
               (setq ,c nil)
             (!cons it ,r)
             (!cdr ,l))))
       (list (nreverse ,r) ,l))))

(defun -split-with (pred list)
  "Return a list of ((-take-while PRED LIST) (-drop-while PRED LIST)), in no more than one pass through the list."
  (--split-with (funcall pred it) list))

(defmacro -split-on (item list)
  "Split the LIST each time ITEM is found.

Unlike `-partition-by', the ITEM is discarded from the results.
Empty lists are also removed from the result.

Comparison is done by `equal'.

See also `-split-when'"
  (declare (debug (form form)))
  `(-split-when (lambda (it) (equal it ,item)) ,list))

(defmacro --split-when (form list)
  "Anaphoric version of `-split-when'."
  (declare (debug (form form)))
  `(-split-when (lambda (it) ,form) ,list))

(defun -split-when (fn list)
  "Split the LIST on each element where FN returns non-nil.

Unlike `-partition-by', the \"matched\" element is discarded from
the results.  Empty lists are also removed from the result.

This function can be thought of as a generalization of
`split-string'."
  (let (r s)
    (while list
      (if (not (funcall fn (car list)))
          (push (car list) s)
        (when s (push (nreverse s) r))
        (setq s nil))
      (!cdr list))
    (when s (push (nreverse s) r))
    (nreverse r)))

(defmacro --separate (form list)
  "Anaphoric form of `-separate'."
  (declare (debug (form form)))
  (let ((y (make-symbol "yes"))
        (n (make-symbol "no")))
    `(let (,y ,n)
       (--each ,list (if ,form (!cons it ,y) (!cons it ,n)))
       (list (nreverse ,y) (nreverse ,n)))))

(defun -separate (pred list)
  "Return a list of ((-filter PRED LIST) (-remove PRED LIST)), in one pass through the list."
  (--separate (funcall pred it) list))

(defun ---partition-all-in-steps-reversed (n step list)
  "Private: Used by -partition-all-in-steps and -partition-in-steps."
  (when (< step 1)
    (error "Step must be a positive number, or you're looking at some juicy infinite loops."))
  (let ((result nil))
    (while list
      (!cons (-take n list) result)
      (setq list (-drop step list)))
    result))

(defun -partition-all-in-steps (n step list)
  "Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart.
The last groups may contain less than N items."
  (declare (pure t) (side-effect-free t))
  (nreverse (---partition-all-in-steps-reversed n step list)))

(defun -partition-in-steps (n step list)
  "Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart.
If there are not enough items to make the last group N-sized,
those items are discarded."
  (declare (pure t) (side-effect-free t))
  (let ((result (---partition-all-in-steps-reversed n step list)))
    (while (and result (< (length (car result)) n))
      (!cdr result))
    (nreverse result)))

(defun -partition-all (n list)
  "Return a new list with the items in LIST grouped into N-sized sublists.
The last group may contain less than N items."
  (declare (pure t) (side-effect-free t))
  (-partition-all-in-steps n n list))

(defun -partition (n list)
  "Return a new list with the items in LIST grouped into N-sized sublists.
If there are not enough items to make the last group N-sized,
those items are discarded."
  (declare (pure t) (side-effect-free t))
  (-partition-in-steps n n list))

(defmacro --partition-by (form list)
  "Anaphoric form of `-partition-by'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (s (make-symbol "sublist"))
        (v (make-symbol "value"))
        (n (make-symbol "new-value"))
        (l (make-symbol "list")))
    `(let ((,l ,list))
       (when ,l
         (let* ((,r nil)
                (it (car ,l))
                (,s (list it))
                (,v ,form)
                (,l (cdr ,l)))
           (while ,l
             (let* ((it (car ,l))
                    (,n ,form))
               (unless (equal ,v ,n)
                 (!cons (nreverse ,s) ,r)
                 (setq ,s nil)
                 (setq ,v ,n))
               (!cons it ,s)
               (!cdr ,l)))
           (!cons (nreverse ,s) ,r)
           (nreverse ,r))))))

(defun -partition-by (fn list)
  "Apply FN to each item in LIST, splitting it each time FN returns a new value."
  (--partition-by (funcall fn it) list))

(defmacro --partition-by-header (form list)
  "Anaphoric form of `-partition-by-header'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (s (make-symbol "sublist"))
        (h (make-symbol "header-value"))
        (b (make-symbol "seen-body?"))
        (n (make-symbol "new-value"))
        (l (make-symbol "list")))
    `(let ((,l ,list))
       (when ,l
         (let* ((,r nil)
                (it (car ,l))
                (,s (list it))
                (,h ,form)
                (,b nil)
                (,l (cdr ,l)))
           (while ,l
             (let* ((it (car ,l))
                    (,n ,form))
               (if (equal ,h ,n)
                   (when ,b
                     (!cons (nreverse ,s) ,r)
                     (setq ,s nil)
                     (setq ,b nil))
                 (setq ,b t))
               (!cons it ,s)
               (!cdr ,l)))
           (!cons (nreverse ,s) ,r)
           (nreverse ,r))))))

(defun -partition-by-header (fn list)
  "Apply FN to the first item in LIST. That is the header
value. Apply FN to each item in LIST, splitting it each time FN
returns the header value, but only after seeing at least one
other value (the body)."
  (--partition-by-header (funcall fn it) list))

(defun -partition-after-pred (pred list)
  "Partition directly after each time PRED is true on an element of LIST."
  (when list
    (let ((rest (-partition-after-pred pred
                                       (cdr list))))
      (if (funcall pred (car list))
          ;;split after (car list)
          (cons (list (car list))
                rest)

        ;;don't split after (car list)
        (cons (cons (car list)
                    (car rest))
              (cdr rest))))))

(defun -partition-before-pred (pred list)
  "Partition directly before each time PRED is true on an element of LIST."
  (nreverse (-map #'reverse
                  (-partition-after-pred pred (reverse list)))))

(defun -partition-after-item (item list)
  "Partition directly after each time ITEM appears in LIST."
  (-partition-after-pred (lambda (ele) (equal ele item))
                         list))

(defun -partition-before-item (item list)
  "Partition directly before each time ITEM appears in LIST."
  (-partition-before-pred (lambda (ele) (equal ele item))
                          list))

(defmacro --group-by (form list)
  "Anaphoric form of `-group-by'."
  (declare (debug t))
  (let ((n (make-symbol "n"))
        (k (make-symbol "k"))
        (grp (make-symbol "grp")))
    `(nreverse
      (-map
       (lambda (,n)
         (cons (car ,n)
               (nreverse (cdr ,n))))
       (--reduce-from
        (let* ((,k (,@form))
               (,grp (assoc ,k acc)))
          (if ,grp
              (setcdr ,grp (cons it (cdr ,grp)))
            (push
             (list ,k it)
             acc))
          acc)
        nil ,list)))))

(defun -group-by (fn list)
  "Separate LIST into an alist whose keys are FN applied to the
elements of LIST.  Keys are compared by `equal'."
  (--group-by (funcall fn it) list))

(defun -interpose (sep list)
  "Return a new list of all elements in LIST separated by SEP."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (when list
      (!cons (car list) result)
      (!cdr list))
    (while list
      (setq result (cons (car list) (cons sep result)))
      (!cdr list))
    (nreverse result)))

(defun -interleave (&rest lists)
  "Return a new list of the first item in each list, then the second etc."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (while (-none? 'null lists)
      (--each lists (!cons (car it) result))
      (setq lists (-map 'cdr lists)))
    (nreverse result)))

(defmacro --zip-with (form list1 list2)
  "Anaphoric form of `-zip-with'.

The elements in list1 are bound as symbol `it', the elements in list2 as symbol `other'."
  (declare (debug (form form form)))
  (let ((r (make-symbol "result"))
        (l1 (make-symbol "list1"))
        (l2 (make-symbol "list2")))
    `(let ((,r nil)
           (,l1 ,list1)
           (,l2 ,list2))
       (while (and ,l1 ,l2)
         (let ((it (car ,l1))
               (other (car ,l2)))
           (!cons ,form ,r)
           (!cdr ,l1)
           (!cdr ,l2)))
       (nreverse ,r))))

(defun -zip-with (fn list1 list2)
  "Zip the two lists LIST1 and LIST2 using a function FN.  This
function is applied pairwise taking as first argument element of
LIST1 and as second argument element of LIST2 at corresponding
position.

The anaphoric form `--zip-with' binds the elements from LIST1 as symbol `it',
and the elements from LIST2 as symbol `other'."
  (--zip-with (funcall fn it other) list1 list2))

(defun -zip (&rest lists)
  "Zip LISTS together.  Group the head of each list, followed by the
second elements of each list, and so on. The lengths of the returned
groupings are equal to the length of the shortest input list.

If two lists are provided as arguments, return the groupings as a list
of cons cells. Otherwise, return the groupings as a list of lists.

Please note! This distinction is being removed in an upcoming 3.0
release of Dash. If you rely on this behavior, use -zip-pair instead."
  (declare (pure t) (side-effect-free t))
  (let (results)
    (while (-none? 'null lists)
      (setq results (cons (mapcar 'car lists) results))
      (setq lists (mapcar 'cdr lists)))
    (setq results (nreverse results))
    (if (= (length lists) 2)
        ;; to support backward compatability, return
        ;; a cons cell if two lists were provided
        (--map (cons (car it) (cadr it)) results)
      results)))

(defalias '-zip-pair '-zip)

(defun -zip-fill (fill-value &rest lists)
  "Zip LISTS, with FILL-VALUE padded onto the shorter lists. The
lengths of the returned groupings are equal to the length of the
longest input list."
  (declare (pure t) (side-effect-free t))
  (apply '-zip (apply '-pad (cons fill-value lists))))

(defun -unzip (lists)
  "Unzip LISTS.

This works just like `-zip' but takes a list of lists instead of
a variable number of arguments, such that

  (-unzip (-zip L1 L2 L3 ...))

is identity (given that the lists are the same length).

See also: `-zip'"
  (apply '-zip lists))

(defun -cycle (list)
  "Return an infinite copy of LIST that will cycle through the
elements and repeat from the beginning."
  (declare (pure t) (side-effect-free t))
  (let ((newlist (-map 'identity list)))
    (nconc newlist newlist)))

(defun -pad (fill-value &rest lists)
  "Appends FILL-VALUE to the end of each list in LISTS such that they
will all have the same length."
  (let* ((annotations (-annotate 'length lists))
         (n (-max (-map 'car annotations))))
    (--map (append (cdr it) (-repeat (- n (car it)) fill-value)) annotations)))

(defun -annotate (fn list)
  "Return a list of cons cells where each cell is FN applied to each
element of LIST paired with the unmodified element of LIST."
  (-zip (-map fn list) list))

(defmacro --annotate (form list)
  "Anaphoric version of `-annotate'."
  (declare (debug (form form)))
  `(-annotate (lambda (it) ,form) ,list))

(defun dash--table-carry (lists restore-lists &optional re)
  "Helper for `-table' and `-table-flat'.

If a list overflows, carry to the right and reset the list."
  (while (not (or (car lists)
                  (equal lists '(nil))))
    (setcar lists (car restore-lists))
    (pop (cadr lists))
    (!cdr lists)
    (!cdr restore-lists)
    (when re
      (push (nreverse (car re)) (cadr re))
      (setcar re nil)
      (!cdr re))))

(defun -table (fn &rest lists)
  "Compute outer product of LISTS using function FN.

The function FN should have the same arity as the number of
supplied lists.

The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The dimension of the result is (length lists).

See also: `-table-flat'"
  (let ((restore-lists (copy-sequence lists))
        (last-list (last lists))
        (re (make-list (length lists) nil)))
    (while (car last-list)
      (let ((item (apply fn (-map 'car lists))))
        (push item (car re))
        (setcar lists (cdar lists)) ;; silence byte compiler
        (dash--table-carry lists restore-lists re)))
    (nreverse (car (last re)))))

(defun -table-flat (fn &rest lists)
  "Compute flat outer product of LISTS using function FN.

The function FN should have the same arity as the number of
supplied lists.

The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The results are flattened, ignoring the tensor structure
of the result.  This is equivalent to calling:

  (-flatten-n (1- (length lists)) (apply '-table fn lists))

but the implementation here is much more efficient.

See also: `-flatten-n', `-table'"
  (let ((restore-lists (copy-sequence lists))
        (last-list (last lists))
        re)
    (while (car last-list)
      (let ((item (apply fn (-map 'car lists))))
        (push item re)
        (setcar lists (cdar lists)) ;; silence byte compiler
        (dash--table-carry lists restore-lists)))
    (nreverse re)))

(defun -partial (fn &rest args)
  "Take a function FN and fewer than the normal arguments to FN,
and return a fn that takes a variable number of additional ARGS.
When called, the returned function calls FN with ARGS first and
then additional args."
  (apply 'apply-partially fn args))

(defun -elem-index (elem list)
  "Return the index of the first element in the given LIST which
is equal to the query element ELEM, or nil if there is no
such element."
  (declare (pure t) (side-effect-free t))
  (car (-elem-indices elem list)))

(defun -elem-indices (elem list)
  "Return the indices of all elements in LIST equal to the query
element ELEM, in ascending order."
  (declare (pure t) (side-effect-free t))
  (-find-indices (-partial 'equal elem) list))

(defun -find-indices (pred list)
  "Return the indices of all elements in LIST satisfying the
predicate PRED, in ascending order."
  (apply 'append (--map-indexed (when (funcall pred it) (list it-index)) list)))

(defmacro --find-indices (form list)
  "Anaphoric version of `-find-indices'."
  (declare (debug (form form)))
  `(-find-indices (lambda (it) ,form) ,list))

(defun -find-index (pred list)
  "Take a predicate PRED and a LIST and return the index of the
first element in the list satisfying the predicate, or nil if
there is no such element.

See also `-first'."
  (car (-find-indices pred list)))

(defmacro --find-index (form list)
  "Anaphoric version of `-find-index'."
  (declare (debug (form form)))
  `(-find-index (lambda (it) ,form) ,list))

(defun -find-last-index (pred list)
  "Take a predicate PRED and a LIST and return the index of the
last element in the list satisfying the predicate, or nil if
there is no such element.

See also `-last'."
  (-last-item (-find-indices pred list)))

(defmacro --find-last-index (form list)
  "Anaphoric version of `-find-last-index'."
  `(-find-last-index (lambda (it) ,form) ,list))

(defun -select-by-indices (indices list)
  "Return a list whose elements are elements from LIST selected
as `(nth i list)` for all i from INDICES."
  (declare (pure t) (side-effect-free t))
  (let (r)
    (--each indices
      (!cons (nth it list) r))
    (nreverse r)))

(defun -select-columns (columns table)
  "Select COLUMNS from TABLE.

TABLE is a list of lists where each element represents one row.
It is assumed each row has the same length.

Each row is transformed such that only the specified COLUMNS are
selected.

See also: `-select-column', `-select-by-indices'"
  (declare (pure t) (side-effect-free t))
  (--map (-select-by-indices columns it) table))

(defun -select-column (column table)
  "Select COLUMN from TABLE.

TABLE is a list of lists where each element represents one row.
It is assumed each row has the same length.

The single selected column is returned as a list.

See also: `-select-columns', `-select-by-indices'"
  (declare (pure t) (side-effect-free t))
  (--mapcat (-select-by-indices (list column) it) table))

(defmacro -> (x &optional form &rest more)
  "Thread the expr through the forms. Insert X as the second item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
second item in second form, etc."
  (declare (debug (form &rest [&or symbolp (sexp &rest form)])))
  (cond
   ((null form) x)
   ((null more) (if (listp form)
                    `(,(car form) ,x ,@(cdr form))
                  (list form x)))
   (:else `(-> (-> ,x ,form) ,@more))))

(defmacro ->> (x &optional form &rest more)
  "Thread the expr through the forms. Insert X as the last item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
last item in second form, etc."
  (declare (debug ->))
  (cond
   ((null form) x)
   ((null more) (if (listp form)
                    `(,@form ,x)
                  (list form x)))
   (:else `(->> (->> ,x ,form) ,@more))))

(defmacro --> (x &rest forms)
  "Starting with the value of X, thread each expression through FORMS.

Insert X at the position signified by the symbol `it' in the first
form.  If there are more forms, insert the first form at the position
signified by `it' in in second form, etc."
  (declare (debug (form body)))
  `(-as-> ,x it ,@forms))

(defmacro -as-> (value variable &rest forms)
  "Starting with VALUE, thread VARIABLE through FORMS.

In the first form, bind VARIABLE to VALUE.  In the second form, bind
VARIABLE to the result of the first form, and so forth."
  (declare (debug (form symbolp body)))
  (if (null forms)
      `,value
    `(let ((,variable ,value))
       (-as-> ,(if (symbolp (car forms))
                 (list (car forms) variable)
               (car forms))
            ,variable
              ,@(cdr forms)))))

(defmacro -some-> (x &optional form &rest more)
  "When expr is non-nil, thread it through the first form (via `->'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some-> (-when-let (,result ,x)
                  (-> ,result ,form))
                ,@more))))

(defmacro -some->> (x &optional form &rest more)
  "When expr is non-nil, thread it through the first form (via `->>'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some->> (-when-let (,result ,x)
                   (->> ,result ,form))
                 ,@more))))

(defmacro -some--> (x &optional form &rest more)
  "When expr in non-nil, thread it through the first form (via `-->'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some--> (-when-let (,result ,x)
                   (--> ,result ,form))
                 ,@more))))

(defun -grade-up (comparator list)
  "Grade elements of LIST using COMPARATOR relation, yielding a
permutation vector such that applying this permutation to LIST
sorts it in ascending order."
  ;; ugly hack to "fix" lack of lexical scope
  (let ((comp `(lambda (it other) (funcall ',comparator (car it) (car other)))))
    (->> (--map-indexed (cons it it-index) list)
         (-sort comp)
         (-map 'cdr))))

(defun -grade-down (comparator list)
  "Grade elements of LIST using COMPARATOR relation, yielding a
permutation vector such that applying this permutation to LIST
sorts it in descending order."
  ;; ugly hack to "fix" lack of lexical scope
  (let ((comp `(lambda (it other) (funcall ',comparator (car other) (car it)))))
    (->> (--map-indexed (cons it it-index) list)
         (-sort comp)
         (-map 'cdr))))

(defvar dash--source-counter 0
  "Monotonic counter for generated symbols.")

(defun dash--match-make-source-symbol ()
  "Generate a new dash-source symbol.

All returned symbols are guaranteed to be unique."
  (prog1 (make-symbol (format "--dash-source-%d--" dash--source-counter))
    (setq dash--source-counter (1+ dash--source-counter))))

(defun dash--match-ignore-place-p (symbol)
  "Return non-nil if SYMBOL is a symbol and starts with _."
  (and (symbolp symbol)
       (eq (aref (symbol-name symbol) 0) ?_)))

(defun dash--match-cons-skip-cdr (skip-cdr source)
  "Helper function generating idiomatic shifting code."
  (cond
   ((= skip-cdr 0)
    `(pop ,source))
   (t
    `(prog1 ,(dash--match-cons-get-car skip-cdr source)
       (setq ,source ,(dash--match-cons-get-cdr (1+ skip-cdr) source))))))

(defun dash--match-cons-get-car (skip-cdr source)
  "Helper function generating idiomatic code to get nth car."
  (cond
   ((= skip-cdr 0)
    `(car ,source))
   ((= skip-cdr 1)
    `(cadr ,source))
   (t
    `(nth ,skip-cdr ,source))))

(defun dash--match-cons-get-cdr (skip-cdr source)
  "Helper function generating idiomatic code to get nth cdr."
  (cond
   ((= skip-cdr 0)
    source)
   ((= skip-cdr 1)
    `(cdr ,source))
   (t
    `(nthcdr ,skip-cdr ,source))))

(defun dash--match-cons (match-form source)
  "Setup a cons matching environment and call the real matcher."
  (let ((s (dash--match-make-source-symbol))
        (n 0)
        (m match-form))
    (while (and (consp m)
                (dash--match-ignore-place-p (car m)))
      (setq n (1+ n)) (!cdr m))
    (cond
     ;; when we only have one pattern in the list, we don't have to
     ;; create a temporary binding (--dash-source--) for the source
     ;; and just use the input directly
     ((and (consp m)
           (not (cdr m)))
      (dash--match (car m) (dash--match-cons-get-car n source)))
     ;; handle other special types
     ((> n 0)
      (dash--match m (dash--match-cons-get-cdr n source)))
     ;; this is the only entry-point for dash--match-cons-1, that's
     ;; why we can't simply use the above branch, it would produce
     ;; infinite recursion
     (t
      (cons (list s source) (dash--match-cons-1 match-form s))))))

(defun dash--match-cons-1 (match-form source &optional props)
  "Match MATCH-FORM against SOURCE.

MATCH-FORM is a proper or improper list.  Each element of
MATCH-FORM is either a symbol, which gets bound to the respective
value in source or another match form which gets destructured
recursively.

If the cdr of last cons cell in the list is `nil', matching stops
there.

SOURCE is a proper or improper list."
  (let ((skip-cdr (or (plist-get props :skip-cdr) 0)))
    (cond
     ((consp match-form)
      (cond
       ((cdr match-form)
        (cond
         ((and (symbolp (car match-form))
               (memq (car match-form) '(&keys &plist &alist &hash)))
          (dash--match-kv match-form (dash--match-cons-get-cdr skip-cdr source)))
         ((dash--match-ignore-place-p (car match-form))
          (dash--match-cons-1 (cdr match-form) source
                              (plist-put props :skip-cdr (1+ skip-cdr))))
         (t
          (-concat (dash--match (car match-form) (dash--match-cons-skip-cdr skip-cdr source))
                   (dash--match-cons-1 (cdr match-form) source)))))
       (t ;; Last matching place, no need for shift
        (dash--match (car match-form) (dash--match-cons-get-car skip-cdr source)))))
     ((eq match-form nil)
      nil)
     (t ;; Handle improper lists.  Last matching place, no need for shift
      (dash--match match-form (dash--match-cons-get-cdr skip-cdr source))))))

(defun dash--vector-tail (seq start)
  "Return the tail of SEQ starting at START."
  (cond
   ((vectorp seq)
    (let* ((re-length (- (length seq) start))
           (re (make-vector re-length 0)))
      (--dotimes re-length (aset re it (aref seq (+ it start))))
      re))
   ((stringp seq)
    (substring seq start))))

(defun dash--match-vector (match-form source)
  "Setup a vector matching environment and call the real matcher."
  (let ((s (dash--match-make-source-symbol)))
    (cond
     ;; don't bind `s' if we only have one sub-pattern
     ((= (length match-form) 1)
      (dash--match (aref match-form 0) `(aref ,source 0)))
     ;; if the source is a symbol, we don't need to re-bind it
     ((symbolp source)
      (dash--match-vector-1 match-form source))
     ;; don't bind `s' if we only have one sub-pattern which is not ignored
     ((let* ((ignored-places (mapcar 'dash--match-ignore-place-p match-form))
             (ignored-places-n (length (-remove 'null ignored-places))))
        (when (= ignored-places-n (1- (length match-form)))
          (let ((n (-find-index 'null ignored-places)))
            (dash--match (aref match-form n) `(aref ,source ,n))))))
     (t
      (cons (list s source) (dash--match-vector-1 match-form s))))))

(defun dash--match-vector-1 (match-form source)
  "Match MATCH-FORM against SOURCE.

MATCH-FORM is a vector.  Each element of MATCH-FORM is either a
symbol, which gets bound to the respective value in source or
another match form which gets destructured recursively.

If second-from-last place in MATCH-FORM is the symbol &rest, the
next element of the MATCH-FORM is matched against the tail of
SOURCE, starting at index of the &rest symbol.  This is
conceptually the same as the (head . tail) match for improper
lists, where dot plays the role of &rest.

SOURCE is a vector.

If the MATCH-FORM vector is shorter than SOURCE vector, only
the (length MATCH-FORM) places are bound, the rest of the SOURCE
is discarded."
  (let ((i 0)
        (l (length match-form))
        (re))
    (while (< i l)
      (let ((m (aref match-form i)))
        (push (cond
               ((and (symbolp m)
                     (eq m '&rest))
                (prog1 (dash--match
                        (aref match-form (1+ i))
                        `(dash--vector-tail ,source ,i))
                  (setq i l)))
               ((and (symbolp m)
                     ;; do not match symbols starting with _
                     (not (eq (aref (symbol-name m) 0) ?_)))
                (list (list m `(aref ,source ,i))))
               ((not (symbolp m))
                (dash--match m `(aref ,source ,i))))
              re)
        (setq i (1+ i))))
    (-flatten-n 1 (nreverse re))))

(defun dash--match-kv (match-form source)
  "Setup a kv matching environment and call the real matcher.

kv can be any key-value store, such as plist, alist or hash-table."
  (let ((s (dash--match-make-source-symbol)))
    (cond
     ;; don't bind `s' if we only have one sub-pattern (&type key val)
     ((= (length match-form) 3)
      (dash--match-kv-1 (cdr match-form) source (car match-form)))
     ;; if the source is a symbol, we don't need to re-bind it
     ((symbolp source)
      (dash--match-kv-1 (cdr match-form) source (car match-form)))
     (t
      (cons (list s source) (dash--match-kv-1 (cdr match-form) s (car match-form)))))))

(defun dash--match-kv-1 (match-form source type)
  "Match MATCH-FORM against SOURCE of type TYPE.

MATCH-FORM is a proper list of the form (key1 place1 ... keyN
placeN).  Each placeK is either a symbol, which gets bound to the
value of keyK retrieved from the key-value store, or another
match form which gets destructured recursively.

SOURCE is a key-value store of type TYPE, which can be a plist,
an alist or a hash table.

TYPE is a token specifying the type of the key-value store.
Valid values are &plist, &alist and &hash."
  (-flatten-n 1 (-map
                 (lambda (kv)
                   (let* ((k (car kv))
                          (v (cadr kv))
                          (getter (cond
                                   ((or (eq type '&plist) (eq type '&keys))
                                    `(plist-get ,source ,k))
                                   ((eq type '&alist)
                                    `(cdr (assoc ,k ,source)))
                                   ((eq type '&hash)
                                    `(gethash ,k ,source)))))
                     (cond
                      ((symbolp v)
                       (list (list v getter)))
                      (t (dash--match v getter)))))
                 (-partition 2 match-form))))

(defun dash--match-symbol (match-form source)
  "Bind a symbol.

This works just like `let', there is no destructuring."
  (list (list match-form source)))

(defun dash--match (match-form source)
  "Match MATCH-FORM against SOURCE.

This function tests the MATCH-FORM and dispatches to specific
matchers based on the type of the expression.

Key-value stores are disambiguated by placing a token &plist,
&alist or &hash as a first item in the MATCH-FORM."
  (cond
   ((symbolp match-form)
    (dash--match-symbol match-form source))
   ((consp match-form)
    (cond
     ;; Handle the "x &as" bindings first.
     ((and (consp (cdr match-form))
           (symbolp (car match-form))
           (eq '&as (cadr match-form)))
      (let ((s (car match-form)))
        (cons (list s source)
              (dash--match (cddr match-form) s))))
     ((memq (car match-form) '(&keys &plist &alist &hash))
      (dash--match-kv match-form source))
     (t (dash--match-cons match-form source))))
   ((vectorp match-form)
    ;; We support the &as binding in vectors too
    (cond
     ((and (> (length match-form) 2)
           (symbolp (aref match-form 0))
           (eq '&as (aref match-form 1)))
      (let ((s (aref match-form 0)))
        (cons (list s source)
              (dash--match (dash--vector-tail match-form 2) s))))
     (t (dash--match-vector match-form source))))))

(defmacro -let* (varlist &rest body)
  "Bind variables according to VARLIST then eval BODY.

VARLIST is a list of lists of the form (PATTERN SOURCE).  Each
PATTERN is matched against the SOURCE structurally.  SOURCE is
only evaluated once for each PATTERN.

Each SOURCE can refer to the symbols already bound by this
VARLIST.  This is useful if you want to destructure SOURCE
recursively but also want to name the intermediate structures.

See `-let' for the list of all possible patterns."
  (declare (debug ((&rest (sexp form)) body))
           (indent 1))
  (let ((bindings (--mapcat (dash--match (car it) (cadr it)) varlist)))
    `(let* ,bindings
       ,@body)))

(defmacro -let (varlist &rest body)
  "Bind variables according to VARLIST then eval BODY.

VARLIST is a list of lists of the form (PATTERN SOURCE).  Each
PATTERN is matched against the SOURCE \"structurally\".  SOURCE
is only evaluated once for each PATTERN.  Each PATTERN is matched
recursively, and can therefore contain sub-patterns which are
matched against corresponding sub-expressions of SOURCE.

All the SOURCEs are evalled before any symbols are
bound (i.e. \"in parallel\").

If VARLIST only contains one (PATTERN SOURCE) element, you can
optionally specify it using a vector and discarding the
outer-most parens.  Thus

  (-let ((PATTERN SOURCE)) ..)

becomes

  (-let [PATTERN SOURCE] ..).

`-let' uses a convention of not binding places (symbols) starting
with _ whenever it's possible.  You can use this to skip over
entries you don't care about.  However, this is not *always*
possible (as a result of implementation) and these symbols might
get bound to undefined values.

Following is the overview of supported patterns.  Remember that
patterns can be matched recursively, so every a, b, aK in the
following can be a matching construct and not necessarily a
symbol/variable.

Symbol:

  a - bind the SOURCE to A.  This is just like regular `let'.

Conses and lists:

  (a) - bind `car' of cons/list to A

  (a . b) - bind car of cons to A and `cdr' to B

  (a b) - bind car of list to A and `cadr' to B

  (a1 a2 a3  ...) - bind 0th car of list to A1, 1st to A2, 2nd to A3 ...

  (a1 a2 a3 ... aN . rest) - as above, but bind the Nth cdr to REST.

Vectors:

  [a] - bind 0th element of a non-list sequence to A (works with
        vectors, strings, bit arrays...)

  [a1 a2 a3 ...] - bind 0th element of non-list sequence to A0, 1st to
                   A1, 2nd to A2, ...
                   If the PATTERN is shorter than SOURCE, the values at
                   places not in PATTERN are ignored.
                   If the PATTERN is longer than SOURCE, an `error' is
                   thrown.

  [a1 a2 a3 ... &rest rest] - as above, but bind the rest of
                              the sequence to REST.  This is
                              conceptually the same as improper list
                              matching (a1 a2 ... aN . rest)

Key/value stores:

  (&plist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                 SOURCE plist to aK.  If the
                                 value is not found, aK is nil.

  (&alist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                 SOURCE alist to aK.  If the
                                 value is not found, aK is nil.

  (&hash key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                SOURCE hash table to aK.  If the
                                value is not found, aK is nil.

Further, special keyword &keys supports \"inline\" matching of
plist-like key-value pairs, similarly to &keys keyword of
`cl-defun'.

  (a1 a2 ... aN &keys key1 b1 ... keyN bK)

This binds N values from the list to a1 ... aN, then interprets
the cdr as a plist (see key/value matching above).

You can name the source using the syntax SYMBOL &as PATTERN.
This syntax works with lists (proper or improper), vectors and
all types of maps.

  (list &as a b c) (list 1 2 3)

binds A to 1, B to 2, C to 3 and LIST to (1 2 3).

Similarly:

  (bounds &as beg . end) (cons 1 2)

binds BEG to 1, END to 2 and BOUNDS to (1 . 2).

  (items &as first . rest) (list 1 2 3)

binds FIRST to 1, REST to (2 3) and ITEMS to (1 2 3)

  [vect &as _ b c] [1 2 3]

binds B to 2, C to 3 and VECT to [1 2 3] (_ avoids binding as usual).

  (plist &as &plist :b b) (list :a 1 :b 2 :c 3)

binds B to 2 and PLIST to (:a 1 :b 2 :c 3).  Same for &alist and &hash.

This is especially useful when we want to capture the result of a
computation and destructure at the same time.  Consider the
form (function-returning-complex-structure) returning a list of
two vectors with two items each.  We want to capture this entire
result and pass it to another computation, but at the same time
we want to get the second item from each vector.  We can achieve
it with pattern

  (result &as [_ a] [_ b]) (function-returning-complex-structure)

Note: Clojure programmers may know this feature as the \":as
binding\".  The difference is that we put the &as at the front
because we need to support improper list binding."
  (declare (debug ([&or (&rest (sexp form))
                        (vector [&rest [sexp form]])]
                   body))
           (indent 1))
  (if (vectorp varlist)
      `(let* ,(dash--match (aref varlist 0) (aref varlist 1))
         ,@body)
    (let* ((inputs (--map-indexed (list (make-symbol (format "input%d" it-index)) (cadr it)) varlist))
           (new-varlist (--map (list (caar it) (cadr it)) (-zip varlist inputs))))
      `(let ,inputs
         (-let* ,new-varlist ,@body)))))

(defmacro -lambda (match-form &rest body)
  "Return a lambda which destructures its input as MATCH-FORM and executes BODY.

Note that you have to enclose the MATCH-FORM in a pair of parens,
such that:

  (-lambda (x) body)
  (-lambda (x y ...) body)

has the usual semantics of `lambda'.  Furthermore, these get
translated into normal lambda, so there is no performance
penalty.

See `-let' for the description of destructuring mechanism."
  (declare (doc-string 2) (indent defun)
           (debug (&define sexp
                           [&optional stringp]
                           [&optional ("interactive" interactive)]
                           def-body)))
  (cond
   ((not (consp match-form))
    (signal 'wrong-type-argument "match-form must be a list"))
   ;; no destructuring, so just return regular lambda to make things faster
   ((-all? 'symbolp match-form)
    `(lambda ,match-form ,@body))
   (t
    (let* ((inputs (--map-indexed (list it (make-symbol (format "input%d" it-index))) match-form)))
      ;; TODO: because inputs to the lambda are evaluated only once,
      ;; -let* need not to create the extra bindings to ensure that.
      ;; We should find a way to optimize that.  Not critical however.
      `(lambda ,(--map (cadr it) inputs)
         (-let* ,inputs ,@body))))))

(defmacro -if-let* (vars-vals then &rest else)
  "If all VALS evaluate to true, bind them to their corresponding
VARS and do THEN, otherwise do ELSE. VARS-VALS should be a list
of (VAR VAL) pairs.

Note: binding is done according to `-let*'.  VALS are evaluated
sequentially, and evaluation stops after the first nil VAL is
encountered."
  (declare (debug ((&rest (sexp form)) form body))
           (indent 2))
  (->> vars-vals
       (--mapcat (dash--match (car it) (cadr it)))
       (--reduce-r-from
        (let ((var (car it))
              (val (cadr it)))
          `(let ((,var ,val))
             (if ,var ,acc ,@else)))
        then)))

(defmacro -if-let (var-val then &rest else)
  "If VAL evaluates to non-nil, bind it to VAR and do THEN,
otherwise do ELSE.

Note: binding is done according to `-let'.

\(fn (VAR VAL) THEN &rest ELSE)"
  (declare (debug ((sexp form) form body))
           (indent 2))
  `(-if-let* (,var-val) ,then ,@else))

(defmacro --if-let (val then &rest else)
  "If VAL evaluates to non-nil, bind it to symbol `it' and do THEN,
otherwise do ELSE."
  (declare (debug (form form body))
           (indent 2))
  `(-if-let (it ,val) ,then ,@else))

(defmacro -when-let* (vars-vals &rest body)
  "If all VALS evaluate to true, bind them to their corresponding
VARS and execute body. VARS-VALS should be a list of (VAR VAL)
pairs.

Note: binding is done according to `-let*'.  VALS are evaluated
sequentially, and evaluation stops after the first nil VAL is
encountered."
  (declare (debug ((&rest (sexp form)) body))
           (indent 1))
  `(-if-let* ,vars-vals (progn ,@body)))

(defmacro -when-let (var-val &rest body)
  "If VAL evaluates to non-nil, bind it to VAR and execute body.

Note: binding is done according to `-let'.

\(fn (VAR VAL) &rest BODY)"
  (declare (debug ((sexp form) body))
           (indent 1))
  `(-if-let ,var-val (progn ,@body)))

(defmacro --when-let (val &rest body)
  "If VAL evaluates to non-nil, bind it to symbol `it' and
execute body."
  (declare (debug (form body))
           (indent 1))
  `(--if-let ,val (progn ,@body)))

(defvar -compare-fn nil
  "Tests for equality use this function or `equal' if this is nil.
It should only be set using dynamic scope with a let, like:

  (let ((-compare-fn #'=)) (-union numbers1 numbers2 numbers3)")

(defun -distinct (list)
  "Return a new list with all duplicates removed.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil.

Alias: `-uniq'"
  (let (result)
    (--each list (unless (-contains? result it) (!cons it result)))
    (nreverse result)))

(defalias '-uniq '-distinct)

(defun -union (list list2)
  "Return a new list containing the elements of LIST and elements of LIST2 that are not in LIST.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  ;; We fall back to iteration implementation if the comparison
  ;; function isn't one of `eq', `eql' or `equal'.
  (let* ((result (reverse list))
         ;; TODO: get rid of this dynamic variable, pass it as an
         ;; argument instead.
         (-compare-fn (if (bound-and-true-p -compare-fn)
                          -compare-fn
                        'equal)))
    (if (memq -compare-fn '(eq eql equal))
        (let ((ht (make-hash-table :test -compare-fn)))
          (--each list (puthash it t ht))
          (--each list2 (unless (gethash it ht) (!cons it result))))
      (--each list2 (unless (-contains? result it) (!cons it result))))
    (nreverse result)))

(defun -intersection (list list2)
  "Return a new list containing only the elements that are members of both LIST and LIST2.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  (--filter (-contains? list2 it) list))

(defun -difference (list list2)
  "Return a new list with only the members of LIST that are not in LIST2.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  (--filter (not (-contains? list2 it)) list))

(defun -powerset (list)
  "Return the power set of LIST."
  (if (null list) '(())
    (let ((last (-powerset (cdr list))))
      (append (mapcar (lambda (x) (cons (car list) x)) last)
              last))))

(defun -permutations (list)
  "Return the permutations of LIST."
  (if (null list) '(())
    (apply #'append
           (mapcar (lambda (x)
                     (mapcar (lambda (perm) (cons x perm))
                             (-permutations (remove x list))))
                   list))))

(defun -contains? (list element)
  "Return non-nil if LIST contains ELEMENT.

The test for equality is done with `equal', or with `-compare-fn'
if that's non-nil.

Alias: `-contains-p'"
  (not
   (null
    (cond
     ((null -compare-fn)    (member element list))
     ((eq -compare-fn 'eq)  (memq element list))
     ((eq -compare-fn 'eql) (memql element list))
     (t
      (let ((lst list))
        (while (and lst
                    (not (funcall -compare-fn element (car lst))))
          (setq lst (cdr lst)))
        lst))))))

(defalias '-contains-p '-contains?)

(defun -same-items? (list list2)
  "Return true if LIST and LIST2 has the same items.

The order of the elements in the lists does not matter.

Alias: `-same-items-p'"
  (let ((length-a (length list))
        (length-b (length list2)))
    (and
     (= length-a length-b)
     (= length-a (length (-intersection list list2))))))

(defalias '-same-items-p '-same-items?)

(defun -is-prefix? (prefix list)
  "Return non-nil if PREFIX is prefix of LIST.

Alias: `-is-prefix-p'"
  (declare (pure t) (side-effect-free t))
  (--each-while list (equal (car prefix) it)
    (!cdr prefix))
  (not prefix))

(defun -is-suffix? (suffix list)
  "Return non-nil if SUFFIX is suffix of LIST.

Alias: `-is-suffix-p'"
  (declare (pure t) (side-effect-free t))
  (-is-prefix? (reverse suffix) (reverse list)))

(defun -is-infix? (infix list)
  "Return non-nil if INFIX is infix of LIST.

This operation runs in O(n^2) time

Alias: `-is-infix-p'"
  (declare (pure t) (side-effect-free t))
  (let (done)
    (while (and (not done) list)
      (setq done (-is-prefix? infix list))
      (!cdr list))
    done))

(defalias '-is-prefix-p '-is-prefix?)
(defalias '-is-suffix-p '-is-suffix?)
(defalias '-is-infix-p '-is-infix?)

(defun -sort (comparator list)
  "Sort LIST, stably, comparing elements using COMPARATOR.
Return the sorted list.  LIST is NOT modified by side effects.
COMPARATOR is called with two elements of LIST, and should return non-nil
if the first element should sort before the second."
  (sort (copy-sequence list) comparator))

(defmacro --sort (form list)
  "Anaphoric form of `-sort'."
  (declare (debug (form form)))
  `(-sort (lambda (it other) ,form) ,list))

(defun -list (&rest args)
  "Return a list with ARGS.

If first item of ARGS is already a list, simply return ARGS.  If
not, return a list with ARGS as elements."
  (declare (pure t) (side-effect-free t))
  (let ((arg (car args)))
    (if (listp arg) arg args)))

(defun -repeat (n x)
  "Return a list with X repeated N times.
Return nil if N is less than 1."
  (declare (pure t) (side-effect-free t))
  (let (ret)
    (--dotimes n (!cons x ret))
    ret))

(defun -sum (list)
  "Return the sum of LIST."
  (declare (pure t) (side-effect-free t))
  (apply '+ list))

(defun -product (list)
  "Return the product of LIST."
  (declare (pure t) (side-effect-free t))
  (apply '* list))

(defun -max (list)
  "Return the largest value from LIST of numbers or markers."
  (declare (pure t) (side-effect-free t))
  (apply 'max list))

(defun -min (list)
  "Return the smallest value from LIST of numbers or markers."
  (declare (pure t) (side-effect-free t))
  (apply 'min list))

(defun -max-by (comparator list)
  "Take a comparison function COMPARATOR and a LIST and return
the greatest element of the list by the comparison function.

See also combinator `-on' which can transform the values before
comparing them."
  (--reduce (if (funcall comparator it acc) it acc) list))

(defun -min-by (comparator list)
  "Take a comparison function COMPARATOR and a LIST and return
the least element of the list by the comparison function.

See also combinator `-on' which can transform the values before
comparing them."
  (--reduce (if (funcall comparator it acc) acc it) list))

(defmacro --max-by (form list)
  "Anaphoric version of `-max-by'.

The items for the comparator form are exposed as \"it\" and \"other\"."
  (declare (debug (form form)))
  `(-max-by (lambda (it other) ,form) ,list))

(defmacro --min-by (form list)
  "Anaphoric version of `-min-by'.

The items for the comparator form are exposed as \"it\" and \"other\"."
  (declare (debug (form form)))
  `(-min-by (lambda (it other) ,form) ,list))

(defun -iterate (fun init n)
  "Return a list of iterated applications of FUN to INIT.

This means a list of form:

  (init (fun init) (fun (fun init)) ...)

N is the length of the returned list."
  (if (= n 0) nil
    (let ((r (list init)))
      (--dotimes (1- n)
        (push (funcall fun (car r)) r))
      (nreverse r))))

(defun -fix (fn list)
  "Compute the (least) fixpoint of FN with initial input LIST.

FN is called at least once, results are compared with `equal'."
  (let ((re (funcall fn list)))
    (while (not (equal list re))
      (setq list re)
      (setq re (funcall fn re)))
    re))

(defmacro --fix (form list)
  "Anaphoric form of `-fix'."
  `(-fix (lambda (it) ,form) ,list))

(defun -unfold (fun seed)
  "Build a list from SEED using FUN.

This is \"dual\" operation to `-reduce-r': while -reduce-r
consumes a list to produce a single value, `-unfold' takes a
seed value and builds a (potentially infinite!) list.

FUN should return `nil' to stop the generating process, or a
cons (A . B), where A will be prepended to the result and B is
the new seed."
  (let ((last (funcall fun seed)) r)
    (while last
      (push (car last) r)
      (setq last (funcall fun (cdr last))))
    (nreverse r)))

(defmacro --unfold (form seed)
  "Anaphoric version of `-unfold'."
  (declare (debug (form form)))
  `(-unfold (lambda (it) ,form) ,seed))

(defun -cons-pair? (con)
  "Return non-nil if CON is true cons pair.
That is (A . B) where B is not a list."
  (declare (pure t) (side-effect-free t))
  (and (listp con)
       (not (listp (cdr con)))))

(defun -cons-to-list (con)
  "Convert a cons pair to a list with `car' and `cdr' of the pair respectively."
  (declare (pure t) (side-effect-free t))
  (list (car con) (cdr con)))

(defun -value-to-list (val)
  "Convert a value to a list.

If the value is a cons pair, make a list with two elements, `car'
and `cdr' of the pair respectively.

If the value is anything else, wrap it in a list."
  (declare (pure t) (side-effect-free t))
  (cond
   ((-cons-pair? val) (-cons-to-list val))
   (t (list val))))

(defun -tree-mapreduce-from (fn folder init-value tree)
  "Apply FN to each element of TREE, and make a list of the results.
If elements of TREE are lists themselves, apply FN recursively to
elements of these nested lists.

Then reduce the resulting lists using FOLDER and initial value
INIT-VALUE. See `-reduce-r-from'.

This is the same as calling `-tree-reduce-from' after `-tree-map'
but is twice as fast as it only traverse the structure once."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (-reduce-r-from folder init-value (mapcar (lambda (x) (-tree-mapreduce-from fn folder init-value x)) tree)))
   (t (funcall fn tree))))

(defmacro --tree-mapreduce-from (form folder init-value tree)
  "Anaphoric form of `-tree-mapreduce-from'."
  (declare (debug (form form form form)))
  `(-tree-mapreduce-from (lambda (it) ,form) (lambda (it acc) ,folder) ,init-value ,tree))

(defun -tree-mapreduce (fn folder tree)
  "Apply FN to each element of TREE, and make a list of the results.
If elements of TREE are lists themselves, apply FN recursively to
elements of these nested lists.

Then reduce the resulting lists using FOLDER and initial value
INIT-VALUE. See `-reduce-r-from'.

This is the same as calling `-tree-reduce' after `-tree-map'
but is twice as fast as it only traverse the structure once."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (-reduce-r folder (mapcar (lambda (x) (-tree-mapreduce fn folder x)) tree)))
   (t (funcall fn tree))))

(defmacro --tree-mapreduce (form folder tree)
  "Anaphoric form of `-tree-mapreduce'."
  (declare (debug (form form form)))
  `(-tree-mapreduce (lambda (it) ,form) (lambda (it acc) ,folder) ,tree))

(defun -tree-map (fn tree)
  "Apply FN to each element of TREE while preserving the tree structure."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (mapcar (lambda (x) (-tree-map fn x)) tree))
   (t (funcall fn tree))))

(defmacro --tree-map (form tree)
  "Anaphoric form of `-tree-map'."
  (declare (debug (form form)))
  `(-tree-map (lambda (it) ,form) ,tree))

(defun -tree-reduce-from (fn init-value tree)
  "Use FN to reduce elements of list TREE.
If elements of TREE are lists themselves, apply the reduction recursively.

FN is first applied to INIT-VALUE and first element of the list,
then on this result and second element from the list etc.

The initial value is ignored on cons pairs as they always contain
two elements."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) tree)
   ((listp tree)
    (-reduce-r-from fn init-value (mapcar (lambda (x) (-tree-reduce-from fn init-value x)) tree)))
   (t tree)))

(defmacro --tree-reduce-from (form init-value tree)
  "Anaphoric form of `-tree-reduce-from'."
  (declare (debug (form form form)))
  `(-tree-reduce-from (lambda (it acc) ,form) ,init-value ,tree))

(defun -tree-reduce (fn tree)
  "Use FN to reduce elements of list TREE.
If elements of TREE are lists themselves, apply the reduction recursively.

FN is first applied to first element of the list and second
element, then on this result and third element from the list etc.

See `-reduce-r' for how exactly are lists of zero or one element handled."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) tree)
   ((listp tree)
    (-reduce-r fn (mapcar (lambda (x) (-tree-reduce fn x)) tree)))
   (t tree)))

(defmacro --tree-reduce (form tree)
  "Anaphoric form of `-tree-reduce'."
  (declare (debug (form form)))
  `(-tree-reduce (lambda (it acc) ,form) ,tree))

(defun -tree-map-nodes (pred fun tree)
  "Call FUN on each node of TREE that satisfies PRED.

If PRED returns nil, continue descending down this node.  If PRED
returns non-nil, apply FUN to this node and do not descend
further."
  (if (funcall pred tree)
      (funcall fun tree)
    (if (and (listp tree)
             (not (-cons-pair? tree)))
        (-map (lambda (x) (-tree-map-nodes pred fun x)) tree)
      tree)))

(defmacro --tree-map-nodes (pred form tree)
  "Anaphoric form of `-tree-map-nodes'."
  `(-tree-map-nodes (lambda (it) ,pred) (lambda (it) ,form) ,tree))

(defun -tree-seq (branch children tree)
  "Return a sequence of the nodes in TREE, in depth-first search order.

BRANCH is a predicate of one argument that returns non-nil if the
passed argument is a branch, that is, a node that can have children.

CHILDREN is a function of one argument that returns the children
of the passed branch node.

Non-branch nodes are simply copied."
  (cons tree
        (when (funcall branch tree)
          (-mapcat (lambda (x) (-tree-seq branch children x))
                   (funcall children tree)))))

(defmacro --tree-seq (branch children tree)
  "Anaphoric form of `-tree-seq'."
  `(-tree-seq (lambda (it) ,branch) (lambda (it) ,children) ,tree))

(defun -clone (list)
  "Create a deep copy of LIST.
The new list has the same elements and structure but all cons are
replaced with new ones.  This is useful when you need to clone a
structure such as plist or alist."
  (declare (pure t) (side-effect-free t))
  (-tree-map 'identity list))

(defun dash-enable-font-lock ()
  "Add syntax highlighting to dash functions, macros and magic values."
  (eval-after-load 'lisp-mode
    '(progn
       (let ((new-keywords '(
                             "-each"
                             "--each"
                             "-each-indexed"
                             "--each-indexed"
                             "-each-while"
                             "--each-while"
                             "-dotimes"
                             "--dotimes"
                             "-map"
                             "--map"
                             "-reduce-from"
                             "--reduce-from"
                             "-reduce"
                             "--reduce"
                             "-reduce-r-from"
                             "--reduce-r-from"
                             "-reduce-r"
                             "--reduce-r"
                             "-filter"
                             "--filter"
                             "-select"
                             "--select"
                             "-remove"
                             "--remove"
                             "-reject"
                             "--reject"
                             "-remove-first"
                             "--remove-first"
                             "-reject-first"
                             "--reject-first"
                             "-remove-last"
                             "--remove-last"
                             "-reject-last"
                             "--reject-last"
                             "-remove-item"
                             "-non-nil"
                             "-keep"
                             "--keep"
                             "-map-indexed"
                             "--map-indexed"
                             "-splice"
                             "--splice"
                             "-splice-list"
                             "--splice-list"
                             "-map-when"
                             "--map-when"
                             "-replace-where"
                             "--replace-where"
                             "-map-first"
                             "--map-first"
                             "-map-last"
                             "--map-last"
                             "-replace"
                             "-replace-first"
                             "-replace-last"
                             "-flatten"
                             "-flatten-n"
                             "-concat"
                             "-mapcat"
                             "--mapcat"
                             "-copy"
                             "-cons*"
                             "-snoc"
                             "-first"
                             "--first"
                             "-find"
                             "--find"
                             "-some"
                             "--some"
                             "-any"
                             "--any"
                             "-last"
                             "--last"
                             "-first-item"
                             "-last-item"
                             "-butlast"
                             "-count"
                             "--count"
                             "-any?"
                             "--any?"
                             "-some?"
                             "--some?"
                             "-any-p"
                             "--any-p"
                             "-some-p"
                             "--some-p"
                             "-all?"
                             "--all?"
                             "-every?"
                             "--every?"
                             "-all-p"
                             "--all-p"
                             "-every-p"
                             "--every-p"
                             "-none?"
                             "--none?"
                             "-none-p"
                             "--none-p"
                             "-only-some?"
                             "--only-some?"
                             "-only-some-p"
                             "--only-some-p"
                             "-slice"
                             "-take"
                             "-drop"
                             "-take-while"
                             "--take-while"
                             "-drop-while"
                             "--drop-while"
                             "-split-at"
                             "-rotate"
                             "-insert-at"
                             "-replace-at"
                             "-update-at"
                             "--update-at"
                             "-remove-at"
                             "-remove-at-indices"
                             "-split-with"
                             "--split-with"
                             "-split-on"
                             "-split-when"
                             "--split-when"
                             "-separate"
                             "--separate"
                             "-partition-all-in-steps"
                             "-partition-in-steps"
                             "-partition-all"
                             "-partition"
                             "-partition-by"
                             "--partition-by"
                             "-partition-by-header"
                             "--partition-by-header"
                             "-group-by"
                             "--group-by"
                             "-interpose"
                             "-interleave"
                             "-zip-with"
                             "--zip-with"
                             "-zip"
                             "-zip-fill"
                             "-cycle"
                             "-pad"
                             "-annotate"
                             "--annotate"
                             "-table"
                             "-table-flat"
                             "-partial"
                             "-elem-index"
                             "-elem-indices"
                             "-find-indices"
                             "--find-indices"
                             "-find-index"
                             "--find-index"
                             "-find-last-index"
                             "--find-last-index"
                             "-select-by-indices"
                             "-select-columns"
                             "-select-column"
                             "-grade-up"
                             "-grade-down"
                             "->"
                             "->>"
                             "-->"
                             "-when-let"
                             "-when-let*"
                             "--when-let"
                             "-if-let"
                             "-if-let*"
                             "--if-let"
                             "-let*"
                             "-let"
                             "-lambda"
                             "-distinct"
                             "-uniq"
                             "-union"
                             "-intersection"
                             "-difference"
                             "-contains?"
                             "-contains-p"
                             "-same-items?"
                             "-same-items-p"
                             "-is-prefix-p"
                             "-is-prefix?"
                             "-is-suffix-p"
                             "-is-suffix?"
                             "-is-infix-p"
                             "-is-infix?"
                             "-sort"
                             "--sort"
                             "-list"
                             "-repeat"
                             "-sum"
                             "-product"
                             "-max"
                             "-min"
                             "-max-by"
                             "--max-by"
                             "-min-by"
                             "--min-by"
                             "-iterate"
                             "--iterate"
                             "-fix"
                             "--fix"
                             "-unfold"
                             "--unfold"
                             "-cons-pair?"
                             "-cons-to-list"
                             "-value-to-list"
                             "-tree-mapreduce-from"
                             "--tree-mapreduce-from"
                             "-tree-mapreduce"
                             "--tree-mapreduce"
                             "-tree-map"
                             "--tree-map"
                             "-tree-reduce-from"
                             "--tree-reduce-from"
                             "-tree-reduce"
                             "--tree-reduce"
                             "-tree-seq"
                             "--tree-seq"
                             "-tree-map-nodes"
                             "--tree-map-nodes"
                             "-clone"
                             "-rpartial"
                             "-juxt"
                             "-applify"
                             "-on"
                             "-flip"
                             "-const"
                             "-cut"
                             "-orfn"
                             "-andfn"
                             "-iteratefn"
                             "-fixfn"
                             "-prodfn"
                             ))
             (special-variables '(
                                  "it"
                                  "it-index"
                                  "acc"
                                  "other"
                                  )))
         (font-lock-add-keywords 'emacs-lisp-mode `((,(concat "\\_<" (regexp-opt special-variables 'paren) "\\_>")
                                                     1 font-lock-variable-name-face)) 'append)
         (font-lock-add-keywords 'emacs-lisp-mode `((,(concat "(\\s-*" (regexp-opt new-keywords 'paren) "\\_>")
                                                     1 font-lock-keyword-face)) 'append))
       (--each (buffer-list)
         (with-current-buffer it
           (when (and (eq major-mode 'emacs-lisp-mode)
                      (boundp 'font-lock-mode)
                      font-lock-mode)
             (font-lock-refresh-defaults)))))))

(provide 'dash)
;;; dash.el ends here