BloomFilter.cs
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace BloomFilter
{
using System;
using System.Collections;
/// <summary>
/// Bloom filter.
/// </summary>
/// <typeparam name="T">Item type </typeparam>
public class Filter<T>
{
private readonly int _hashFunctionCount;
private readonly BitArray _hashBits;
private readonly HashFunction _getHashSecondary;
/// <summary>
/// Creates a new Bloom filter, specifying an error rate of 1/capacity, using the optimal size for the underlying data structure based on the desired capacity and error rate, as well as the optimal number of hash functions.
/// A secondary hash function will be provided for you if your type T is either string or int. Otherwise an exception will be thrown. If you are not using these types please use the overload that supports custom hash functions.
/// </summary>
/// <param name="capacity">The anticipated number of items to be added to the filter. More than this number of items can be added, but the error rate will exceed what is expected.</param>
public Filter(int capacity)
: this(capacity, null)
{
}
/// <summary>
/// Creates a new Bloom filter, using the optimal size for the underlying data structure based on the desired capacity and error rate, as well as the optimal number of hash functions.
/// A secondary hash function will be provided for you if your type T is either string or int. Otherwise an exception will be thrown. If you are not using these types please use the overload that supports custom hash functions.
/// </summary>
/// <param name="capacity">The anticipated number of items to be added to the filter. More than this number of items can be added, but the error rate will exceed what is expected.</param>
/// <param name="errorRate">The accepable false-positive rate (e.g., 0.01F = 1%)</param>
public Filter(int capacity, float errorRate)
: this(capacity, errorRate, null)
{
}
/// <summary>
/// Creates a new Bloom filter, specifying an error rate of 1/capacity, using the optimal size for the underlying data structure based on the desired capacity and error rate, as well as the optimal number of hash functions.
/// </summary>
/// <param name="capacity">The anticipated number of items to be added to the filter. More than this number of items can be added, but the error rate will exceed what is expected.</param>
/// <param name="hashFunction">The function to hash the input values. Do not use GetHashCode(). If it is null, and T is string or int a hash function will be provided for you.</param>
public Filter(int capacity, HashFunction hashFunction)
: this(capacity, BestErrorRate(capacity), hashFunction)
{
}
/// <summary>
/// Creates a new Bloom filter, using the optimal size for the underlying data structure based on the desired capacity and error rate, as well as the optimal number of hash functions.
/// </summary>
/// <param name="capacity">The anticipated number of items to be added to the filter. More than this number of items can be added, but the error rate will exceed what is expected.</param>
/// <param name="errorRate">The accepable false-positive rate (e.g., 0.01F = 1%)</param>
/// <param name="hashFunction">The function to hash the input values. Do not use GetHashCode(). If it is null, and T is string or int a hash function will be provided for you.</param>
public Filter(int capacity, float errorRate, HashFunction hashFunction)
: this(capacity, errorRate, hashFunction, BestM(capacity, errorRate), BestK(capacity, errorRate))
{
}
/// <summary>
/// Creates a new Bloom filter.
/// </summary>
/// <param name="capacity">The anticipated number of items to be added to the filter. More than this number of items can be added, but the error rate will exceed what is expected.</param>
/// <param name="errorRate">The accepable false-positive rate (e.g., 0.01F = 1%)</param>
/// <param name="hashFunction">The function to hash the input values. Do not use GetHashCode(). If it is null, and T is string or int a hash function will be provided for you.</param>
/// <param name="m">The number of elements in the BitArray.</param>
/// <param name="k">The number of hash functions to use.</param>
public Filter(int capacity, float errorRate, HashFunction hashFunction, int m, int k)
{
// validate the params are in range
if (capacity < 1)
{
throw new ArgumentOutOfRangeException("capacity", capacity, "capacity must be > 0");
}
if (errorRate >= 1 || errorRate <= 0)
{
throw new ArgumentOutOfRangeException("errorRate", errorRate, string.Format("errorRate must be between 0 and 1, exclusive. Was {0}", errorRate));
}
// from overflow in bestM calculation
if (m < 1)
{
throw new ArgumentOutOfRangeException(string.Format("The provided capacity and errorRate values would result in an array of length > int.MaxValue. Please reduce either of these values. Capacity: {0}, Error rate: {1}", capacity, errorRate));
}
// set the secondary hash function
if (hashFunction == null)
{
if (typeof(T) == typeof(string))
{
this._getHashSecondary = HashString;
}
else if (typeof(T) == typeof(int))
{
this._getHashSecondary = HashInt32;
}
else
{
throw new ArgumentNullException("hashFunction", "Please provide a hash function for your type T, when T is not a string or int.");
}
}
else
{
this._getHashSecondary = hashFunction;
}
this._hashFunctionCount = k;
this._hashBits = new BitArray(m);
}
/// <summary>
/// A function that can be used to hash input.
/// </summary>
/// <param name="input">The values to be hashed.</param>
/// <returns>The resulting hash code.</returns>
public delegate int HashFunction(T input);
/// <summary>
/// The ratio of false to true bits in the filter. E.g., 1 true bit in a 10 bit filter means a truthiness of 0.1.
/// </summary>
public double Truthiness {
get {
return (double)this.TrueBits() / this._hashBits.Count;
}
}
/// <summary>
/// Adds a new item to the filter. It cannot be removed.
/// </summary>
/// <param name="item">The item.</param>
public void Add(T item)
{
// start flipping bits for each hash of item
int primaryHash = item.GetHashCode();
int secondaryHash = this._getHashSecondary(item);
for (int i = 0; i < this._hashFunctionCount; i++)
{
int hash = this.ComputeHash(primaryHash, secondaryHash, i);
this._hashBits[hash] = true;
}
}
/// <summary>
/// Checks for the existance of the item in the filter for a given probability.
/// </summary>
/// <param name="item"> The item. </param>
/// <returns> The <see cref="bool"/>. </returns>
public bool Contains(T item)
{
int primaryHash = item.GetHashCode();
int secondaryHash = this._getHashSecondary(item);
for (int i = 0; i < this._hashFunctionCount; i++)
{
int hash = this.ComputeHash(primaryHash, secondaryHash, i);
if (this._hashBits[hash] == false)
{
return false;
}
}
return true;
}
/// <summary>
/// The best k.
/// </summary>
/// <param name="capacity"> The capacity. </param>
/// <param name="errorRate"> The error rate. </param>
/// <returns> The <see cref="int"/>. </returns>
private static int BestK(int capacity, float errorRate)
{
return (int)Math.Round(Math.Log(2.0) * BestM(capacity, errorRate) / capacity);
}
/// <summary>
/// The best m.
/// </summary>
/// <param name="capacity"> The capacity. </param>
/// <param name="errorRate"> The error rate. </param>
/// <returns> The <see cref="int"/>. </returns>
private static int BestM(int capacity, float errorRate)
{
return (int)Math.Ceiling(capacity * Math.Log(errorRate, (1.0 / Math.Pow(2, Math.Log(2.0)))));
}
/// <summary>
/// The best error rate.
/// </summary>
/// <param name="capacity"> The capacity. </param>
/// <returns> The <see cref="float"/>. </returns>
private static float BestErrorRate(int capacity)
{
float c = (float)(1.0 / capacity);
if (c != 0)
{
return c;
}
// default
// http://www.cs.princeton.edu/courses/archive/spring02/cs493/lec7.pdf
return (float)Math.Pow(0.6185, int.MaxValue / capacity);
}
/// <summary>
/// Hashes a 32-bit signed int using Thomas Wang's method v3.1 (http://www.concentric.net/~Ttwang/tech/inthash.htm).
/// Runtime is suggested to be 11 cycles.
/// </summary>
/// <param name="input">The integer to hash.</param>
/// <returns>The hashed result.</returns>
private static int HashInt32(T input)
{
uint? x = input as uint?;
unchecked
{
x = ~x + (x << 15); // x = (x << 15) - x- 1, as (~x) + y is equivalent to y - x - 1 in two's complement representation
x = x ^ (x >> 12);
x = x + (x << 2);
x = x ^ (x >> 4);
x = x * 2057; // x = (x + (x << 3)) + (x<< 11);
x = x ^ (x >> 16);
return (int)x;
}
}
/// <summary>
/// Hashes a string using Bob Jenkin's "One At A Time" method from Dr. Dobbs (http://burtleburtle.net/bob/hash/doobs.html).
/// Runtime is suggested to be 9x+9, where x = input.Length.
/// </summary>
/// <param name="input">The string to hash.</param>
/// <returns>The hashed result.</returns>
private static int HashString(T input)
{
string s = input as string;
int hash = 0;
for (int i = 0; i < s.Length; i++)
{
hash += s[i];
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
/// <summary>
/// The true bits.
/// </summary>
/// <returns> The <see cref="int"/>. </returns>
private int TrueBits()
{
int output = 0;
foreach (bool bit in this._hashBits)
{
if (bit == true)
{
output++;
}
}
return output;
}
/// <summary>
/// Performs Dillinger and Manolios double hashing.
/// </summary>
/// <param name="primaryHash"> The primary hash. </param>
/// <param name="secondaryHash"> The secondary hash. </param>
/// <param name="i"> The i. </param>
/// <returns> The <see cref="int"/>. </returns>
private int ComputeHash(int primaryHash, int secondaryHash, int i)
{
int resultingHash = (primaryHash + (i * secondaryHash)) % this._hashBits.Count;
return Math.Abs((int)resultingHash);
}
}
}