a_int.c 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/bn.h>
#include "asn1_locl.h"

ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
{
    return ASN1_STRING_dup(x);
}

int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
{
    int neg, ret;
    /* Compare signs */
    neg = x->type & V_ASN1_NEG;
    if (neg != (y->type & V_ASN1_NEG)) {
        if (neg)
            return -1;
        else
            return 1;
    }

    ret = ASN1_STRING_cmp(x, y);

    if (neg)
        return -ret;
    else
        return ret;
}

/*-
 * This converts a big endian buffer and sign into its content encoding.
 * This is used for INTEGER and ENUMERATED types.
 * The internal representation is an ASN1_STRING whose data is a big endian
 * representation of the value, ignoring the sign. The sign is determined by
 * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
 *
 * Positive integers are no problem: they are almost the same as the DER
 * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
 *
 * Negative integers are a bit trickier...
 * The DER representation of negative integers is in 2s complement form.
 * The internal form is converted by complementing each octet and finally
 * adding one to the result. This can be done less messily with a little trick.
 * If the internal form has trailing zeroes then they will become FF by the
 * complement and 0 by the add one (due to carry) so just copy as many trailing
 * zeros to the destination as there are in the source. The carry will add one
 * to the last none zero octet: so complement this octet and add one and finally
 * complement any left over until you get to the start of the string.
 *
 * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
 * with 0xff. However if the first byte is 0x80 and one of the following bytes
 * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
 * followed by optional zeros isn't padded.
 */

/*
 * If |pad| is zero, the operation is effectively reduced to memcpy,
 * and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
 * Note that in latter case sequence of zeros yields itself, and so
 * does 0x80 followed by any number of zeros. These properties are
 * used elsewhere below...
 */
static void twos_complement(unsigned char *dst, const unsigned char *src,
                            size_t len, unsigned char pad)
{
    unsigned int carry = pad & 1;

    /* Begin at the end of the encoding */
    dst += len;
    src += len;
    /* two's complement value: ~value + 1 */
    while (len-- != 0) {
        *(--dst) = (unsigned char)(carry += *(--src) ^ pad);
        carry >>= 8;
    }
}

static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
                       unsigned char **pp)
{
    unsigned int pad = 0;
    size_t ret, i;
    unsigned char *p, pb = 0;

    if (b != NULL && blen) {
        ret = blen;
        i = b[0];
        if (!neg && (i > 127)) {
            pad = 1;
            pb = 0;
        } else if (neg) {
            pb = 0xFF;
            if (i > 128) {
                pad = 1;
            } else if (i == 128) {
                /*
                 * Special case [of minimal negative for given length]:
                 * if any other bytes non zero we pad, otherwise we don't.
                 */
                for (pad = 0, i = 1; i < blen; i++)
                    pad |= b[i];
                pb = pad != 0 ? 0xffU : 0;
                pad = pb & 1;
            }
        }
        ret += pad;
    } else {
        ret = 1;
        blen = 0;   /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
    }

    if (pp == NULL || (p = *pp) == NULL)
        return ret;

    /*
     * This magically handles all corner cases, such as '(b == NULL ||
     * blen == 0)', non-negative value, "negative" zero, 0x80 followed
     * by any number of zeros...
     */
    *p = pb;
    p += pad;       /* yes, p[0] can be written twice, but it's little
                     * price to pay for eliminated branches */
    twos_complement(p, b, blen, pb);

    *pp += ret;
    return ret;
}

/*
 * convert content octets into a big endian buffer. Returns the length
 * of buffer or 0 on error: for malformed INTEGER. If output buffer is
 * NULL just return length.
 */

static size_t c2i_ibuf(unsigned char *b, int *pneg,
                       const unsigned char *p, size_t plen)
{
    int neg, pad;
    /* Zero content length is illegal */
    if (plen == 0) {
        ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
        return 0;
    }
    neg = p[0] & 0x80;
    if (pneg)
        *pneg = neg;
    /* Handle common case where length is 1 octet separately */
    if (plen == 1) {
        if (b != NULL) {
            if (neg)
                b[0] = (p[0] ^ 0xFF) + 1;
            else
                b[0] = p[0];
        }
        return 1;
    }

    pad = 0;
    if (p[0] == 0) {
        pad = 1;
    } else if (p[0] == 0xFF) {
        size_t i;

        /*
         * Special case [of "one less minimal negative" for given length]:
         * if any other bytes non zero it was padded, otherwise not.
         */
        for (pad = 0, i = 1; i < plen; i++)
            pad |= p[i];
        pad = pad != 0 ? 1 : 0;
    }
    /* reject illegal padding: first two octets MSB can't match */
    if (pad && (neg == (p[1] & 0x80))) {
        ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
        return 0;
    }

    /* skip over pad */
    p += pad;
    plen -= pad;

    if (b != NULL)
        twos_complement(b, p, plen, neg ? 0xffU : 0);

    return plen;
}

int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
{
    return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
}

/* Convert big endian buffer into uint64_t, return 0 on error */
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
{
    size_t i;
    uint64_t r;

    if (blen > sizeof(*pr)) {
        ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
        return 0;
    }
    if (b == NULL)
        return 0;
    for (r = 0, i = 0; i < blen; i++) {
        r <<= 8;
        r |= b[i];
    }
    *pr = r;
    return 1;
}

/*
 * Write uint64_t to big endian buffer and return offset to first
 * written octet. In other words it returns offset in range from 0
 * to 7, with 0 denoting 8 written octets and 7 - one.
 */
static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
{
    size_t off = sizeof(uint64_t);

    do {
        b[--off] = (unsigned char)r;
    } while (r >>= 8);

    return off;
}

/*
 * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
 * overflow warnings.
 */
#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))

/* signed version of asn1_get_uint64 */
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
                          int neg)
{
    uint64_t r;
    if (asn1_get_uint64(&r, b, blen) == 0)
        return 0;
    if (neg) {
        if (r <= INT64_MAX) {
            /* Most significant bit is guaranteed to be clear, negation
             * is guaranteed to be meaningful in platform-neutral sense. */
            *pr = -(int64_t)r;
        } else if (r == ABS_INT64_MIN) {
            /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
             * on ones'-complement system. */
            *pr = (int64_t)(0 - r);
        } else {
            ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
            return 0;
        }
    } else {
        if (r <= INT64_MAX) {
            *pr = (int64_t)r;
        } else {
            ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
            return 0;
        }
    }
    return 1;
}

/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
                               long len)
{
    ASN1_INTEGER *ret = NULL;
    size_t r;
    int neg;

    r = c2i_ibuf(NULL, NULL, *pp, len);

    if (r == 0)
        return NULL;

    if ((a == NULL) || ((*a) == NULL)) {
        ret = ASN1_INTEGER_new();
        if (ret == NULL)
            return NULL;
        ret->type = V_ASN1_INTEGER;
    } else
        ret = *a;

    if (ASN1_STRING_set(ret, NULL, r) == 0)
        goto err;

    c2i_ibuf(ret->data, &neg, *pp, len);

    if (neg)
        ret->type |= V_ASN1_NEG;

    *pp += len;
    if (a != NULL)
        (*a) = ret;
    return ret;
 err:
    ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
    if ((a == NULL) || (*a != ret))
        ASN1_INTEGER_free(ret);
    return NULL;
}

static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
{
    if (a == NULL) {
        ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }
    if ((a->type & ~V_ASN1_NEG) != itype) {
        ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
        return 0;
    }
    return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
}

static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
{
    unsigned char tbuf[sizeof(r)];
    size_t off;

    a->type = itype;
    if (r < 0) {
        /* Most obvious '-r' triggers undefined behaviour for most
         * common INT64_MIN. Even though below '0 - (uint64_t)r' can
         * appear two's-complement centric, it does produce correct/
         * expected result even on one's-complement. This is because
         * cast to unsigned has to change bit pattern... */
        off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
        a->type |= V_ASN1_NEG;
    } else {
        off = asn1_put_uint64(tbuf, r);
        a->type &= ~V_ASN1_NEG;
    }
    return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
}

static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
                                  int itype)
{
    if (a == NULL) {
        ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }
    if ((a->type & ~V_ASN1_NEG) != itype) {
        ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
        return 0;
    }
    if (a->type & V_ASN1_NEG) {
        ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
        return 0;
    }
    return asn1_get_uint64(pr, a->data, a->length);
}

static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
{
    unsigned char tbuf[sizeof(r)];
    size_t off;

    a->type = itype;
    off = asn1_put_uint64(tbuf, r);
    return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
}

/*
 * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
 * integers: some broken software can encode a positive INTEGER with its MSB
 * set as negative (it doesn't add a padding zero).
 */

ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
                                long length)
{
    ASN1_INTEGER *ret = NULL;
    const unsigned char *p;
    unsigned char *s;
    long len;
    int inf, tag, xclass;
    int i;

    if ((a == NULL) || ((*a) == NULL)) {
        if ((ret = ASN1_INTEGER_new()) == NULL)
            return NULL;
        ret->type = V_ASN1_INTEGER;
    } else
        ret = (*a);

    p = *pp;
    inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
    if (inf & 0x80) {
        i = ASN1_R_BAD_OBJECT_HEADER;
        goto err;
    }

    if (tag != V_ASN1_INTEGER) {
        i = ASN1_R_EXPECTING_AN_INTEGER;
        goto err;
    }

    /*
     * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
     * a missing NULL parameter.
     */
    s = OPENSSL_malloc((int)len + 1);
    if (s == NULL) {
        i = ERR_R_MALLOC_FAILURE;
        goto err;
    }
    ret->type = V_ASN1_INTEGER;
    if (len) {
        if ((*p == 0) && (len != 1)) {
            p++;
            len--;
        }
        memcpy(s, p, (int)len);
        p += len;
    }

    OPENSSL_free(ret->data);
    ret->data = s;
    ret->length = (int)len;
    if (a != NULL)
        (*a) = ret;
    *pp = p;
    return ret;
 err:
    ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
    if ((a == NULL) || (*a != ret))
        ASN1_INTEGER_free(ret);
    return NULL;
}

static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
                                      int atype)
{
    ASN1_INTEGER *ret;
    int len;

    if (ai == NULL) {
        ret = ASN1_STRING_type_new(atype);
    } else {
        ret = ai;
        ret->type = atype;
    }

    if (ret == NULL) {
        ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
        goto err;
    }

    if (BN_is_negative(bn) && !BN_is_zero(bn))
        ret->type |= V_ASN1_NEG_INTEGER;

    len = BN_num_bytes(bn);

    if (len == 0)
        len = 1;

    if (ASN1_STRING_set(ret, NULL, len) == 0) {
        ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    /* Correct zero case */
    if (BN_is_zero(bn))
        ret->data[0] = 0;
    else
        len = BN_bn2bin(bn, ret->data);
    ret->length = len;
    return ret;
 err:
    if (ret != ai)
        ASN1_INTEGER_free(ret);
    return NULL;
}

static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
                                 int itype)
{
    BIGNUM *ret;

    if ((ai->type & ~V_ASN1_NEG) != itype) {
        ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
        return NULL;
    }

    ret = BN_bin2bn(ai->data, ai->length, bn);
    if (ret == NULL) {
        ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
        return NULL;
    }
    if (ai->type & V_ASN1_NEG)
        BN_set_negative(ret, 1);
    return ret;
}

int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
{
    return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
}

int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
{
    return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
}

int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
{
    return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
}

int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
{
    return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
}

int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
{
    return ASN1_INTEGER_set_int64(a, v);
}

long ASN1_INTEGER_get(const ASN1_INTEGER *a)
{
    int i;
    int64_t r;
    if (a == NULL)
        return 0;
    i = ASN1_INTEGER_get_int64(&r, a);
    if (i == 0)
        return -1;
    if (r > LONG_MAX || r < LONG_MIN)
        return -1;
    return (long)r;
}

ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
{
    return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
}

BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
{
    return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
}

int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
{
    return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
}

int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
{
    return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
}

int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
{
    return ASN1_ENUMERATED_set_int64(a, v);
}

long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
{
    int i;
    int64_t r;
    if (a == NULL)
        return 0;
    if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
        return -1;
    if (a->length > (int)sizeof(long))
        return 0xffffffffL;
    i = ASN1_ENUMERATED_get_int64(&r, a);
    if (i == 0)
        return -1;
    if (r > LONG_MAX || r < LONG_MIN)
        return -1;
    return (long)r;
}

ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
{
    return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
}

BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
{
    return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
}

/* Internal functions used by x_int64.c */
int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len)
{
    unsigned char buf[sizeof(uint64_t)];
    size_t buflen;

    buflen = c2i_ibuf(NULL, NULL, *pp, len);
    if (buflen == 0)
        return 0;
    if (buflen > sizeof(uint64_t)) {
        ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE);
        return 0;
    }
    (void)c2i_ibuf(buf, neg, *pp, len);
    return asn1_get_uint64(ret, buf, buflen);
}

int i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
{
    unsigned char buf[sizeof(uint64_t)];
    size_t off;

    off = asn1_put_uint64(buf, r);
    return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
}