armv8-mont.pl
35.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
#! /usr/bin/env perl
# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# March 2015
#
# "Teaser" Montgomery multiplication module for ARMv8. Needs more
# work. While it does improve RSA sign performance by 20-30% (less for
# longer keys) on most processors, for some reason RSA2048 is not
# faster and RSA4096 goes 15-20% slower on Cortex-A57. Multiplication
# instruction issue rate is limited on processor in question, meaning
# that dedicated squaring procedure is a must. Well, actually all
# contemporary AArch64 processors seem to have limited multiplication
# issue rate, i.e. they can't issue multiplication every cycle, which
# explains moderate improvement coefficients in comparison to
# compiler-generated code. Recall that compiler is instructed to use
# umulh and therefore uses same amount of multiplication instructions
# to do the job. Assembly's edge is to minimize number of "collateral"
# instructions and of course instruction scheduling.
#
# April 2015
#
# Squaring procedure that handles lengths divisible by 8 improves
# RSA/DSA performance by 25-40-60% depending on processor and key
# length. Overall improvement coefficients are always positive in
# comparison to compiler-generated code. On Cortex-A57 improvement
# is still modest on longest key lengths, while others exhibit e.g.
# 50-70% improvement for RSA4096 sign. RSA2048 sign is ~25% faster
# on Cortex-A57 and ~60-100% faster on others.
$flavour = shift;
$output = shift;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
($lo0,$hi0,$aj,$m0,$alo,$ahi,
$lo1,$hi1,$nj,$m1,$nlo,$nhi,
$ovf, $i,$j,$tp,$tj) = map("x$_",6..17,19..24);
# int bn_mul_mont(
$rp="x0"; # BN_ULONG *rp,
$ap="x1"; # const BN_ULONG *ap,
$bp="x2"; # const BN_ULONG *bp,
$np="x3"; # const BN_ULONG *np,
$n0="x4"; # const BN_ULONG *n0,
$num="x5"; # int num);
$code.=<<___;
.text
.globl bn_mul_mont
.type bn_mul_mont,%function
.align 5
bn_mul_mont:
tst $num,#7
b.eq __bn_sqr8x_mont
tst $num,#3
b.eq __bn_mul4x_mont
.Lmul_mont:
stp x29,x30,[sp,#-64]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
ldr $m0,[$bp],#8 // bp[0]
sub $tp,sp,$num,lsl#3
ldp $hi0,$aj,[$ap],#16 // ap[0..1]
lsl $num,$num,#3
ldr $n0,[$n0] // *n0
and $tp,$tp,#-16 // ABI says so
ldp $hi1,$nj,[$np],#16 // np[0..1]
mul $lo0,$hi0,$m0 // ap[0]*bp[0]
sub $j,$num,#16 // j=num-2
umulh $hi0,$hi0,$m0
mul $alo,$aj,$m0 // ap[1]*bp[0]
umulh $ahi,$aj,$m0
mul $m1,$lo0,$n0 // "tp[0]"*n0
mov sp,$tp // alloca
// (*) mul $lo1,$hi1,$m1 // np[0]*m1
umulh $hi1,$hi1,$m1
mul $nlo,$nj,$m1 // np[1]*m1
// (*) adds $lo1,$lo1,$lo0 // discarded
// (*) As for removal of first multiplication and addition
// instructions. The outcome of first addition is
// guaranteed to be zero, which leaves two computationally
// significant outcomes: it either carries or not. Then
// question is when does it carry? Is there alternative
// way to deduce it? If you follow operations, you can
// observe that condition for carry is quite simple:
// $lo0 being non-zero. So that carry can be calculated
// by adding -1 to $lo0. That's what next instruction does.
subs xzr,$lo0,#1 // (*)
umulh $nhi,$nj,$m1
adc $hi1,$hi1,xzr
cbz $j,.L1st_skip
.L1st:
ldr $aj,[$ap],#8
adds $lo0,$alo,$hi0
sub $j,$j,#8 // j--
adc $hi0,$ahi,xzr
ldr $nj,[$np],#8
adds $lo1,$nlo,$hi1
mul $alo,$aj,$m0 // ap[j]*bp[0]
adc $hi1,$nhi,xzr
umulh $ahi,$aj,$m0
adds $lo1,$lo1,$lo0
mul $nlo,$nj,$m1 // np[j]*m1
adc $hi1,$hi1,xzr
umulh $nhi,$nj,$m1
str $lo1,[$tp],#8 // tp[j-1]
cbnz $j,.L1st
.L1st_skip:
adds $lo0,$alo,$hi0
sub $ap,$ap,$num // rewind $ap
adc $hi0,$ahi,xzr
adds $lo1,$nlo,$hi1
sub $np,$np,$num // rewind $np
adc $hi1,$nhi,xzr
adds $lo1,$lo1,$lo0
sub $i,$num,#8 // i=num-1
adcs $hi1,$hi1,$hi0
adc $ovf,xzr,xzr // upmost overflow bit
stp $lo1,$hi1,[$tp]
.Louter:
ldr $m0,[$bp],#8 // bp[i]
ldp $hi0,$aj,[$ap],#16
ldr $tj,[sp] // tp[0]
add $tp,sp,#8
mul $lo0,$hi0,$m0 // ap[0]*bp[i]
sub $j,$num,#16 // j=num-2
umulh $hi0,$hi0,$m0
ldp $hi1,$nj,[$np],#16
mul $alo,$aj,$m0 // ap[1]*bp[i]
adds $lo0,$lo0,$tj
umulh $ahi,$aj,$m0
adc $hi0,$hi0,xzr
mul $m1,$lo0,$n0
sub $i,$i,#8 // i--
// (*) mul $lo1,$hi1,$m1 // np[0]*m1
umulh $hi1,$hi1,$m1
mul $nlo,$nj,$m1 // np[1]*m1
// (*) adds $lo1,$lo1,$lo0
subs xzr,$lo0,#1 // (*)
umulh $nhi,$nj,$m1
cbz $j,.Linner_skip
.Linner:
ldr $aj,[$ap],#8
adc $hi1,$hi1,xzr
ldr $tj,[$tp],#8 // tp[j]
adds $lo0,$alo,$hi0
sub $j,$j,#8 // j--
adc $hi0,$ahi,xzr
adds $lo1,$nlo,$hi1
ldr $nj,[$np],#8
adc $hi1,$nhi,xzr
mul $alo,$aj,$m0 // ap[j]*bp[i]
adds $lo0,$lo0,$tj
umulh $ahi,$aj,$m0
adc $hi0,$hi0,xzr
mul $nlo,$nj,$m1 // np[j]*m1
adds $lo1,$lo1,$lo0
umulh $nhi,$nj,$m1
str $lo1,[$tp,#-16] // tp[j-1]
cbnz $j,.Linner
.Linner_skip:
ldr $tj,[$tp],#8 // tp[j]
adc $hi1,$hi1,xzr
adds $lo0,$alo,$hi0
sub $ap,$ap,$num // rewind $ap
adc $hi0,$ahi,xzr
adds $lo1,$nlo,$hi1
sub $np,$np,$num // rewind $np
adcs $hi1,$nhi,$ovf
adc $ovf,xzr,xzr
adds $lo0,$lo0,$tj
adc $hi0,$hi0,xzr
adds $lo1,$lo1,$lo0
adcs $hi1,$hi1,$hi0
adc $ovf,$ovf,xzr // upmost overflow bit
stp $lo1,$hi1,[$tp,#-16]
cbnz $i,.Louter
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
ldr $tj,[sp] // tp[0]
add $tp,sp,#8
ldr $nj,[$np],#8 // np[0]
subs $j,$num,#8 // j=num-1 and clear borrow
mov $ap,$rp
.Lsub:
sbcs $aj,$tj,$nj // tp[j]-np[j]
ldr $tj,[$tp],#8
sub $j,$j,#8 // j--
ldr $nj,[$np],#8
str $aj,[$ap],#8 // rp[j]=tp[j]-np[j]
cbnz $j,.Lsub
sbcs $aj,$tj,$nj
sbcs $ovf,$ovf,xzr // did it borrow?
str $aj,[$ap],#8 // rp[num-1]
ldr $tj,[sp] // tp[0]
add $tp,sp,#8
ldr $aj,[$rp],#8 // rp[0]
sub $num,$num,#8 // num--
nop
.Lcond_copy:
sub $num,$num,#8 // num--
csel $nj,$tj,$aj,lo // did it borrow?
ldr $tj,[$tp],#8
ldr $aj,[$rp],#8
str xzr,[$tp,#-16] // wipe tp
str $nj,[$rp,#-16]
cbnz $num,.Lcond_copy
csel $nj,$tj,$aj,lo
str xzr,[$tp,#-8] // wipe tp
str $nj,[$rp,#-8]
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldr x29,[sp],#64
ret
.size bn_mul_mont,.-bn_mul_mont
___
{
########################################################################
# Following is ARMv8 adaptation of sqrx8x_mont from x86_64-mont5 module.
my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("x$_",(6..13));
my ($t0,$t1,$t2,$t3)=map("x$_",(14..17));
my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("x$_",(19..26));
my ($cnt,$carry,$topmost)=("x27","x28","x30");
my ($tp,$ap_end,$na0)=($bp,$np,$carry);
$code.=<<___;
.type __bn_sqr8x_mont,%function
.align 5
__bn_sqr8x_mont:
cmp $ap,$bp
b.ne __bn_mul4x_mont
.Lsqr8x_mont:
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
stp $rp,$np,[sp,#96] // offload rp and np
ldp $a0,$a1,[$ap,#8*0]
ldp $a2,$a3,[$ap,#8*2]
ldp $a4,$a5,[$ap,#8*4]
ldp $a6,$a7,[$ap,#8*6]
sub $tp,sp,$num,lsl#4
lsl $num,$num,#3
ldr $n0,[$n0] // *n0
mov sp,$tp // alloca
sub $cnt,$num,#8*8
b .Lsqr8x_zero_start
.Lsqr8x_zero:
sub $cnt,$cnt,#8*8
stp xzr,xzr,[$tp,#8*0]
stp xzr,xzr,[$tp,#8*2]
stp xzr,xzr,[$tp,#8*4]
stp xzr,xzr,[$tp,#8*6]
.Lsqr8x_zero_start:
stp xzr,xzr,[$tp,#8*8]
stp xzr,xzr,[$tp,#8*10]
stp xzr,xzr,[$tp,#8*12]
stp xzr,xzr,[$tp,#8*14]
add $tp,$tp,#8*16
cbnz $cnt,.Lsqr8x_zero
add $ap_end,$ap,$num
add $ap,$ap,#8*8
mov $acc0,xzr
mov $acc1,xzr
mov $acc2,xzr
mov $acc3,xzr
mov $acc4,xzr
mov $acc5,xzr
mov $acc6,xzr
mov $acc7,xzr
mov $tp,sp
str $n0,[x29,#112] // offload n0
// Multiply everything but a[i]*a[i]
.align 4
.Lsqr8x_outer_loop:
// a[1]a[0] (i)
// a[2]a[0]
// a[3]a[0]
// a[4]a[0]
// a[5]a[0]
// a[6]a[0]
// a[7]a[0]
// a[2]a[1] (ii)
// a[3]a[1]
// a[4]a[1]
// a[5]a[1]
// a[6]a[1]
// a[7]a[1]
// a[3]a[2] (iii)
// a[4]a[2]
// a[5]a[2]
// a[6]a[2]
// a[7]a[2]
// a[4]a[3] (iv)
// a[5]a[3]
// a[6]a[3]
// a[7]a[3]
// a[5]a[4] (v)
// a[6]a[4]
// a[7]a[4]
// a[6]a[5] (vi)
// a[7]a[5]
// a[7]a[6] (vii)
mul $t0,$a1,$a0 // lo(a[1..7]*a[0]) (i)
mul $t1,$a2,$a0
mul $t2,$a3,$a0
mul $t3,$a4,$a0
adds $acc1,$acc1,$t0 // t[1]+lo(a[1]*a[0])
mul $t0,$a5,$a0
adcs $acc2,$acc2,$t1
mul $t1,$a6,$a0
adcs $acc3,$acc3,$t2
mul $t2,$a7,$a0
adcs $acc4,$acc4,$t3
umulh $t3,$a1,$a0 // hi(a[1..7]*a[0])
adcs $acc5,$acc5,$t0
umulh $t0,$a2,$a0
adcs $acc6,$acc6,$t1
umulh $t1,$a3,$a0
adcs $acc7,$acc7,$t2
umulh $t2,$a4,$a0
stp $acc0,$acc1,[$tp],#8*2 // t[0..1]
adc $acc0,xzr,xzr // t[8]
adds $acc2,$acc2,$t3 // t[2]+lo(a[1]*a[0])
umulh $t3,$a5,$a0
adcs $acc3,$acc3,$t0
umulh $t0,$a6,$a0
adcs $acc4,$acc4,$t1
umulh $t1,$a7,$a0
adcs $acc5,$acc5,$t2
mul $t2,$a2,$a1 // lo(a[2..7]*a[1]) (ii)
adcs $acc6,$acc6,$t3
mul $t3,$a3,$a1
adcs $acc7,$acc7,$t0
mul $t0,$a4,$a1
adc $acc0,$acc0,$t1
mul $t1,$a5,$a1
adds $acc3,$acc3,$t2
mul $t2,$a6,$a1
adcs $acc4,$acc4,$t3
mul $t3,$a7,$a1
adcs $acc5,$acc5,$t0
umulh $t0,$a2,$a1 // hi(a[2..7]*a[1])
adcs $acc6,$acc6,$t1
umulh $t1,$a3,$a1
adcs $acc7,$acc7,$t2
umulh $t2,$a4,$a1
adcs $acc0,$acc0,$t3
umulh $t3,$a5,$a1
stp $acc2,$acc3,[$tp],#8*2 // t[2..3]
adc $acc1,xzr,xzr // t[9]
adds $acc4,$acc4,$t0
umulh $t0,$a6,$a1
adcs $acc5,$acc5,$t1
umulh $t1,$a7,$a1
adcs $acc6,$acc6,$t2
mul $t2,$a3,$a2 // lo(a[3..7]*a[2]) (iii)
adcs $acc7,$acc7,$t3
mul $t3,$a4,$a2
adcs $acc0,$acc0,$t0
mul $t0,$a5,$a2
adc $acc1,$acc1,$t1
mul $t1,$a6,$a2
adds $acc5,$acc5,$t2
mul $t2,$a7,$a2
adcs $acc6,$acc6,$t3
umulh $t3,$a3,$a2 // hi(a[3..7]*a[2])
adcs $acc7,$acc7,$t0
umulh $t0,$a4,$a2
adcs $acc0,$acc0,$t1
umulh $t1,$a5,$a2
adcs $acc1,$acc1,$t2
umulh $t2,$a6,$a2
stp $acc4,$acc5,[$tp],#8*2 // t[4..5]
adc $acc2,xzr,xzr // t[10]
adds $acc6,$acc6,$t3
umulh $t3,$a7,$a2
adcs $acc7,$acc7,$t0
mul $t0,$a4,$a3 // lo(a[4..7]*a[3]) (iv)
adcs $acc0,$acc0,$t1
mul $t1,$a5,$a3
adcs $acc1,$acc1,$t2
mul $t2,$a6,$a3
adc $acc2,$acc2,$t3
mul $t3,$a7,$a3
adds $acc7,$acc7,$t0
umulh $t0,$a4,$a3 // hi(a[4..7]*a[3])
adcs $acc0,$acc0,$t1
umulh $t1,$a5,$a3
adcs $acc1,$acc1,$t2
umulh $t2,$a6,$a3
adcs $acc2,$acc2,$t3
umulh $t3,$a7,$a3
stp $acc6,$acc7,[$tp],#8*2 // t[6..7]
adc $acc3,xzr,xzr // t[11]
adds $acc0,$acc0,$t0
mul $t0,$a5,$a4 // lo(a[5..7]*a[4]) (v)
adcs $acc1,$acc1,$t1
mul $t1,$a6,$a4
adcs $acc2,$acc2,$t2
mul $t2,$a7,$a4
adc $acc3,$acc3,$t3
umulh $t3,$a5,$a4 // hi(a[5..7]*a[4])
adds $acc1,$acc1,$t0
umulh $t0,$a6,$a4
adcs $acc2,$acc2,$t1
umulh $t1,$a7,$a4
adcs $acc3,$acc3,$t2
mul $t2,$a6,$a5 // lo(a[6..7]*a[5]) (vi)
adc $acc4,xzr,xzr // t[12]
adds $acc2,$acc2,$t3
mul $t3,$a7,$a5
adcs $acc3,$acc3,$t0
umulh $t0,$a6,$a5 // hi(a[6..7]*a[5])
adc $acc4,$acc4,$t1
umulh $t1,$a7,$a5
adds $acc3,$acc3,$t2
mul $t2,$a7,$a6 // lo(a[7]*a[6]) (vii)
adcs $acc4,$acc4,$t3
umulh $t3,$a7,$a6 // hi(a[7]*a[6])
adc $acc5,xzr,xzr // t[13]
adds $acc4,$acc4,$t0
sub $cnt,$ap_end,$ap // done yet?
adc $acc5,$acc5,$t1
adds $acc5,$acc5,$t2
sub $t0,$ap_end,$num // rewinded ap
adc $acc6,xzr,xzr // t[14]
add $acc6,$acc6,$t3
cbz $cnt,.Lsqr8x_outer_break
mov $n0,$a0
ldp $a0,$a1,[$tp,#8*0]
ldp $a2,$a3,[$tp,#8*2]
ldp $a4,$a5,[$tp,#8*4]
ldp $a6,$a7,[$tp,#8*6]
adds $acc0,$acc0,$a0
adcs $acc1,$acc1,$a1
ldp $a0,$a1,[$ap,#8*0]
adcs $acc2,$acc2,$a2
adcs $acc3,$acc3,$a3
ldp $a2,$a3,[$ap,#8*2]
adcs $acc4,$acc4,$a4
adcs $acc5,$acc5,$a5
ldp $a4,$a5,[$ap,#8*4]
adcs $acc6,$acc6,$a6
mov $rp,$ap
adcs $acc7,xzr,$a7
ldp $a6,$a7,[$ap,#8*6]
add $ap,$ap,#8*8
//adc $carry,xzr,xzr // moved below
mov $cnt,#-8*8
// a[8]a[0]
// a[9]a[0]
// a[a]a[0]
// a[b]a[0]
// a[c]a[0]
// a[d]a[0]
// a[e]a[0]
// a[f]a[0]
// a[8]a[1]
// a[f]a[1]........................
// a[8]a[2]
// a[f]a[2]........................
// a[8]a[3]
// a[f]a[3]........................
// a[8]a[4]
// a[f]a[4]........................
// a[8]a[5]
// a[f]a[5]........................
// a[8]a[6]
// a[f]a[6]........................
// a[8]a[7]
// a[f]a[7]........................
.Lsqr8x_mul:
mul $t0,$a0,$n0
adc $carry,xzr,xzr // carry bit, modulo-scheduled
mul $t1,$a1,$n0
add $cnt,$cnt,#8
mul $t2,$a2,$n0
mul $t3,$a3,$n0
adds $acc0,$acc0,$t0
mul $t0,$a4,$n0
adcs $acc1,$acc1,$t1
mul $t1,$a5,$n0
adcs $acc2,$acc2,$t2
mul $t2,$a6,$n0
adcs $acc3,$acc3,$t3
mul $t3,$a7,$n0
adcs $acc4,$acc4,$t0
umulh $t0,$a0,$n0
adcs $acc5,$acc5,$t1
umulh $t1,$a1,$n0
adcs $acc6,$acc6,$t2
umulh $t2,$a2,$n0
adcs $acc7,$acc7,$t3
umulh $t3,$a3,$n0
adc $carry,$carry,xzr
str $acc0,[$tp],#8
adds $acc0,$acc1,$t0
umulh $t0,$a4,$n0
adcs $acc1,$acc2,$t1
umulh $t1,$a5,$n0
adcs $acc2,$acc3,$t2
umulh $t2,$a6,$n0
adcs $acc3,$acc4,$t3
umulh $t3,$a7,$n0
ldr $n0,[$rp,$cnt]
adcs $acc4,$acc5,$t0
adcs $acc5,$acc6,$t1
adcs $acc6,$acc7,$t2
adcs $acc7,$carry,$t3
//adc $carry,xzr,xzr // moved above
cbnz $cnt,.Lsqr8x_mul
// note that carry flag is guaranteed
// to be zero at this point
cmp $ap,$ap_end // done yet?
b.eq .Lsqr8x_break
ldp $a0,$a1,[$tp,#8*0]
ldp $a2,$a3,[$tp,#8*2]
ldp $a4,$a5,[$tp,#8*4]
ldp $a6,$a7,[$tp,#8*6]
adds $acc0,$acc0,$a0
ldr $n0,[$rp,#-8*8]
adcs $acc1,$acc1,$a1
ldp $a0,$a1,[$ap,#8*0]
adcs $acc2,$acc2,$a2
adcs $acc3,$acc3,$a3
ldp $a2,$a3,[$ap,#8*2]
adcs $acc4,$acc4,$a4
adcs $acc5,$acc5,$a5
ldp $a4,$a5,[$ap,#8*4]
adcs $acc6,$acc6,$a6
mov $cnt,#-8*8
adcs $acc7,$acc7,$a7
ldp $a6,$a7,[$ap,#8*6]
add $ap,$ap,#8*8
//adc $carry,xzr,xzr // moved above
b .Lsqr8x_mul
.align 4
.Lsqr8x_break:
ldp $a0,$a1,[$rp,#8*0]
add $ap,$rp,#8*8
ldp $a2,$a3,[$rp,#8*2]
sub $t0,$ap_end,$ap // is it last iteration?
ldp $a4,$a5,[$rp,#8*4]
sub $t1,$tp,$t0
ldp $a6,$a7,[$rp,#8*6]
cbz $t0,.Lsqr8x_outer_loop
stp $acc0,$acc1,[$tp,#8*0]
ldp $acc0,$acc1,[$t1,#8*0]
stp $acc2,$acc3,[$tp,#8*2]
ldp $acc2,$acc3,[$t1,#8*2]
stp $acc4,$acc5,[$tp,#8*4]
ldp $acc4,$acc5,[$t1,#8*4]
stp $acc6,$acc7,[$tp,#8*6]
mov $tp,$t1
ldp $acc6,$acc7,[$t1,#8*6]
b .Lsqr8x_outer_loop
.align 4
.Lsqr8x_outer_break:
// Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0]
ldp $a1,$a3,[$t0,#8*0] // recall that $t0 is &a[0]
ldp $t1,$t2,[sp,#8*1]
ldp $a5,$a7,[$t0,#8*2]
add $ap,$t0,#8*4
ldp $t3,$t0,[sp,#8*3]
stp $acc0,$acc1,[$tp,#8*0]
mul $acc0,$a1,$a1
stp $acc2,$acc3,[$tp,#8*2]
umulh $a1,$a1,$a1
stp $acc4,$acc5,[$tp,#8*4]
mul $a2,$a3,$a3
stp $acc6,$acc7,[$tp,#8*6]
mov $tp,sp
umulh $a3,$a3,$a3
adds $acc1,$a1,$t1,lsl#1
extr $t1,$t2,$t1,#63
sub $cnt,$num,#8*4
.Lsqr4x_shift_n_add:
adcs $acc2,$a2,$t1
extr $t2,$t3,$t2,#63
sub $cnt,$cnt,#8*4
adcs $acc3,$a3,$t2
ldp $t1,$t2,[$tp,#8*5]
mul $a4,$a5,$a5
ldp $a1,$a3,[$ap],#8*2
umulh $a5,$a5,$a5
mul $a6,$a7,$a7
umulh $a7,$a7,$a7
extr $t3,$t0,$t3,#63
stp $acc0,$acc1,[$tp,#8*0]
adcs $acc4,$a4,$t3
extr $t0,$t1,$t0,#63
stp $acc2,$acc3,[$tp,#8*2]
adcs $acc5,$a5,$t0
ldp $t3,$t0,[$tp,#8*7]
extr $t1,$t2,$t1,#63
adcs $acc6,$a6,$t1
extr $t2,$t3,$t2,#63
adcs $acc7,$a7,$t2
ldp $t1,$t2,[$tp,#8*9]
mul $a0,$a1,$a1
ldp $a5,$a7,[$ap],#8*2
umulh $a1,$a1,$a1
mul $a2,$a3,$a3
umulh $a3,$a3,$a3
stp $acc4,$acc5,[$tp,#8*4]
extr $t3,$t0,$t3,#63
stp $acc6,$acc7,[$tp,#8*6]
add $tp,$tp,#8*8
adcs $acc0,$a0,$t3
extr $t0,$t1,$t0,#63
adcs $acc1,$a1,$t0
ldp $t3,$t0,[$tp,#8*3]
extr $t1,$t2,$t1,#63
cbnz $cnt,.Lsqr4x_shift_n_add
___
my ($np,$np_end)=($ap,$ap_end);
$code.=<<___;
ldp $np,$n0,[x29,#104] // pull np and n0
adcs $acc2,$a2,$t1
extr $t2,$t3,$t2,#63
adcs $acc3,$a3,$t2
ldp $t1,$t2,[$tp,#8*5]
mul $a4,$a5,$a5
umulh $a5,$a5,$a5
stp $acc0,$acc1,[$tp,#8*0]
mul $a6,$a7,$a7
umulh $a7,$a7,$a7
stp $acc2,$acc3,[$tp,#8*2]
extr $t3,$t0,$t3,#63
adcs $acc4,$a4,$t3
extr $t0,$t1,$t0,#63
ldp $acc0,$acc1,[sp,#8*0]
adcs $acc5,$a5,$t0
extr $t1,$t2,$t1,#63
ldp $a0,$a1,[$np,#8*0]
adcs $acc6,$a6,$t1
extr $t2,xzr,$t2,#63
ldp $a2,$a3,[$np,#8*2]
adc $acc7,$a7,$t2
ldp $a4,$a5,[$np,#8*4]
// Reduce by 512 bits per iteration
mul $na0,$n0,$acc0 // t[0]*n0
ldp $a6,$a7,[$np,#8*6]
add $np_end,$np,$num
ldp $acc2,$acc3,[sp,#8*2]
stp $acc4,$acc5,[$tp,#8*4]
ldp $acc4,$acc5,[sp,#8*4]
stp $acc6,$acc7,[$tp,#8*6]
ldp $acc6,$acc7,[sp,#8*6]
add $np,$np,#8*8
mov $topmost,xzr // initial top-most carry
mov $tp,sp
mov $cnt,#8
.Lsqr8x_reduction:
// (*) mul $t0,$a0,$na0 // lo(n[0-7])*lo(t[0]*n0)
mul $t1,$a1,$na0
sub $cnt,$cnt,#1
mul $t2,$a2,$na0
str $na0,[$tp],#8 // put aside t[0]*n0 for tail processing
mul $t3,$a3,$na0
// (*) adds xzr,$acc0,$t0
subs xzr,$acc0,#1 // (*)
mul $t0,$a4,$na0
adcs $acc0,$acc1,$t1
mul $t1,$a5,$na0
adcs $acc1,$acc2,$t2
mul $t2,$a6,$na0
adcs $acc2,$acc3,$t3
mul $t3,$a7,$na0
adcs $acc3,$acc4,$t0
umulh $t0,$a0,$na0 // hi(n[0-7])*lo(t[0]*n0)
adcs $acc4,$acc5,$t1
umulh $t1,$a1,$na0
adcs $acc5,$acc6,$t2
umulh $t2,$a2,$na0
adcs $acc6,$acc7,$t3
umulh $t3,$a3,$na0
adc $acc7,xzr,xzr
adds $acc0,$acc0,$t0
umulh $t0,$a4,$na0
adcs $acc1,$acc1,$t1
umulh $t1,$a5,$na0
adcs $acc2,$acc2,$t2
umulh $t2,$a6,$na0
adcs $acc3,$acc3,$t3
umulh $t3,$a7,$na0
mul $na0,$n0,$acc0 // next t[0]*n0
adcs $acc4,$acc4,$t0
adcs $acc5,$acc5,$t1
adcs $acc6,$acc6,$t2
adc $acc7,$acc7,$t3
cbnz $cnt,.Lsqr8x_reduction
ldp $t0,$t1,[$tp,#8*0]
ldp $t2,$t3,[$tp,#8*2]
mov $rp,$tp
sub $cnt,$np_end,$np // done yet?
adds $acc0,$acc0,$t0
adcs $acc1,$acc1,$t1
ldp $t0,$t1,[$tp,#8*4]
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
ldp $t2,$t3,[$tp,#8*6]
adcs $acc4,$acc4,$t0
adcs $acc5,$acc5,$t1
adcs $acc6,$acc6,$t2
adcs $acc7,$acc7,$t3
//adc $carry,xzr,xzr // moved below
cbz $cnt,.Lsqr8x8_post_condition
ldr $n0,[$tp,#-8*8]
ldp $a0,$a1,[$np,#8*0]
ldp $a2,$a3,[$np,#8*2]
ldp $a4,$a5,[$np,#8*4]
mov $cnt,#-8*8
ldp $a6,$a7,[$np,#8*6]
add $np,$np,#8*8
.Lsqr8x_tail:
mul $t0,$a0,$n0
adc $carry,xzr,xzr // carry bit, modulo-scheduled
mul $t1,$a1,$n0
add $cnt,$cnt,#8
mul $t2,$a2,$n0
mul $t3,$a3,$n0
adds $acc0,$acc0,$t0
mul $t0,$a4,$n0
adcs $acc1,$acc1,$t1
mul $t1,$a5,$n0
adcs $acc2,$acc2,$t2
mul $t2,$a6,$n0
adcs $acc3,$acc3,$t3
mul $t3,$a7,$n0
adcs $acc4,$acc4,$t0
umulh $t0,$a0,$n0
adcs $acc5,$acc5,$t1
umulh $t1,$a1,$n0
adcs $acc6,$acc6,$t2
umulh $t2,$a2,$n0
adcs $acc7,$acc7,$t3
umulh $t3,$a3,$n0
adc $carry,$carry,xzr
str $acc0,[$tp],#8
adds $acc0,$acc1,$t0
umulh $t0,$a4,$n0
adcs $acc1,$acc2,$t1
umulh $t1,$a5,$n0
adcs $acc2,$acc3,$t2
umulh $t2,$a6,$n0
adcs $acc3,$acc4,$t3
umulh $t3,$a7,$n0
ldr $n0,[$rp,$cnt]
adcs $acc4,$acc5,$t0
adcs $acc5,$acc6,$t1
adcs $acc6,$acc7,$t2
adcs $acc7,$carry,$t3
//adc $carry,xzr,xzr // moved above
cbnz $cnt,.Lsqr8x_tail
// note that carry flag is guaranteed
// to be zero at this point
ldp $a0,$a1,[$tp,#8*0]
sub $cnt,$np_end,$np // done yet?
sub $t2,$np_end,$num // rewinded np
ldp $a2,$a3,[$tp,#8*2]
ldp $a4,$a5,[$tp,#8*4]
ldp $a6,$a7,[$tp,#8*6]
cbz $cnt,.Lsqr8x_tail_break
ldr $n0,[$rp,#-8*8]
adds $acc0,$acc0,$a0
adcs $acc1,$acc1,$a1
ldp $a0,$a1,[$np,#8*0]
adcs $acc2,$acc2,$a2
adcs $acc3,$acc3,$a3
ldp $a2,$a3,[$np,#8*2]
adcs $acc4,$acc4,$a4
adcs $acc5,$acc5,$a5
ldp $a4,$a5,[$np,#8*4]
adcs $acc6,$acc6,$a6
mov $cnt,#-8*8
adcs $acc7,$acc7,$a7
ldp $a6,$a7,[$np,#8*6]
add $np,$np,#8*8
//adc $carry,xzr,xzr // moved above
b .Lsqr8x_tail
.align 4
.Lsqr8x_tail_break:
ldr $n0,[x29,#112] // pull n0
add $cnt,$tp,#8*8 // end of current t[num] window
subs xzr,$topmost,#1 // "move" top-most carry to carry bit
adcs $t0,$acc0,$a0
adcs $t1,$acc1,$a1
ldp $acc0,$acc1,[$rp,#8*0]
adcs $acc2,$acc2,$a2
ldp $a0,$a1,[$t2,#8*0] // recall that $t2 is &n[0]
adcs $acc3,$acc3,$a3
ldp $a2,$a3,[$t2,#8*2]
adcs $acc4,$acc4,$a4
adcs $acc5,$acc5,$a5
ldp $a4,$a5,[$t2,#8*4]
adcs $acc6,$acc6,$a6
adcs $acc7,$acc7,$a7
ldp $a6,$a7,[$t2,#8*6]
add $np,$t2,#8*8
adc $topmost,xzr,xzr // top-most carry
mul $na0,$n0,$acc0
stp $t0,$t1,[$tp,#8*0]
stp $acc2,$acc3,[$tp,#8*2]
ldp $acc2,$acc3,[$rp,#8*2]
stp $acc4,$acc5,[$tp,#8*4]
ldp $acc4,$acc5,[$rp,#8*4]
cmp $cnt,x29 // did we hit the bottom?
stp $acc6,$acc7,[$tp,#8*6]
mov $tp,$rp // slide the window
ldp $acc6,$acc7,[$rp,#8*6]
mov $cnt,#8
b.ne .Lsqr8x_reduction
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
ldr $rp,[x29,#96] // pull rp
add $tp,$tp,#8*8
subs $t0,$acc0,$a0
sbcs $t1,$acc1,$a1
sub $cnt,$num,#8*8
mov $ap_end,$rp // $rp copy
.Lsqr8x_sub:
sbcs $t2,$acc2,$a2
ldp $a0,$a1,[$np,#8*0]
sbcs $t3,$acc3,$a3
stp $t0,$t1,[$rp,#8*0]
sbcs $t0,$acc4,$a4
ldp $a2,$a3,[$np,#8*2]
sbcs $t1,$acc5,$a5
stp $t2,$t3,[$rp,#8*2]
sbcs $t2,$acc6,$a6
ldp $a4,$a5,[$np,#8*4]
sbcs $t3,$acc7,$a7
ldp $a6,$a7,[$np,#8*6]
add $np,$np,#8*8
ldp $acc0,$acc1,[$tp,#8*0]
sub $cnt,$cnt,#8*8
ldp $acc2,$acc3,[$tp,#8*2]
ldp $acc4,$acc5,[$tp,#8*4]
ldp $acc6,$acc7,[$tp,#8*6]
add $tp,$tp,#8*8
stp $t0,$t1,[$rp,#8*4]
sbcs $t0,$acc0,$a0
stp $t2,$t3,[$rp,#8*6]
add $rp,$rp,#8*8
sbcs $t1,$acc1,$a1
cbnz $cnt,.Lsqr8x_sub
sbcs $t2,$acc2,$a2
mov $tp,sp
add $ap,sp,$num
ldp $a0,$a1,[$ap_end,#8*0]
sbcs $t3,$acc3,$a3
stp $t0,$t1,[$rp,#8*0]
sbcs $t0,$acc4,$a4
ldp $a2,$a3,[$ap_end,#8*2]
sbcs $t1,$acc5,$a5
stp $t2,$t3,[$rp,#8*2]
sbcs $t2,$acc6,$a6
ldp $acc0,$acc1,[$ap,#8*0]
sbcs $t3,$acc7,$a7
ldp $acc2,$acc3,[$ap,#8*2]
sbcs xzr,$topmost,xzr // did it borrow?
ldr x30,[x29,#8] // pull return address
stp $t0,$t1,[$rp,#8*4]
stp $t2,$t3,[$rp,#8*6]
sub $cnt,$num,#8*4
.Lsqr4x_cond_copy:
sub $cnt,$cnt,#8*4
csel $t0,$acc0,$a0,lo
stp xzr,xzr,[$tp,#8*0]
csel $t1,$acc1,$a1,lo
ldp $a0,$a1,[$ap_end,#8*4]
ldp $acc0,$acc1,[$ap,#8*4]
csel $t2,$acc2,$a2,lo
stp xzr,xzr,[$tp,#8*2]
add $tp,$tp,#8*4
csel $t3,$acc3,$a3,lo
ldp $a2,$a3,[$ap_end,#8*6]
ldp $acc2,$acc3,[$ap,#8*6]
add $ap,$ap,#8*4
stp $t0,$t1,[$ap_end,#8*0]
stp $t2,$t3,[$ap_end,#8*2]
add $ap_end,$ap_end,#8*4
stp xzr,xzr,[$ap,#8*0]
stp xzr,xzr,[$ap,#8*2]
cbnz $cnt,.Lsqr4x_cond_copy
csel $t0,$acc0,$a0,lo
stp xzr,xzr,[$tp,#8*0]
csel $t1,$acc1,$a1,lo
stp xzr,xzr,[$tp,#8*2]
csel $t2,$acc2,$a2,lo
csel $t3,$acc3,$a3,lo
stp $t0,$t1,[$ap_end,#8*0]
stp $t2,$t3,[$ap_end,#8*2]
b .Lsqr8x_done
.align 4
.Lsqr8x8_post_condition:
adc $carry,xzr,xzr
ldr x30,[x29,#8] // pull return address
// $acc0-7,$carry hold result, $a0-7 hold modulus
subs $a0,$acc0,$a0
ldr $ap,[x29,#96] // pull rp
sbcs $a1,$acc1,$a1
stp xzr,xzr,[sp,#8*0]
sbcs $a2,$acc2,$a2
stp xzr,xzr,[sp,#8*2]
sbcs $a3,$acc3,$a3
stp xzr,xzr,[sp,#8*4]
sbcs $a4,$acc4,$a4
stp xzr,xzr,[sp,#8*6]
sbcs $a5,$acc5,$a5
stp xzr,xzr,[sp,#8*8]
sbcs $a6,$acc6,$a6
stp xzr,xzr,[sp,#8*10]
sbcs $a7,$acc7,$a7
stp xzr,xzr,[sp,#8*12]
sbcs $carry,$carry,xzr // did it borrow?
stp xzr,xzr,[sp,#8*14]
// $a0-7 hold result-modulus
csel $a0,$acc0,$a0,lo
csel $a1,$acc1,$a1,lo
csel $a2,$acc2,$a2,lo
csel $a3,$acc3,$a3,lo
stp $a0,$a1,[$ap,#8*0]
csel $a4,$acc4,$a4,lo
csel $a5,$acc5,$a5,lo
stp $a2,$a3,[$ap,#8*2]
csel $a6,$acc6,$a6,lo
csel $a7,$acc7,$a7,lo
stp $a4,$a5,[$ap,#8*4]
stp $a6,$a7,[$ap,#8*6]
.Lsqr8x_done:
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldr x29,[sp],#128
ret
.size __bn_sqr8x_mont,.-__bn_sqr8x_mont
___
}
{
########################################################################
# Even though this might look as ARMv8 adaptation of mulx4x_mont from
# x86_64-mont5 module, it's different in sense that it performs
# reduction 256 bits at a time.
my ($a0,$a1,$a2,$a3,
$t0,$t1,$t2,$t3,
$m0,$m1,$m2,$m3,
$acc0,$acc1,$acc2,$acc3,$acc4,
$bi,$mi,$tp,$ap_end,$cnt) = map("x$_",(6..17,19..28));
my $bp_end=$rp;
my ($carry,$topmost) = ($rp,"x30");
$code.=<<___;
.type __bn_mul4x_mont,%function
.align 5
__bn_mul4x_mont:
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
sub $tp,sp,$num,lsl#3
lsl $num,$num,#3
ldr $n0,[$n0] // *n0
sub sp,$tp,#8*4 // alloca
add $t0,$bp,$num
add $ap_end,$ap,$num
stp $rp,$t0,[x29,#96] // offload rp and &b[num]
ldr $bi,[$bp,#8*0] // b[0]
ldp $a0,$a1,[$ap,#8*0] // a[0..3]
ldp $a2,$a3,[$ap,#8*2]
add $ap,$ap,#8*4
mov $acc0,xzr
mov $acc1,xzr
mov $acc2,xzr
mov $acc3,xzr
ldp $m0,$m1,[$np,#8*0] // n[0..3]
ldp $m2,$m3,[$np,#8*2]
adds $np,$np,#8*4 // clear carry bit
mov $carry,xzr
mov $cnt,#0
mov $tp,sp
.Loop_mul4x_1st_reduction:
mul $t0,$a0,$bi // lo(a[0..3]*b[0])
adc $carry,$carry,xzr // modulo-scheduled
mul $t1,$a1,$bi
add $cnt,$cnt,#8
mul $t2,$a2,$bi
and $cnt,$cnt,#31
mul $t3,$a3,$bi
adds $acc0,$acc0,$t0
umulh $t0,$a0,$bi // hi(a[0..3]*b[0])
adcs $acc1,$acc1,$t1
mul $mi,$acc0,$n0 // t[0]*n0
adcs $acc2,$acc2,$t2
umulh $t1,$a1,$bi
adcs $acc3,$acc3,$t3
umulh $t2,$a2,$bi
adc $acc4,xzr,xzr
umulh $t3,$a3,$bi
ldr $bi,[$bp,$cnt] // next b[i] (or b[0])
adds $acc1,$acc1,$t0
// (*) mul $t0,$m0,$mi // lo(n[0..3]*t[0]*n0)
str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing
adcs $acc2,$acc2,$t1
mul $t1,$m1,$mi
adcs $acc3,$acc3,$t2
mul $t2,$m2,$mi
adc $acc4,$acc4,$t3 // can't overflow
mul $t3,$m3,$mi
// (*) adds xzr,$acc0,$t0
subs xzr,$acc0,#1 // (*)
umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0)
adcs $acc0,$acc1,$t1
umulh $t1,$m1,$mi
adcs $acc1,$acc2,$t2
umulh $t2,$m2,$mi
adcs $acc2,$acc3,$t3
umulh $t3,$m3,$mi
adcs $acc3,$acc4,$carry
adc $carry,xzr,xzr
adds $acc0,$acc0,$t0
sub $t0,$ap_end,$ap
adcs $acc1,$acc1,$t1
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
//adc $carry,$carry,xzr
cbnz $cnt,.Loop_mul4x_1st_reduction
cbz $t0,.Lmul4x4_post_condition
ldp $a0,$a1,[$ap,#8*0] // a[4..7]
ldp $a2,$a3,[$ap,#8*2]
add $ap,$ap,#8*4
ldr $mi,[sp] // a[0]*n0
ldp $m0,$m1,[$np,#8*0] // n[4..7]
ldp $m2,$m3,[$np,#8*2]
add $np,$np,#8*4
.Loop_mul4x_1st_tail:
mul $t0,$a0,$bi // lo(a[4..7]*b[i])
adc $carry,$carry,xzr // modulo-scheduled
mul $t1,$a1,$bi
add $cnt,$cnt,#8
mul $t2,$a2,$bi
and $cnt,$cnt,#31
mul $t3,$a3,$bi
adds $acc0,$acc0,$t0
umulh $t0,$a0,$bi // hi(a[4..7]*b[i])
adcs $acc1,$acc1,$t1
umulh $t1,$a1,$bi
adcs $acc2,$acc2,$t2
umulh $t2,$a2,$bi
adcs $acc3,$acc3,$t3
umulh $t3,$a3,$bi
adc $acc4,xzr,xzr
ldr $bi,[$bp,$cnt] // next b[i] (or b[0])
adds $acc1,$acc1,$t0
mul $t0,$m0,$mi // lo(n[4..7]*a[0]*n0)
adcs $acc2,$acc2,$t1
mul $t1,$m1,$mi
adcs $acc3,$acc3,$t2
mul $t2,$m2,$mi
adc $acc4,$acc4,$t3 // can't overflow
mul $t3,$m3,$mi
adds $acc0,$acc0,$t0
umulh $t0,$m0,$mi // hi(n[4..7]*a[0]*n0)
adcs $acc1,$acc1,$t1
umulh $t1,$m1,$mi
adcs $acc2,$acc2,$t2
umulh $t2,$m2,$mi
adcs $acc3,$acc3,$t3
adcs $acc4,$acc4,$carry
umulh $t3,$m3,$mi
adc $carry,xzr,xzr
ldr $mi,[sp,$cnt] // next t[0]*n0
str $acc0,[$tp],#8 // result!!!
adds $acc0,$acc1,$t0
sub $t0,$ap_end,$ap // done yet?
adcs $acc1,$acc2,$t1
adcs $acc2,$acc3,$t2
adcs $acc3,$acc4,$t3
//adc $carry,$carry,xzr
cbnz $cnt,.Loop_mul4x_1st_tail
sub $t1,$ap_end,$num // rewinded $ap
cbz $t0,.Lmul4x_proceed
ldp $a0,$a1,[$ap,#8*0]
ldp $a2,$a3,[$ap,#8*2]
add $ap,$ap,#8*4
ldp $m0,$m1,[$np,#8*0]
ldp $m2,$m3,[$np,#8*2]
add $np,$np,#8*4
b .Loop_mul4x_1st_tail
.align 5
.Lmul4x_proceed:
ldr $bi,[$bp,#8*4]! // *++b
adc $topmost,$carry,xzr
ldp $a0,$a1,[$t1,#8*0] // a[0..3]
sub $np,$np,$num // rewind np
ldp $a2,$a3,[$t1,#8*2]
add $ap,$t1,#8*4
stp $acc0,$acc1,[$tp,#8*0] // result!!!
ldp $acc0,$acc1,[sp,#8*4] // t[0..3]
stp $acc2,$acc3,[$tp,#8*2] // result!!!
ldp $acc2,$acc3,[sp,#8*6]
ldp $m0,$m1,[$np,#8*0] // n[0..3]
mov $tp,sp
ldp $m2,$m3,[$np,#8*2]
adds $np,$np,#8*4 // clear carry bit
mov $carry,xzr
.align 4
.Loop_mul4x_reduction:
mul $t0,$a0,$bi // lo(a[0..3]*b[4])
adc $carry,$carry,xzr // modulo-scheduled
mul $t1,$a1,$bi
add $cnt,$cnt,#8
mul $t2,$a2,$bi
and $cnt,$cnt,#31
mul $t3,$a3,$bi
adds $acc0,$acc0,$t0
umulh $t0,$a0,$bi // hi(a[0..3]*b[4])
adcs $acc1,$acc1,$t1
mul $mi,$acc0,$n0 // t[0]*n0
adcs $acc2,$acc2,$t2
umulh $t1,$a1,$bi
adcs $acc3,$acc3,$t3
umulh $t2,$a2,$bi
adc $acc4,xzr,xzr
umulh $t3,$a3,$bi
ldr $bi,[$bp,$cnt] // next b[i]
adds $acc1,$acc1,$t0
// (*) mul $t0,$m0,$mi
str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing
adcs $acc2,$acc2,$t1
mul $t1,$m1,$mi // lo(n[0..3]*t[0]*n0
adcs $acc3,$acc3,$t2
mul $t2,$m2,$mi
adc $acc4,$acc4,$t3 // can't overflow
mul $t3,$m3,$mi
// (*) adds xzr,$acc0,$t0
subs xzr,$acc0,#1 // (*)
umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0
adcs $acc0,$acc1,$t1
umulh $t1,$m1,$mi
adcs $acc1,$acc2,$t2
umulh $t2,$m2,$mi
adcs $acc2,$acc3,$t3
umulh $t3,$m3,$mi
adcs $acc3,$acc4,$carry
adc $carry,xzr,xzr
adds $acc0,$acc0,$t0
adcs $acc1,$acc1,$t1
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
//adc $carry,$carry,xzr
cbnz $cnt,.Loop_mul4x_reduction
adc $carry,$carry,xzr
ldp $t0,$t1,[$tp,#8*4] // t[4..7]
ldp $t2,$t3,[$tp,#8*6]
ldp $a0,$a1,[$ap,#8*0] // a[4..7]
ldp $a2,$a3,[$ap,#8*2]
add $ap,$ap,#8*4
adds $acc0,$acc0,$t0
adcs $acc1,$acc1,$t1
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
//adc $carry,$carry,xzr
ldr $mi,[sp] // t[0]*n0
ldp $m0,$m1,[$np,#8*0] // n[4..7]
ldp $m2,$m3,[$np,#8*2]
add $np,$np,#8*4
.align 4
.Loop_mul4x_tail:
mul $t0,$a0,$bi // lo(a[4..7]*b[4])
adc $carry,$carry,xzr // modulo-scheduled
mul $t1,$a1,$bi
add $cnt,$cnt,#8
mul $t2,$a2,$bi
and $cnt,$cnt,#31
mul $t3,$a3,$bi
adds $acc0,$acc0,$t0
umulh $t0,$a0,$bi // hi(a[4..7]*b[4])
adcs $acc1,$acc1,$t1
umulh $t1,$a1,$bi
adcs $acc2,$acc2,$t2
umulh $t2,$a2,$bi
adcs $acc3,$acc3,$t3
umulh $t3,$a3,$bi
adc $acc4,xzr,xzr
ldr $bi,[$bp,$cnt] // next b[i]
adds $acc1,$acc1,$t0
mul $t0,$m0,$mi // lo(n[4..7]*t[0]*n0)
adcs $acc2,$acc2,$t1
mul $t1,$m1,$mi
adcs $acc3,$acc3,$t2
mul $t2,$m2,$mi
adc $acc4,$acc4,$t3 // can't overflow
mul $t3,$m3,$mi
adds $acc0,$acc0,$t0
umulh $t0,$m0,$mi // hi(n[4..7]*t[0]*n0)
adcs $acc1,$acc1,$t1
umulh $t1,$m1,$mi
adcs $acc2,$acc2,$t2
umulh $t2,$m2,$mi
adcs $acc3,$acc3,$t3
umulh $t3,$m3,$mi
adcs $acc4,$acc4,$carry
ldr $mi,[sp,$cnt] // next a[0]*n0
adc $carry,xzr,xzr
str $acc0,[$tp],#8 // result!!!
adds $acc0,$acc1,$t0
sub $t0,$ap_end,$ap // done yet?
adcs $acc1,$acc2,$t1
adcs $acc2,$acc3,$t2
adcs $acc3,$acc4,$t3
//adc $carry,$carry,xzr
cbnz $cnt,.Loop_mul4x_tail
sub $t1,$np,$num // rewinded np?
adc $carry,$carry,xzr
cbz $t0,.Loop_mul4x_break
ldp $t0,$t1,[$tp,#8*4]
ldp $t2,$t3,[$tp,#8*6]
ldp $a0,$a1,[$ap,#8*0]
ldp $a2,$a3,[$ap,#8*2]
add $ap,$ap,#8*4
adds $acc0,$acc0,$t0
adcs $acc1,$acc1,$t1
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
//adc $carry,$carry,xzr
ldp $m0,$m1,[$np,#8*0]
ldp $m2,$m3,[$np,#8*2]
add $np,$np,#8*4
b .Loop_mul4x_tail
.align 4
.Loop_mul4x_break:
ldp $t2,$t3,[x29,#96] // pull rp and &b[num]
adds $acc0,$acc0,$topmost
add $bp,$bp,#8*4 // bp++
adcs $acc1,$acc1,xzr
sub $ap,$ap,$num // rewind ap
adcs $acc2,$acc2,xzr
stp $acc0,$acc1,[$tp,#8*0] // result!!!
adcs $acc3,$acc3,xzr
ldp $acc0,$acc1,[sp,#8*4] // t[0..3]
adc $topmost,$carry,xzr
stp $acc2,$acc3,[$tp,#8*2] // result!!!
cmp $bp,$t3 // done yet?
ldp $acc2,$acc3,[sp,#8*6]
ldp $m0,$m1,[$t1,#8*0] // n[0..3]
ldp $m2,$m3,[$t1,#8*2]
add $np,$t1,#8*4
b.eq .Lmul4x_post
ldr $bi,[$bp]
ldp $a0,$a1,[$ap,#8*0] // a[0..3]
ldp $a2,$a3,[$ap,#8*2]
adds $ap,$ap,#8*4 // clear carry bit
mov $carry,xzr
mov $tp,sp
b .Loop_mul4x_reduction
.align 4
.Lmul4x_post:
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
mov $rp,$t2
mov $ap_end,$t2 // $rp copy
subs $t0,$acc0,$m0
add $tp,sp,#8*8
sbcs $t1,$acc1,$m1
sub $cnt,$num,#8*4
.Lmul4x_sub:
sbcs $t2,$acc2,$m2
ldp $m0,$m1,[$np,#8*0]
sub $cnt,$cnt,#8*4
ldp $acc0,$acc1,[$tp,#8*0]
sbcs $t3,$acc3,$m3
ldp $m2,$m3,[$np,#8*2]
add $np,$np,#8*4
ldp $acc2,$acc3,[$tp,#8*2]
add $tp,$tp,#8*4
stp $t0,$t1,[$rp,#8*0]
sbcs $t0,$acc0,$m0
stp $t2,$t3,[$rp,#8*2]
add $rp,$rp,#8*4
sbcs $t1,$acc1,$m1
cbnz $cnt,.Lmul4x_sub
sbcs $t2,$acc2,$m2
mov $tp,sp
add $ap,sp,#8*4
ldp $a0,$a1,[$ap_end,#8*0]
sbcs $t3,$acc3,$m3
stp $t0,$t1,[$rp,#8*0]
ldp $a2,$a3,[$ap_end,#8*2]
stp $t2,$t3,[$rp,#8*2]
ldp $acc0,$acc1,[$ap,#8*0]
ldp $acc2,$acc3,[$ap,#8*2]
sbcs xzr,$topmost,xzr // did it borrow?
ldr x30,[x29,#8] // pull return address
sub $cnt,$num,#8*4
.Lmul4x_cond_copy:
sub $cnt,$cnt,#8*4
csel $t0,$acc0,$a0,lo
stp xzr,xzr,[$tp,#8*0]
csel $t1,$acc1,$a1,lo
ldp $a0,$a1,[$ap_end,#8*4]
ldp $acc0,$acc1,[$ap,#8*4]
csel $t2,$acc2,$a2,lo
stp xzr,xzr,[$tp,#8*2]
add $tp,$tp,#8*4
csel $t3,$acc3,$a3,lo
ldp $a2,$a3,[$ap_end,#8*6]
ldp $acc2,$acc3,[$ap,#8*6]
add $ap,$ap,#8*4
stp $t0,$t1,[$ap_end,#8*0]
stp $t2,$t3,[$ap_end,#8*2]
add $ap_end,$ap_end,#8*4
cbnz $cnt,.Lmul4x_cond_copy
csel $t0,$acc0,$a0,lo
stp xzr,xzr,[$tp,#8*0]
csel $t1,$acc1,$a1,lo
stp xzr,xzr,[$tp,#8*2]
csel $t2,$acc2,$a2,lo
stp xzr,xzr,[$tp,#8*3]
csel $t3,$acc3,$a3,lo
stp xzr,xzr,[$tp,#8*4]
stp $t0,$t1,[$ap_end,#8*0]
stp $t2,$t3,[$ap_end,#8*2]
b .Lmul4x_done
.align 4
.Lmul4x4_post_condition:
adc $carry,$carry,xzr
ldr $ap,[x29,#96] // pull rp
// $acc0-3,$carry hold result, $m0-7 hold modulus
subs $a0,$acc0,$m0
ldr x30,[x29,#8] // pull return address
sbcs $a1,$acc1,$m1
stp xzr,xzr,[sp,#8*0]
sbcs $a2,$acc2,$m2
stp xzr,xzr,[sp,#8*2]
sbcs $a3,$acc3,$m3
stp xzr,xzr,[sp,#8*4]
sbcs xzr,$carry,xzr // did it borrow?
stp xzr,xzr,[sp,#8*6]
// $a0-3 hold result-modulus
csel $a0,$acc0,$a0,lo
csel $a1,$acc1,$a1,lo
csel $a2,$acc2,$a2,lo
csel $a3,$acc3,$a3,lo
stp $a0,$a1,[$ap,#8*0]
stp $a2,$a3,[$ap,#8*2]
.Lmul4x_done:
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldr x29,[sp],#128
ret
.size __bn_mul4x_mont,.-__bn_mul4x_mont
___
}
$code.=<<___;
.asciz "Montgomery Multiplication for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
print $code;
close STDOUT;