x86-gf2m.pl
7.91 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#! /usr/bin/env perl
# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# May 2011
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
# the time being... Except that it has three code paths: pure integer
# code suitable for any x86 CPU, MMX code suitable for PIII and later
# and PCLMULQDQ suitable for Westmere and later. Improvement varies
# from one benchmark and µ-arch to another. Below are interval values
# for 163- and 571-bit ECDH benchmarks relative to compiler-generated
# code:
#
# PIII 16%-30%
# P4 12%-12%
# Opteron 18%-40%
# Core2 19%-44%
# Atom 38%-64%
# Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX)
# Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX)
#
# Note that above improvement coefficients are not coefficients for
# bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
# of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
# is more and more dominated by other subroutines, most notably by
# BN_GF2m_mod[_mul]_arr...
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
$output = pop;
open STDOUT,">$output";
&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
$sse2=0;
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
&external_label("OPENSSL_ia32cap_P") if ($sse2);
$a="eax";
$b="ebx";
($a1,$a2,$a4)=("ecx","edx","ebp");
$R="mm0";
@T=("mm1","mm2");
($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
@i=("esi","edi");
if (!$x86only) {
&function_begin_B("_mul_1x1_mmx");
&sub ("esp",32+4);
&mov ($a1,$a);
&lea ($a2,&DWP(0,$a,$a));
&and ($a1,0x3fffffff);
&lea ($a4,&DWP(0,$a2,$a2));
&mov (&DWP(0*4,"esp"),0);
&and ($a2,0x7fffffff);
&movd ($A,$a);
&movd ($B,$b);
&mov (&DWP(1*4,"esp"),$a1); # a1
&xor ($a1,$a2); # a1^a2
&pxor ($B31,$B31);
&pxor ($B30,$B30);
&mov (&DWP(2*4,"esp"),$a2); # a2
&xor ($a2,$a4); # a2^a4
&mov (&DWP(3*4,"esp"),$a1); # a1^a2
&pcmpgtd($B31,$A); # broadcast 31st bit
&paddd ($A,$A); # $A<<=1
&xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
&mov (&DWP(4*4,"esp"),$a4); # a4
&xor ($a4,$a2); # a2=a4^a2^a4
&pand ($B31,$B);
&pcmpgtd($B30,$A); # broadcast 30th bit
&mov (&DWP(5*4,"esp"),$a1); # a1^a4
&xor ($a4,$a1); # a1^a2^a4
&psllq ($B31,31);
&pand ($B30,$B);
&mov (&DWP(6*4,"esp"),$a2); # a2^a4
&mov (@i[0],0x7);
&mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
&mov ($a4,@i[0]);
&and (@i[0],$b);
&shr ($b,3);
&mov (@i[1],$a4);
&psllq ($B30,30);
&and (@i[1],$b);
&shr ($b,3);
&movd ($R,&DWP(0,"esp",@i[0],4));
&mov (@i[0],$a4);
&and (@i[0],$b);
&shr ($b,3);
for($n=1;$n<9;$n++) {
&movd (@T[1],&DWP(0,"esp",@i[1],4));
&mov (@i[1],$a4);
&psllq (@T[1],3*$n);
&and (@i[1],$b);
&shr ($b,3);
&pxor ($R,@T[1]);
push(@i,shift(@i)); push(@T,shift(@T));
}
&movd (@T[1],&DWP(0,"esp",@i[1],4));
&pxor ($R,$B30);
&psllq (@T[1],3*$n++);
&pxor ($R,@T[1]);
&movd (@T[0],&DWP(0,"esp",@i[0],4));
&pxor ($R,$B31);
&psllq (@T[0],3*$n);
&add ("esp",32+4);
&pxor ($R,@T[0]);
&ret ();
&function_end_B("_mul_1x1_mmx");
}
($lo,$hi)=("eax","edx");
@T=("ecx","ebp");
&function_begin_B("_mul_1x1_ialu");
&sub ("esp",32+4);
&mov ($a1,$a);
&lea ($a2,&DWP(0,$a,$a));
&lea ($a4,&DWP(0,"",$a,4));
&and ($a1,0x3fffffff);
&lea (@i[1],&DWP(0,$lo,$lo));
&sar ($lo,31); # broadcast 31st bit
&mov (&DWP(0*4,"esp"),0);
&and ($a2,0x7fffffff);
&mov (&DWP(1*4,"esp"),$a1); # a1
&xor ($a1,$a2); # a1^a2
&mov (&DWP(2*4,"esp"),$a2); # a2
&xor ($a2,$a4); # a2^a4
&mov (&DWP(3*4,"esp"),$a1); # a1^a2
&xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
&mov (&DWP(4*4,"esp"),$a4); # a4
&xor ($a4,$a2); # a2=a4^a2^a4
&mov (&DWP(5*4,"esp"),$a1); # a1^a4
&xor ($a4,$a1); # a1^a2^a4
&sar (@i[1],31); # broadcast 30th bit
&and ($lo,$b);
&mov (&DWP(6*4,"esp"),$a2); # a2^a4
&and (@i[1],$b);
&mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
&mov ($hi,$lo);
&shl ($lo,31);
&mov (@T[0],@i[1]);
&shr ($hi,1);
&mov (@i[0],0x7);
&shl (@i[1],30);
&and (@i[0],$b);
&shr (@T[0],2);
&xor ($lo,@i[1]);
&shr ($b,3);
&mov (@i[1],0x7); # 5-byte instruction!?
&and (@i[1],$b);
&shr ($b,3);
&xor ($hi,@T[0]);
&xor ($lo,&DWP(0,"esp",@i[0],4));
&mov (@i[0],0x7);
&and (@i[0],$b);
&shr ($b,3);
for($n=1;$n<9;$n++) {
&mov (@T[1],&DWP(0,"esp",@i[1],4));
&mov (@i[1],0x7);
&mov (@T[0],@T[1]);
&shl (@T[1],3*$n);
&and (@i[1],$b);
&shr (@T[0],32-3*$n);
&xor ($lo,@T[1]);
&shr ($b,3);
&xor ($hi,@T[0]);
push(@i,shift(@i)); push(@T,shift(@T));
}
&mov (@T[1],&DWP(0,"esp",@i[1],4));
&mov (@T[0],@T[1]);
&shl (@T[1],3*$n);
&mov (@i[1],&DWP(0,"esp",@i[0],4));
&shr (@T[0],32-3*$n); $n++;
&mov (@i[0],@i[1]);
&xor ($lo,@T[1]);
&shl (@i[1],3*$n);
&xor ($hi,@T[0]);
&shr (@i[0],32-3*$n);
&xor ($lo,@i[1]);
&xor ($hi,@i[0]);
&add ("esp",32+4);
&ret ();
&function_end_B("_mul_1x1_ialu");
# void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
&function_begin_B("bn_GF2m_mul_2x2");
if (!$x86only) {
&picmeup("edx","OPENSSL_ia32cap_P");
&mov ("eax",&DWP(0,"edx"));
&mov ("edx",&DWP(4,"edx"));
&test ("eax",1<<23); # check MMX bit
&jz (&label("ialu"));
if ($sse2) {
&test ("eax",1<<24); # check FXSR bit
&jz (&label("mmx"));
&test ("edx",1<<1); # check PCLMULQDQ bit
&jz (&label("mmx"));
&movups ("xmm0",&QWP(8,"esp"));
&shufps ("xmm0","xmm0",0b10110001);
&pclmulqdq ("xmm0","xmm0",1);
&mov ("eax",&DWP(4,"esp"));
&movups (&QWP(0,"eax"),"xmm0");
&ret ();
&set_label("mmx",16);
}
&push ("ebp");
&push ("ebx");
&push ("esi");
&push ("edi");
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&call ("_mul_1x1_mmx"); # a1·b1
&movq ("mm7",$R);
&mov ($a,&wparam(2));
&mov ($b,&wparam(4));
&call ("_mul_1x1_mmx"); # a0·b0
&movq ("mm6",$R);
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&xor ($a,&wparam(2));
&xor ($b,&wparam(4));
&call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1)
&pxor ($R,"mm7");
&mov ($a,&wparam(0));
&pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0
&movq ($A,$R);
&psllq ($R,32);
&pop ("edi");
&psrlq ($A,32);
&pop ("esi");
&pxor ($R,"mm6");
&pop ("ebx");
&pxor ($A,"mm7");
&movq (&QWP(0,$a),$R);
&pop ("ebp");
&movq (&QWP(8,$a),$A);
&emms ();
&ret ();
&set_label("ialu",16);
}
&push ("ebp");
&push ("ebx");
&push ("esi");
&push ("edi");
&stack_push(4+1);
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&call ("_mul_1x1_ialu"); # a1·b1
&mov (&DWP(8,"esp"),$lo);
&mov (&DWP(12,"esp"),$hi);
&mov ($a,&wparam(2));
&mov ($b,&wparam(4));
&call ("_mul_1x1_ialu"); # a0·b0
&mov (&DWP(0,"esp"),$lo);
&mov (&DWP(4,"esp"),$hi);
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&xor ($a,&wparam(2));
&xor ($b,&wparam(4));
&call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1)
&mov ("ebp",&wparam(0));
@r=("ebx","ecx","edi","esi");
&mov (@r[0],&DWP(0,"esp"));
&mov (@r[1],&DWP(4,"esp"));
&mov (@r[2],&DWP(8,"esp"));
&mov (@r[3],&DWP(12,"esp"));
&xor ($lo,$hi);
&xor ($hi,@r[1]);
&xor ($lo,@r[0]);
&mov (&DWP(0,"ebp"),@r[0]);
&xor ($hi,@r[2]);
&mov (&DWP(12,"ebp"),@r[3]);
&xor ($lo,@r[3]);
&stack_pop(4+1);
&xor ($hi,@r[3]);
&pop ("edi");
&xor ($lo,$hi);
&pop ("esi");
&mov (&DWP(8,"ebp"),$hi);
&pop ("ebx");
&mov (&DWP(4,"ebp"),$lo);
&pop ("ebp");
&ret ();
&function_end_B("bn_GF2m_mul_2x2");
&asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();
close STDOUT;