bn_mul.c 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <assert.h>
#include "internal/cryptlib.h"
#include "bn_lcl.h"

#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
/*
 * Here follows specialised variants of bn_add_words() and bn_sub_words().
 * They have the property performing operations on arrays of different sizes.
 * The sizes of those arrays is expressed through cl, which is the common
 * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
 * between the two lengths, calculated as len(a)-len(b). All lengths are the
 * number of BN_ULONGs...  For the operations that require a result array as
 * parameter, it must have the length cl+abs(dl). These functions should
 * probably end up in bn_asm.c as soon as there are assembler counterparts
 * for the systems that use assembler files.
 */

BN_ULONG bn_sub_part_words(BN_ULONG *r,
                           const BN_ULONG *a, const BN_ULONG *b,
                           int cl, int dl)
{
    BN_ULONG c, t;

    assert(cl >= 0);
    c = bn_sub_words(r, a, b, cl);

    if (dl == 0)
        return c;

    r += cl;
    a += cl;
    b += cl;

    if (dl < 0) {
        for (;;) {
            t = b[0];
            r[0] = (0 - t - c) & BN_MASK2;
            if (t != 0)
                c = 1;
            if (++dl >= 0)
                break;

            t = b[1];
            r[1] = (0 - t - c) & BN_MASK2;
            if (t != 0)
                c = 1;
            if (++dl >= 0)
                break;

            t = b[2];
            r[2] = (0 - t - c) & BN_MASK2;
            if (t != 0)
                c = 1;
            if (++dl >= 0)
                break;

            t = b[3];
            r[3] = (0 - t - c) & BN_MASK2;
            if (t != 0)
                c = 1;
            if (++dl >= 0)
                break;

            b += 4;
            r += 4;
        }
    } else {
        int save_dl = dl;
        while (c) {
            t = a[0];
            r[0] = (t - c) & BN_MASK2;
            if (t != 0)
                c = 0;
            if (--dl <= 0)
                break;

            t = a[1];
            r[1] = (t - c) & BN_MASK2;
            if (t != 0)
                c = 0;
            if (--dl <= 0)
                break;

            t = a[2];
            r[2] = (t - c) & BN_MASK2;
            if (t != 0)
                c = 0;
            if (--dl <= 0)
                break;

            t = a[3];
            r[3] = (t - c) & BN_MASK2;
            if (t != 0)
                c = 0;
            if (--dl <= 0)
                break;

            save_dl = dl;
            a += 4;
            r += 4;
        }
        if (dl > 0) {
            if (save_dl > dl) {
                switch (save_dl - dl) {
                case 1:
                    r[1] = a[1];
                    if (--dl <= 0)
                        break;
                    /* fall thru */
                case 2:
                    r[2] = a[2];
                    if (--dl <= 0)
                        break;
                    /* fall thru */
                case 3:
                    r[3] = a[3];
                    if (--dl <= 0)
                        break;
                }
                a += 4;
                r += 4;
            }
        }
        if (dl > 0) {
            for (;;) {
                r[0] = a[0];
                if (--dl <= 0)
                    break;
                r[1] = a[1];
                if (--dl <= 0)
                    break;
                r[2] = a[2];
                if (--dl <= 0)
                    break;
                r[3] = a[3];
                if (--dl <= 0)
                    break;

                a += 4;
                r += 4;
            }
        }
    }
    return c;
}
#endif

#ifdef BN_RECURSION
/*
 * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
 * Computer Programming, Vol. 2)
 */

/*-
 * r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
 * We calculate
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
                      int dna, int dnb, BN_ULONG *t)
{
    int n = n2 / 2, c1, c2;
    int tna = n + dna, tnb = n + dnb;
    unsigned int neg, zero;
    BN_ULONG ln, lo, *p;

# ifdef BN_MUL_COMBA
#  if 0
    if (n2 == 4) {
        bn_mul_comba4(r, a, b);
        return;
    }
#  endif
    /*
     * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
     * [steve]
     */
    if (n2 == 8 && dna == 0 && dnb == 0) {
        bn_mul_comba8(r, a, b);
        return;
    }
# endif                         /* BN_MUL_COMBA */
    /* Else do normal multiply */
    if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
        bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
        if ((dna + dnb) < 0)
            memset(&r[2 * n2 + dna + dnb], 0,
                   sizeof(BN_ULONG) * -(dna + dnb));
        return;
    }
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    zero = neg = 0;
    switch (c1 * 3 + c2) {
    case -4:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        break;
    case -3:
        zero = 1;
        break;
    case -2:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
        neg = 1;
        break;
    case -1:
    case 0:
    case 1:
        zero = 1;
        break;
    case 2:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        neg = 1;
        break;
    case 3:
        zero = 1;
        break;
    case 4:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
        break;
    }

# ifdef BN_MUL_COMBA
    if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
                                           * extra args to do this well */
        if (!zero)
            bn_mul_comba4(&(t[n2]), t, &(t[n]));
        else
            memset(&t[n2], 0, sizeof(*t) * 8);

        bn_mul_comba4(r, a, b);
        bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
    } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
                                                  * take extra args to do
                                                  * this well */
        if (!zero)
            bn_mul_comba8(&(t[n2]), t, &(t[n]));
        else
            memset(&t[n2], 0, sizeof(*t) * 16);

        bn_mul_comba8(r, a, b);
        bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
    } else
# endif                         /* BN_MUL_COMBA */
    {
        p = &(t[n2 * 2]);
        if (!zero)
            bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
        else
            memset(&t[n2], 0, sizeof(*t) * n2);
        bn_mul_recursive(r, a, b, n, 0, 0, p);
        bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     */

    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

    if (neg) {                  /* if t[32] is negative */
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    } else {
        /* Might have a carry */
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     * c1 holds the carry bits
     */
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    if (c1) {
        p = &(r[n + n2]);
        lo = *p;
        ln = (lo + c1) & BN_MASK2;
        *p = ln;

        /*
         * The overflow will stop before we over write words we should not
         * overwrite
         */
        if (ln < (BN_ULONG)c1) {
            do {
                p++;
                lo = *p;
                ln = (lo + 1) & BN_MASK2;
                *p = ln;
            } while (ln == 0);
        }
    }
}

/*
 * n+tn is the word length t needs to be n*4 is size, as does r
 */
/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
                           int tna, int tnb, BN_ULONG *t)
{
    int i, j, n2 = n * 2;
    int c1, c2, neg;
    BN_ULONG ln, lo, *p;

    if (n < 8) {
        bn_mul_normal(r, a, n + tna, b, n + tnb);
        return;
    }

    /* r=(a[0]-a[1])*(b[1]-b[0]) */
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    neg = 0;
    switch (c1 * 3 + c2) {
    case -4:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        break;
    case -3:
    case -2:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
        neg = 1;
        break;
    case -1:
    case 0:
    case 1:
    case 2:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        neg = 1;
        break;
    case 3:
    case 4:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
        break;
    }
    /*
     * The zero case isn't yet implemented here. The speedup would probably
     * be negligible.
     */
# if 0
    if (n == 4) {
        bn_mul_comba4(&(t[n2]), t, &(t[n]));
        bn_mul_comba4(r, a, b);
        bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
        memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
    } else
# endif
    if (n == 8) {
        bn_mul_comba8(&(t[n2]), t, &(t[n]));
        bn_mul_comba8(r, a, b);
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
        memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
    } else {
        p = &(t[n2 * 2]);
        bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
        bn_mul_recursive(r, a, b, n, 0, 0, p);
        i = n / 2;
        /*
         * If there is only a bottom half to the number, just do it
         */
        if (tna > tnb)
            j = tna - i;
        else
            j = tnb - i;
        if (j == 0) {
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
                             i, tna - i, tnb - i, p);
            memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
        } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
                                  i, tna - i, tnb - i, p);
            memset(&(r[n2 + tna + tnb]), 0,
                   sizeof(BN_ULONG) * (n2 - tna - tnb));
        } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */

            memset(&r[n2], 0, sizeof(*r) * n2);
            if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
                && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
                bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
            } else {
                for (;;) {
                    i /= 2;
                    /*
                     * these simplified conditions work exclusively because
                     * difference between tna and tnb is 1 or 0
                     */
                    if (i < tna || i < tnb) {
                        bn_mul_part_recursive(&(r[n2]),
                                              &(a[n]), &(b[n]),
                                              i, tna - i, tnb - i, p);
                        break;
                    } else if (i == tna || i == tnb) {
                        bn_mul_recursive(&(r[n2]),
                                         &(a[n]), &(b[n]),
                                         i, tna - i, tnb - i, p);
                        break;
                    }
                }
            }
        }
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     */

    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

    if (neg) {                  /* if t[32] is negative */
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    } else {
        /* Might have a carry */
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     * c1 holds the carry bits
     */
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    if (c1) {
        p = &(r[n + n2]);
        lo = *p;
        ln = (lo + c1) & BN_MASK2;
        *p = ln;

        /*
         * The overflow will stop before we over write words we should not
         * overwrite
         */
        if (ln < (BN_ULONG)c1) {
            do {
                p++;
                lo = *p;
                ln = (lo + 1) & BN_MASK2;
                *p = ln;
            } while (ln == 0);
        }
    }
}

/*-
 * a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
                          BN_ULONG *t)
{
    int n = n2 / 2;

    bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
    if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
        bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
        bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
    } else {
        bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
        bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
        bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
    }
}
#endif                          /* BN_RECURSION */

int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    int ret = bn_mul_fixed_top(r, a, b, ctx);

    bn_correct_top(r);
    bn_check_top(r);

    return ret;
}

int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    int top, al, bl;
    BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    int i;
#endif
#ifdef BN_RECURSION
    BIGNUM *t = NULL;
    int j = 0, k;
#endif

    bn_check_top(a);
    bn_check_top(b);
    bn_check_top(r);

    al = a->top;
    bl = b->top;

    if ((al == 0) || (bl == 0)) {
        BN_zero(r);
        return 1;
    }
    top = al + bl;

    BN_CTX_start(ctx);
    if ((r == a) || (r == b)) {
        if ((rr = BN_CTX_get(ctx)) == NULL)
            goto err;
    } else
        rr = r;

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    i = al - bl;
#endif
#ifdef BN_MUL_COMBA
    if (i == 0) {
# if 0
        if (al == 4) {
            if (bn_wexpand(rr, 8) == NULL)
                goto err;
            rr->top = 8;
            bn_mul_comba4(rr->d, a->d, b->d);
            goto end;
        }
# endif
        if (al == 8) {
            if (bn_wexpand(rr, 16) == NULL)
                goto err;
            rr->top = 16;
            bn_mul_comba8(rr->d, a->d, b->d);
            goto end;
        }
    }
#endif                          /* BN_MUL_COMBA */
#ifdef BN_RECURSION
    if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
        if (i >= -1 && i <= 1) {
            /*
             * Find out the power of two lower or equal to the longest of the
             * two numbers
             */
            if (i >= 0) {
                j = BN_num_bits_word((BN_ULONG)al);
            }
            if (i == -1) {
                j = BN_num_bits_word((BN_ULONG)bl);
            }
            j = 1 << (j - 1);
            assert(j <= al || j <= bl);
            k = j + j;
            t = BN_CTX_get(ctx);
            if (t == NULL)
                goto err;
            if (al > j || bl > j) {
                if (bn_wexpand(t, k * 4) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 4) == NULL)
                    goto err;
                bn_mul_part_recursive(rr->d, a->d, b->d,
                                      j, al - j, bl - j, t->d);
            } else {            /* al <= j || bl <= j */

                if (bn_wexpand(t, k * 2) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 2) == NULL)
                    goto err;
                bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
            }
            rr->top = top;
            goto end;
        }
    }
#endif                          /* BN_RECURSION */
    if (bn_wexpand(rr, top) == NULL)
        goto err;
    rr->top = top;
    bn_mul_normal(rr->d, a->d, al, b->d, bl);

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 end:
#endif
    rr->neg = a->neg ^ b->neg;
    rr->flags |= BN_FLG_FIXED_TOP;
    if (r != rr && BN_copy(r, rr) == NULL)
        goto err;

    ret = 1;
 err:
    bn_check_top(r);
    BN_CTX_end(ctx);
    return ret;
}

void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
{
    BN_ULONG *rr;

    if (na < nb) {
        int itmp;
        BN_ULONG *ltmp;

        itmp = na;
        na = nb;
        nb = itmp;
        ltmp = a;
        a = b;
        b = ltmp;

    }
    rr = &(r[na]);
    if (nb <= 0) {
        (void)bn_mul_words(r, a, na, 0);
        return;
    } else
        rr[0] = bn_mul_words(r, a, na, b[0]);

    for (;;) {
        if (--nb <= 0)
            return;
        rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
        if (--nb <= 0)
            return;
        rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
        if (--nb <= 0)
            return;
        rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
        if (--nb <= 0)
            return;
        rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
        rr += 4;
        r += 4;
        b += 4;
    }
}

void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
{
    bn_mul_words(r, a, n, b[0]);

    for (;;) {
        if (--n <= 0)
            return;
        bn_mul_add_words(&(r[1]), a, n, b[1]);
        if (--n <= 0)
            return;
        bn_mul_add_words(&(r[2]), a, n, b[2]);
        if (--n <= 0)
            return;
        bn_mul_add_words(&(r[3]), a, n, b[3]);
        if (--n <= 0)
            return;
        bn_mul_add_words(&(r[4]), a, n, b[4]);
        r += 4;
        b += 4;
    }
}