bn_sqr.c
5.37 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include "bn_lcl.h"
/* r must not be a */
/*
* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
*/
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
{
int ret = bn_sqr_fixed_top(r, a, ctx);
bn_correct_top(r);
bn_check_top(r);
return ret;
}
int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
{
int max, al;
int ret = 0;
BIGNUM *tmp, *rr;
bn_check_top(a);
al = a->top;
if (al <= 0) {
r->top = 0;
r->neg = 0;
return 1;
}
BN_CTX_start(ctx);
rr = (a != r) ? r : BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
if (rr == NULL || tmp == NULL)
goto err;
max = 2 * al; /* Non-zero (from above) */
if (bn_wexpand(rr, max) == NULL)
goto err;
if (al == 4) {
#ifndef BN_SQR_COMBA
BN_ULONG t[8];
bn_sqr_normal(rr->d, a->d, 4, t);
#else
bn_sqr_comba4(rr->d, a->d);
#endif
} else if (al == 8) {
#ifndef BN_SQR_COMBA
BN_ULONG t[16];
bn_sqr_normal(rr->d, a->d, 8, t);
#else
bn_sqr_comba8(rr->d, a->d);
#endif
} else {
#if defined(BN_RECURSION)
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
bn_sqr_normal(rr->d, a->d, al, t);
} else {
int j, k;
j = BN_num_bits_word((BN_ULONG)al);
j = 1 << (j - 1);
k = j + j;
if (al == j) {
if (bn_wexpand(tmp, k * 2) == NULL)
goto err;
bn_sqr_recursive(rr->d, a->d, al, tmp->d);
} else {
if (bn_wexpand(tmp, max) == NULL)
goto err;
bn_sqr_normal(rr->d, a->d, al, tmp->d);
}
}
#else
if (bn_wexpand(tmp, max) == NULL)
goto err;
bn_sqr_normal(rr->d, a->d, al, tmp->d);
#endif
}
rr->neg = 0;
rr->top = max;
rr->flags |= BN_FLG_FIXED_TOP;
if (r != rr && BN_copy(r, rr) == NULL)
goto err;
ret = 1;
err:
bn_check_top(rr);
bn_check_top(tmp);
BN_CTX_end(ctx);
return ret;
}
/* tmp must have 2*n words */
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
{
int i, j, max;
const BN_ULONG *ap;
BN_ULONG *rp;
max = n * 2;
ap = a;
rp = r;
rp[0] = rp[max - 1] = 0;
rp++;
j = n;
if (--j > 0) {
ap++;
rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
rp += 2;
}
for (i = n - 2; i > 0; i--) {
j--;
ap++;
rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
rp += 2;
}
bn_add_words(r, r, r, max);
/* There will not be a carry */
bn_sqr_words(tmp, a, n);
bn_add_words(r, r, tmp, max);
}
#ifdef BN_RECURSION
/*-
* r is 2*n words in size,
* a and b are both n words in size. (There's not actually a 'b' here ...)
* n must be a power of 2.
* We multiply and return the result.
* t must be 2*n words in size
* We calculate
* a[0]*b[0]
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
* a[1]*b[1]
*/
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
{
int n = n2 / 2;
int zero, c1;
BN_ULONG ln, lo, *p;
if (n2 == 4) {
# ifndef BN_SQR_COMBA
bn_sqr_normal(r, a, 4, t);
# else
bn_sqr_comba4(r, a);
# endif
return;
} else if (n2 == 8) {
# ifndef BN_SQR_COMBA
bn_sqr_normal(r, a, 8, t);
# else
bn_sqr_comba8(r, a);
# endif
return;
}
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
bn_sqr_normal(r, a, n2, t);
return;
}
/* r=(a[0]-a[1])*(a[1]-a[0]) */
c1 = bn_cmp_words(a, &(a[n]), n);
zero = 0;
if (c1 > 0)
bn_sub_words(t, a, &(a[n]), n);
else if (c1 < 0)
bn_sub_words(t, &(a[n]), a, n);
else
zero = 1;
/* The result will always be negative unless it is zero */
p = &(t[n2 * 2]);
if (!zero)
bn_sqr_recursive(&(t[n2]), t, n, p);
else
memset(&t[n2], 0, sizeof(*t) * n2);
bn_sqr_recursive(r, a, n, p);
bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
/*-
* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
*/
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
/* t[32] is negative */
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
/*-
* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
* r[10] holds (a[0]*a[0])
* r[32] holds (a[1]*a[1])
* c1 holds the carry bits
*/
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
if (c1) {
p = &(r[n + n2]);
lo = *p;
ln = (lo + c1) & BN_MASK2;
*p = ln;
/*
* The overflow will stop before we over write words we should not
* overwrite
*/
if (ln < (BN_ULONG)c1) {
do {
p++;
lo = *p;
ln = (lo + 1) & BN_MASK2;
*p = ln;
} while (ln == 0);
}
}
}
#endif