dh_gen.c
3.79 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* NB: These functions have been upgraded - the previous prototypes are in
* dh_depr.c as wrappers to these ones. - Geoff
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include "dh_locl.h"
static int dh_builtin_genparams(DH *ret, int prime_len, int generator,
BN_GENCB *cb);
int DH_generate_parameters_ex(DH *ret, int prime_len, int generator,
BN_GENCB *cb)
{
if (ret->meth->generate_params)
return ret->meth->generate_params(ret, prime_len, generator, cb);
return dh_builtin_genparams(ret, prime_len, generator, cb);
}
/*-
* We generate DH parameters as follows
* find a prime q which is prime_len/2 bits long.
* p=(2*q)+1 or (p-1)/2 = q
* For this case, g is a generator if
* g^((p-1)/q) mod p != 1 for values of q which are the factors of p-1.
* Since the factors of p-1 are q and 2, we just need to check
* g^2 mod p != 1 and g^q mod p != 1.
*
* Having said all that,
* there is another special case method for the generators 2, 3 and 5.
* for 2, p mod 24 == 11
* for 3, p mod 12 == 5 <<<<< does not work for safe primes.
* for 5, p mod 10 == 3 or 7
*
* Thanks to Phil Karn for the pointers about the
* special generators and for answering some of my questions.
*
* I've implemented the second simple method :-).
* Since DH should be using a safe prime (both p and q are prime),
* this generator function can take a very very long time to run.
*/
/*
* Actually there is no reason to insist that 'generator' be a generator.
* It's just as OK (and in some sense better) to use a generator of the
* order-q subgroup.
*/
static int dh_builtin_genparams(DH *ret, int prime_len, int generator,
BN_GENCB *cb)
{
BIGNUM *t1, *t2;
int g, ok = -1;
BN_CTX *ctx = NULL;
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
BN_CTX_start(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
if (t2 == NULL)
goto err;
/* Make sure 'ret' has the necessary elements */
if (!ret->p && ((ret->p = BN_new()) == NULL))
goto err;
if (!ret->g && ((ret->g = BN_new()) == NULL))
goto err;
if (generator <= 1) {
DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
goto err;
}
if (generator == DH_GENERATOR_2) {
if (!BN_set_word(t1, 24))
goto err;
if (!BN_set_word(t2, 11))
goto err;
g = 2;
} else if (generator == DH_GENERATOR_5) {
if (!BN_set_word(t1, 10))
goto err;
if (!BN_set_word(t2, 3))
goto err;
/*
* BN_set_word(t3,7); just have to miss out on these ones :-(
*/
g = 5;
} else {
/*
* in the general case, don't worry if 'generator' is a generator or
* not: since we are using safe primes, it will generate either an
* order-q or an order-2q group, which both is OK
*/
if (!BN_set_word(t1, 2))
goto err;
if (!BN_set_word(t2, 1))
goto err;
g = generator;
}
if (!BN_generate_prime_ex(ret->p, prime_len, 1, t1, t2, cb))
goto err;
if (!BN_GENCB_call(cb, 3, 0))
goto err;
if (!BN_set_word(ret->g, g))
goto err;
ok = 1;
err:
if (ok == -1) {
DHerr(DH_F_DH_BUILTIN_GENPARAMS, ERR_R_BN_LIB);
ok = 0;
}
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return ok;
}