hmac.c
6.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "internal/cryptlib.h"
#include <openssl/hmac.h>
#include <openssl/opensslconf.h>
#include "hmac_lcl.h"
int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int len,
const EVP_MD *md, ENGINE *impl)
{
int rv = 0;
int i, j, reset = 0;
unsigned char pad[HMAC_MAX_MD_CBLOCK_SIZE];
/* If we are changing MD then we must have a key */
if (md != NULL && md != ctx->md && (key == NULL || len < 0))
return 0;
if (md != NULL) {
reset = 1;
ctx->md = md;
} else if (ctx->md) {
md = ctx->md;
} else {
return 0;
}
if (key != NULL) {
reset = 1;
j = EVP_MD_block_size(md);
if (!ossl_assert(j <= (int)sizeof(ctx->key)))
return 0;
if (j < len) {
if (!EVP_DigestInit_ex(ctx->md_ctx, md, impl)
|| !EVP_DigestUpdate(ctx->md_ctx, key, len)
|| !EVP_DigestFinal_ex(ctx->md_ctx, ctx->key,
&ctx->key_length))
return 0;
} else {
if (len < 0 || len > (int)sizeof(ctx->key))
return 0;
memcpy(ctx->key, key, len);
ctx->key_length = len;
}
if (ctx->key_length != HMAC_MAX_MD_CBLOCK_SIZE)
memset(&ctx->key[ctx->key_length], 0,
HMAC_MAX_MD_CBLOCK_SIZE - ctx->key_length);
}
if (reset) {
for (i = 0; i < HMAC_MAX_MD_CBLOCK_SIZE; i++)
pad[i] = 0x36 ^ ctx->key[i];
if (!EVP_DigestInit_ex(ctx->i_ctx, md, impl)
|| !EVP_DigestUpdate(ctx->i_ctx, pad, EVP_MD_block_size(md)))
goto err;
for (i = 0; i < HMAC_MAX_MD_CBLOCK_SIZE; i++)
pad[i] = 0x5c ^ ctx->key[i];
if (!EVP_DigestInit_ex(ctx->o_ctx, md, impl)
|| !EVP_DigestUpdate(ctx->o_ctx, pad, EVP_MD_block_size(md)))
goto err;
}
if (!EVP_MD_CTX_copy_ex(ctx->md_ctx, ctx->i_ctx))
goto err;
rv = 1;
err:
if (reset)
OPENSSL_cleanse(pad, sizeof(pad));
return rv;
}
#if OPENSSL_API_COMPAT < 0x10100000L
int HMAC_Init(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md)
{
if (key && md)
HMAC_CTX_reset(ctx);
return HMAC_Init_ex(ctx, key, len, md, NULL);
}
#endif
int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, size_t len)
{
if (!ctx->md)
return 0;
return EVP_DigestUpdate(ctx->md_ctx, data, len);
}
int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len)
{
unsigned int i;
unsigned char buf[EVP_MAX_MD_SIZE];
if (!ctx->md)
goto err;
if (!EVP_DigestFinal_ex(ctx->md_ctx, buf, &i))
goto err;
if (!EVP_MD_CTX_copy_ex(ctx->md_ctx, ctx->o_ctx))
goto err;
if (!EVP_DigestUpdate(ctx->md_ctx, buf, i))
goto err;
if (!EVP_DigestFinal_ex(ctx->md_ctx, md, len))
goto err;
return 1;
err:
return 0;
}
size_t HMAC_size(const HMAC_CTX *ctx)
{
int size = EVP_MD_size((ctx)->md);
return (size < 0) ? 0 : size;
}
HMAC_CTX *HMAC_CTX_new(void)
{
HMAC_CTX *ctx = OPENSSL_zalloc(sizeof(HMAC_CTX));
if (ctx != NULL) {
if (!HMAC_CTX_reset(ctx)) {
HMAC_CTX_free(ctx);
return NULL;
}
}
return ctx;
}
static void hmac_ctx_cleanup(HMAC_CTX *ctx)
{
EVP_MD_CTX_reset(ctx->i_ctx);
EVP_MD_CTX_reset(ctx->o_ctx);
EVP_MD_CTX_reset(ctx->md_ctx);
ctx->md = NULL;
ctx->key_length = 0;
OPENSSL_cleanse(ctx->key, sizeof(ctx->key));
}
void HMAC_CTX_free(HMAC_CTX *ctx)
{
if (ctx != NULL) {
hmac_ctx_cleanup(ctx);
EVP_MD_CTX_free(ctx->i_ctx);
EVP_MD_CTX_free(ctx->o_ctx);
EVP_MD_CTX_free(ctx->md_ctx);
OPENSSL_free(ctx);
}
}
static int hmac_ctx_alloc_mds(HMAC_CTX *ctx)
{
if (ctx->i_ctx == NULL)
ctx->i_ctx = EVP_MD_CTX_new();
if (ctx->i_ctx == NULL)
return 0;
if (ctx->o_ctx == NULL)
ctx->o_ctx = EVP_MD_CTX_new();
if (ctx->o_ctx == NULL)
return 0;
if (ctx->md_ctx == NULL)
ctx->md_ctx = EVP_MD_CTX_new();
if (ctx->md_ctx == NULL)
return 0;
return 1;
}
int HMAC_CTX_reset(HMAC_CTX *ctx)
{
hmac_ctx_cleanup(ctx);
if (!hmac_ctx_alloc_mds(ctx)) {
hmac_ctx_cleanup(ctx);
return 0;
}
return 1;
}
int HMAC_CTX_copy(HMAC_CTX *dctx, HMAC_CTX *sctx)
{
if (!hmac_ctx_alloc_mds(dctx))
goto err;
if (!EVP_MD_CTX_copy_ex(dctx->i_ctx, sctx->i_ctx))
goto err;
if (!EVP_MD_CTX_copy_ex(dctx->o_ctx, sctx->o_ctx))
goto err;
if (!EVP_MD_CTX_copy_ex(dctx->md_ctx, sctx->md_ctx))
goto err;
memcpy(dctx->key, sctx->key, HMAC_MAX_MD_CBLOCK_SIZE);
dctx->key_length = sctx->key_length;
dctx->md = sctx->md;
return 1;
err:
hmac_ctx_cleanup(dctx);
return 0;
}
unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
const unsigned char *d, size_t n, unsigned char *md,
unsigned int *md_len)
{
HMAC_CTX *c = NULL;
static unsigned char m[EVP_MAX_MD_SIZE];
static const unsigned char dummy_key[1] = {'\0'};
if (md == NULL)
md = m;
if ((c = HMAC_CTX_new()) == NULL)
goto err;
/* For HMAC_Init_ex, NULL key signals reuse. */
if (key == NULL && key_len == 0) {
key = dummy_key;
}
if (!HMAC_Init_ex(c, key, key_len, evp_md, NULL))
goto err;
if (!HMAC_Update(c, d, n))
goto err;
if (!HMAC_Final(c, md, md_len))
goto err;
HMAC_CTX_free(c);
return md;
err:
HMAC_CTX_free(c);
return NULL;
}
void HMAC_CTX_set_flags(HMAC_CTX *ctx, unsigned long flags)
{
EVP_MD_CTX_set_flags(ctx->i_ctx, flags);
EVP_MD_CTX_set_flags(ctx->o_ctx, flags);
EVP_MD_CTX_set_flags(ctx->md_ctx, flags);
}
const EVP_MD *HMAC_CTX_get_md(const HMAC_CTX *ctx)
{
return ctx->md;
}