tls1_prf.c
7.68 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
* Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/kdf.h>
#include <openssl/evp.h>
#include "internal/evp_int.h"
static int tls1_prf_alg(const EVP_MD *md,
const unsigned char *sec, size_t slen,
const unsigned char *seed, size_t seed_len,
unsigned char *out, size_t olen);
#define TLS1_PRF_MAXBUF 1024
/* TLS KDF pkey context structure */
typedef struct {
/* Digest to use for PRF */
const EVP_MD *md;
/* Secret value to use for PRF */
unsigned char *sec;
size_t seclen;
/* Buffer of concatenated seed data */
unsigned char seed[TLS1_PRF_MAXBUF];
size_t seedlen;
} TLS1_PRF_PKEY_CTX;
static int pkey_tls1_prf_init(EVP_PKEY_CTX *ctx)
{
TLS1_PRF_PKEY_CTX *kctx;
if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL) {
KDFerr(KDF_F_PKEY_TLS1_PRF_INIT, ERR_R_MALLOC_FAILURE);
return 0;
}
ctx->data = kctx;
return 1;
}
static void pkey_tls1_prf_cleanup(EVP_PKEY_CTX *ctx)
{
TLS1_PRF_PKEY_CTX *kctx = ctx->data;
OPENSSL_clear_free(kctx->sec, kctx->seclen);
OPENSSL_cleanse(kctx->seed, kctx->seedlen);
OPENSSL_free(kctx);
}
static int pkey_tls1_prf_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
{
TLS1_PRF_PKEY_CTX *kctx = ctx->data;
switch (type) {
case EVP_PKEY_CTRL_TLS_MD:
kctx->md = p2;
return 1;
case EVP_PKEY_CTRL_TLS_SECRET:
if (p1 < 0)
return 0;
if (kctx->sec != NULL)
OPENSSL_clear_free(kctx->sec, kctx->seclen);
OPENSSL_cleanse(kctx->seed, kctx->seedlen);
kctx->seedlen = 0;
kctx->sec = OPENSSL_memdup(p2, p1);
if (kctx->sec == NULL)
return 0;
kctx->seclen = p1;
return 1;
case EVP_PKEY_CTRL_TLS_SEED:
if (p1 == 0 || p2 == NULL)
return 1;
if (p1 < 0 || p1 > (int)(TLS1_PRF_MAXBUF - kctx->seedlen))
return 0;
memcpy(kctx->seed + kctx->seedlen, p2, p1);
kctx->seedlen += p1;
return 1;
default:
return -2;
}
}
static int pkey_tls1_prf_ctrl_str(EVP_PKEY_CTX *ctx,
const char *type, const char *value)
{
if (value == NULL) {
KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING);
return 0;
}
if (strcmp(type, "md") == 0) {
TLS1_PRF_PKEY_CTX *kctx = ctx->data;
const EVP_MD *md = EVP_get_digestbyname(value);
if (md == NULL) {
KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_INVALID_DIGEST);
return 0;
}
kctx->md = md;
return 1;
}
if (strcmp(type, "secret") == 0)
return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_TLS_SECRET, value);
if (strcmp(type, "hexsecret") == 0)
return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_TLS_SECRET, value);
if (strcmp(type, "seed") == 0)
return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_TLS_SEED, value);
if (strcmp(type, "hexseed") == 0)
return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_TLS_SEED, value);
KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE);
return -2;
}
static int pkey_tls1_prf_derive(EVP_PKEY_CTX *ctx, unsigned char *key,
size_t *keylen)
{
TLS1_PRF_PKEY_CTX *kctx = ctx->data;
if (kctx->md == NULL) {
KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
return 0;
}
if (kctx->sec == NULL) {
KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET);
return 0;
}
if (kctx->seedlen == 0) {
KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED);
return 0;
}
return tls1_prf_alg(kctx->md, kctx->sec, kctx->seclen,
kctx->seed, kctx->seedlen,
key, *keylen);
}
const EVP_PKEY_METHOD tls1_prf_pkey_meth = {
EVP_PKEY_TLS1_PRF,
0,
pkey_tls1_prf_init,
0,
pkey_tls1_prf_cleanup,
0, 0,
0, 0,
0,
0,
0,
0,
0, 0,
0, 0, 0, 0,
0, 0,
0, 0,
0,
pkey_tls1_prf_derive,
pkey_tls1_prf_ctrl,
pkey_tls1_prf_ctrl_str
};
static int tls1_prf_P_hash(const EVP_MD *md,
const unsigned char *sec, size_t sec_len,
const unsigned char *seed, size_t seed_len,
unsigned char *out, size_t olen)
{
int chunk;
EVP_MD_CTX *ctx = NULL, *ctx_tmp = NULL, *ctx_init = NULL;
EVP_PKEY *mac_key = NULL;
unsigned char A1[EVP_MAX_MD_SIZE];
size_t A1_len;
int ret = 0;
chunk = EVP_MD_size(md);
if (!ossl_assert(chunk > 0))
goto err;
ctx = EVP_MD_CTX_new();
ctx_tmp = EVP_MD_CTX_new();
ctx_init = EVP_MD_CTX_new();
if (ctx == NULL || ctx_tmp == NULL || ctx_init == NULL)
goto err;
EVP_MD_CTX_set_flags(ctx_init, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
mac_key = EVP_PKEY_new_raw_private_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
if (mac_key == NULL)
goto err;
if (!EVP_DigestSignInit(ctx_init, NULL, md, NULL, mac_key))
goto err;
if (!EVP_MD_CTX_copy_ex(ctx, ctx_init))
goto err;
if (seed != NULL && !EVP_DigestSignUpdate(ctx, seed, seed_len))
goto err;
if (!EVP_DigestSignFinal(ctx, A1, &A1_len))
goto err;
for (;;) {
/* Reinit mac contexts */
if (!EVP_MD_CTX_copy_ex(ctx, ctx_init))
goto err;
if (!EVP_DigestSignUpdate(ctx, A1, A1_len))
goto err;
if (olen > (size_t)chunk && !EVP_MD_CTX_copy_ex(ctx_tmp, ctx))
goto err;
if (seed && !EVP_DigestSignUpdate(ctx, seed, seed_len))
goto err;
if (olen > (size_t)chunk) {
size_t mac_len;
if (!EVP_DigestSignFinal(ctx, out, &mac_len))
goto err;
out += mac_len;
olen -= mac_len;
/* calc the next A1 value */
if (!EVP_DigestSignFinal(ctx_tmp, A1, &A1_len))
goto err;
} else { /* last one */
if (!EVP_DigestSignFinal(ctx, A1, &A1_len))
goto err;
memcpy(out, A1, olen);
break;
}
}
ret = 1;
err:
EVP_PKEY_free(mac_key);
EVP_MD_CTX_free(ctx);
EVP_MD_CTX_free(ctx_tmp);
EVP_MD_CTX_free(ctx_init);
OPENSSL_cleanse(A1, sizeof(A1));
return ret;
}
static int tls1_prf_alg(const EVP_MD *md,
const unsigned char *sec, size_t slen,
const unsigned char *seed, size_t seed_len,
unsigned char *out, size_t olen)
{
if (EVP_MD_type(md) == NID_md5_sha1) {
size_t i;
unsigned char *tmp;
if (!tls1_prf_P_hash(EVP_md5(), sec, slen/2 + (slen & 1),
seed, seed_len, out, olen))
return 0;
if ((tmp = OPENSSL_malloc(olen)) == NULL) {
KDFerr(KDF_F_TLS1_PRF_ALG, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!tls1_prf_P_hash(EVP_sha1(), sec + slen/2, slen/2 + (slen & 1),
seed, seed_len, tmp, olen)) {
OPENSSL_clear_free(tmp, olen);
return 0;
}
for (i = 0; i < olen; i++)
out[i] ^= tmp[i];
OPENSSL_clear_free(tmp, olen);
return 1;
}
if (!tls1_prf_P_hash(md, sec, slen, seed, seed_len, out, olen))
return 0;
return 1;
}