mem_sec.c 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * This file is in two halves. The first half implements the public API
 * to be used by external consumers, and to be used by OpenSSL to store
 * data in a "secure arena." The second half implements the secure arena.
 * For details on that implementation, see below (look for uppercase
 * "SECURE HEAP IMPLEMENTATION").
 */
#include "e_os.h"
#include <openssl/crypto.h>

#include <string.h>

/* e_os.h defines OPENSSL_SECURE_MEMORY if secure memory can be implemented */
#ifdef OPENSSL_SECURE_MEMORY
# include <stdlib.h>
# include <assert.h>
# include <unistd.h>
# include <sys/types.h>
# include <sys/mman.h>
# if defined(OPENSSL_SYS_LINUX)
#  include <sys/syscall.h>
#  if defined(SYS_mlock2)
#   include <linux/mman.h>
#   include <errno.h>
#  endif
# endif
# include <sys/param.h>
# include <sys/stat.h>
# include <fcntl.h>
#endif

#define CLEAR(p, s) OPENSSL_cleanse(p, s)
#ifndef PAGE_SIZE
# define PAGE_SIZE    4096
#endif
#if !defined(MAP_ANON) && defined(MAP_ANONYMOUS)
# define MAP_ANON MAP_ANONYMOUS
#endif

#ifdef OPENSSL_SECURE_MEMORY
static size_t secure_mem_used;

static int secure_mem_initialized;

static CRYPTO_RWLOCK *sec_malloc_lock = NULL;

/*
 * These are the functions that must be implemented by a secure heap (sh).
 */
static int sh_init(size_t size, int minsize);
static void *sh_malloc(size_t size);
static void sh_free(void *ptr);
static void sh_done(void);
static size_t sh_actual_size(char *ptr);
static int sh_allocated(const char *ptr);
#endif

int CRYPTO_secure_malloc_init(size_t size, int minsize)
{
#ifdef OPENSSL_SECURE_MEMORY
    int ret = 0;

    if (!secure_mem_initialized) {
        sec_malloc_lock = CRYPTO_THREAD_lock_new();
        if (sec_malloc_lock == NULL)
            return 0;
        if ((ret = sh_init(size, minsize)) != 0) {
            secure_mem_initialized = 1;
        } else {
            CRYPTO_THREAD_lock_free(sec_malloc_lock);
            sec_malloc_lock = NULL;
        }
    }

    return ret;
#else
    return 0;
#endif /* OPENSSL_SECURE_MEMORY */
}

int CRYPTO_secure_malloc_done(void)
{
#ifdef OPENSSL_SECURE_MEMORY
    if (secure_mem_used == 0) {
        sh_done();
        secure_mem_initialized = 0;
        CRYPTO_THREAD_lock_free(sec_malloc_lock);
        sec_malloc_lock = NULL;
        return 1;
    }
#endif /* OPENSSL_SECURE_MEMORY */
    return 0;
}

int CRYPTO_secure_malloc_initialized(void)
{
#ifdef OPENSSL_SECURE_MEMORY
    return secure_mem_initialized;
#else
    return 0;
#endif /* OPENSSL_SECURE_MEMORY */
}

void *CRYPTO_secure_malloc(size_t num, const char *file, int line)
{
#ifdef OPENSSL_SECURE_MEMORY
    void *ret;
    size_t actual_size;

    if (!secure_mem_initialized) {
        return CRYPTO_malloc(num, file, line);
    }
    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    ret = sh_malloc(num);
    actual_size = ret ? sh_actual_size(ret) : 0;
    secure_mem_used += actual_size;
    CRYPTO_THREAD_unlock(sec_malloc_lock);
    return ret;
#else
    return CRYPTO_malloc(num, file, line);
#endif /* OPENSSL_SECURE_MEMORY */
}

void *CRYPTO_secure_zalloc(size_t num, const char *file, int line)
{
#ifdef OPENSSL_SECURE_MEMORY
    if (secure_mem_initialized)
        /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */
        return CRYPTO_secure_malloc(num, file, line);
#endif
    return CRYPTO_zalloc(num, file, line);
}

void CRYPTO_secure_free(void *ptr, const char *file, int line)
{
#ifdef OPENSSL_SECURE_MEMORY
    size_t actual_size;

    if (ptr == NULL)
        return;
    if (!CRYPTO_secure_allocated(ptr)) {
        CRYPTO_free(ptr, file, line);
        return;
    }
    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    actual_size = sh_actual_size(ptr);
    CLEAR(ptr, actual_size);
    secure_mem_used -= actual_size;
    sh_free(ptr);
    CRYPTO_THREAD_unlock(sec_malloc_lock);
#else
    CRYPTO_free(ptr, file, line);
#endif /* OPENSSL_SECURE_MEMORY */
}

void CRYPTO_secure_clear_free(void *ptr, size_t num,
                              const char *file, int line)
{
#ifdef OPENSSL_SECURE_MEMORY
    size_t actual_size;

    if (ptr == NULL)
        return;
    if (!CRYPTO_secure_allocated(ptr)) {
        OPENSSL_cleanse(ptr, num);
        CRYPTO_free(ptr, file, line);
        return;
    }
    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    actual_size = sh_actual_size(ptr);
    CLEAR(ptr, actual_size);
    secure_mem_used -= actual_size;
    sh_free(ptr);
    CRYPTO_THREAD_unlock(sec_malloc_lock);
#else
    if (ptr == NULL)
        return;
    OPENSSL_cleanse(ptr, num);
    CRYPTO_free(ptr, file, line);
#endif /* OPENSSL_SECURE_MEMORY */
}

int CRYPTO_secure_allocated(const void *ptr)
{
#ifdef OPENSSL_SECURE_MEMORY
    int ret;

    if (!secure_mem_initialized)
        return 0;
    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    ret = sh_allocated(ptr);
    CRYPTO_THREAD_unlock(sec_malloc_lock);
    return ret;
#else
    return 0;
#endif /* OPENSSL_SECURE_MEMORY */
}

size_t CRYPTO_secure_used(void)
{
#ifdef OPENSSL_SECURE_MEMORY
    return secure_mem_used;
#else
    return 0;
#endif /* OPENSSL_SECURE_MEMORY */
}

size_t CRYPTO_secure_actual_size(void *ptr)
{
#ifdef OPENSSL_SECURE_MEMORY
    size_t actual_size;

    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    actual_size = sh_actual_size(ptr);
    CRYPTO_THREAD_unlock(sec_malloc_lock);
    return actual_size;
#else
    return 0;
#endif
}
/* END OF PAGE ...

   ... START OF PAGE */

/*
 * SECURE HEAP IMPLEMENTATION
 */
#ifdef OPENSSL_SECURE_MEMORY


/*
 * The implementation provided here uses a fixed-sized mmap() heap,
 * which is locked into memory, not written to core files, and protected
 * on either side by an unmapped page, which will catch pointer overruns
 * (or underruns) and an attempt to read data out of the secure heap.
 * Free'd memory is zero'd or otherwise cleansed.
 *
 * This is a pretty standard buddy allocator.  We keep areas in a multiple
 * of "sh.minsize" units.  The freelist and bitmaps are kept separately,
 * so all (and only) data is kept in the mmap'd heap.
 *
 * This code assumes eight-bit bytes.  The numbers 3 and 7 are all over the
 * place.
 */

#define ONE ((size_t)1)

# define TESTBIT(t, b)  (t[(b) >> 3] &  (ONE << ((b) & 7)))
# define SETBIT(t, b)   (t[(b) >> 3] |= (ONE << ((b) & 7)))
# define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7))))

#define WITHIN_ARENA(p) \
    ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
#define WITHIN_FREELIST(p) \
    ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])


typedef struct sh_list_st
{
    struct sh_list_st *next;
    struct sh_list_st **p_next;
} SH_LIST;

typedef struct sh_st
{
    char* map_result;
    size_t map_size;
    char *arena;
    size_t arena_size;
    char **freelist;
    ossl_ssize_t freelist_size;
    size_t minsize;
    unsigned char *bittable;
    unsigned char *bitmalloc;
    size_t bittable_size; /* size in bits */
} SH;

static SH sh;

static size_t sh_getlist(char *ptr)
{
    ossl_ssize_t list = sh.freelist_size - 1;
    size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;

    for (; bit; bit >>= 1, list--) {
        if (TESTBIT(sh.bittable, bit))
            break;
        OPENSSL_assert((bit & 1) == 0);
    }

    return list;
}


static int sh_testbit(char *ptr, int list, unsigned char *table)
{
    size_t bit;

    OPENSSL_assert(list >= 0 && list < sh.freelist_size);
    OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
    bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
    OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
    return TESTBIT(table, bit);
}

static void sh_clearbit(char *ptr, int list, unsigned char *table)
{
    size_t bit;

    OPENSSL_assert(list >= 0 && list < sh.freelist_size);
    OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
    bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
    OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
    OPENSSL_assert(TESTBIT(table, bit));
    CLEARBIT(table, bit);
}

static void sh_setbit(char *ptr, int list, unsigned char *table)
{
    size_t bit;

    OPENSSL_assert(list >= 0 && list < sh.freelist_size);
    OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
    bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
    OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
    OPENSSL_assert(!TESTBIT(table, bit));
    SETBIT(table, bit);
}

static void sh_add_to_list(char **list, char *ptr)
{
    SH_LIST *temp;

    OPENSSL_assert(WITHIN_FREELIST(list));
    OPENSSL_assert(WITHIN_ARENA(ptr));

    temp = (SH_LIST *)ptr;
    temp->next = *(SH_LIST **)list;
    OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
    temp->p_next = (SH_LIST **)list;

    if (temp->next != NULL) {
        OPENSSL_assert((char **)temp->next->p_next == list);
        temp->next->p_next = &(temp->next);
    }

    *list = ptr;
}

static void sh_remove_from_list(char *ptr)
{
    SH_LIST *temp, *temp2;

    temp = (SH_LIST *)ptr;
    if (temp->next != NULL)
        temp->next->p_next = temp->p_next;
    *temp->p_next = temp->next;
    if (temp->next == NULL)
        return;

    temp2 = temp->next;
    OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
}


static int sh_init(size_t size, int minsize)
{
    int ret;
    size_t i;
    size_t pgsize;
    size_t aligned;

    memset(&sh, 0, sizeof(sh));

    /* make sure size and minsize are powers of 2 */
    OPENSSL_assert(size > 0);
    OPENSSL_assert((size & (size - 1)) == 0);
    OPENSSL_assert(minsize > 0);
    OPENSSL_assert((minsize & (minsize - 1)) == 0);
    if (size <= 0 || (size & (size - 1)) != 0)
        goto err;
    if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
        goto err;

    while (minsize < (int)sizeof(SH_LIST))
        minsize *= 2;

    sh.arena_size = size;
    sh.minsize = minsize;
    sh.bittable_size = (sh.arena_size / sh.minsize) * 2;

    /* Prevent allocations of size 0 later on */
    if (sh.bittable_size >> 3 == 0)
        goto err;

    sh.freelist_size = -1;
    for (i = sh.bittable_size; i; i >>= 1)
        sh.freelist_size++;

    sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *));
    OPENSSL_assert(sh.freelist != NULL);
    if (sh.freelist == NULL)
        goto err;

    sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
    OPENSSL_assert(sh.bittable != NULL);
    if (sh.bittable == NULL)
        goto err;

    sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
    OPENSSL_assert(sh.bitmalloc != NULL);
    if (sh.bitmalloc == NULL)
        goto err;

    /* Allocate space for heap, and two extra pages as guards */
#if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
    {
# if defined(_SC_PAGE_SIZE)
        long tmppgsize = sysconf(_SC_PAGE_SIZE);
# else
        long tmppgsize = sysconf(_SC_PAGESIZE);
# endif
        if (tmppgsize < 1)
            pgsize = PAGE_SIZE;
        else
            pgsize = (size_t)tmppgsize;
    }
#else
    pgsize = PAGE_SIZE;
#endif
    sh.map_size = pgsize + sh.arena_size + pgsize;
    if (1) {
#ifdef MAP_ANON
        sh.map_result = mmap(NULL, sh.map_size,
                             PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
    } else {
#endif
        int fd;

        sh.map_result = MAP_FAILED;
        if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
            sh.map_result = mmap(NULL, sh.map_size,
                                 PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
            close(fd);
        }
    }
    if (sh.map_result == MAP_FAILED)
        goto err;
    sh.arena = (char *)(sh.map_result + pgsize);
    sh_setbit(sh.arena, 0, sh.bittable);
    sh_add_to_list(&sh.freelist[0], sh.arena);

    /* Now try to add guard pages and lock into memory. */
    ret = 1;

    /* Starting guard is already aligned from mmap. */
    if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
        ret = 2;

    /* Ending guard page - need to round up to page boundary */
    aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
    if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
        ret = 2;

#if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2)
    if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) {
        if (errno == ENOSYS) {
            if (mlock(sh.arena, sh.arena_size) < 0)
                ret = 2;
        } else {
            ret = 2;
        }
    }
#else
    if (mlock(sh.arena, sh.arena_size) < 0)
        ret = 2;
#endif
#ifdef MADV_DONTDUMP
    if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
        ret = 2;
#endif

    return ret;

 err:
    sh_done();
    return 0;
}

static void sh_done(void)
{
    OPENSSL_free(sh.freelist);
    OPENSSL_free(sh.bittable);
    OPENSSL_free(sh.bitmalloc);
    if (sh.map_result != NULL && sh.map_size)
        munmap(sh.map_result, sh.map_size);
    memset(&sh, 0, sizeof(sh));
}

static int sh_allocated(const char *ptr)
{
    return WITHIN_ARENA(ptr) ? 1 : 0;
}

static char *sh_find_my_buddy(char *ptr, int list)
{
    size_t bit;
    char *chunk = NULL;

    bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list);
    bit ^= 1;

    if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
        chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list));

    return chunk;
}

static void *sh_malloc(size_t size)
{
    ossl_ssize_t list, slist;
    size_t i;
    char *chunk;

    if (size > sh.arena_size)
        return NULL;

    list = sh.freelist_size - 1;
    for (i = sh.minsize; i < size; i <<= 1)
        list--;
    if (list < 0)
        return NULL;

    /* try to find a larger entry to split */
    for (slist = list; slist >= 0; slist--)
        if (sh.freelist[slist] != NULL)
            break;
    if (slist < 0)
        return NULL;

    /* split larger entry */
    while (slist != list) {
        char *temp = sh.freelist[slist];

        /* remove from bigger list */
        OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
        sh_clearbit(temp, slist, sh.bittable);
        sh_remove_from_list(temp);
        OPENSSL_assert(temp != sh.freelist[slist]);

        /* done with bigger list */
        slist++;

        /* add to smaller list */
        OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
        sh_setbit(temp, slist, sh.bittable);
        sh_add_to_list(&sh.freelist[slist], temp);
        OPENSSL_assert(sh.freelist[slist] == temp);

        /* split in 2 */
        temp += sh.arena_size >> slist;
        OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
        sh_setbit(temp, slist, sh.bittable);
        sh_add_to_list(&sh.freelist[slist], temp);
        OPENSSL_assert(sh.freelist[slist] == temp);

        OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
    }

    /* peel off memory to hand back */
    chunk = sh.freelist[list];
    OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
    sh_setbit(chunk, list, sh.bitmalloc);
    sh_remove_from_list(chunk);

    OPENSSL_assert(WITHIN_ARENA(chunk));

    /* zero the free list header as a precaution against information leakage */
    memset(chunk, 0, sizeof(SH_LIST));

    return chunk;
}

static void sh_free(void *ptr)
{
    size_t list;
    void *buddy;

    if (ptr == NULL)
        return;
    OPENSSL_assert(WITHIN_ARENA(ptr));
    if (!WITHIN_ARENA(ptr))
        return;

    list = sh_getlist(ptr);
    OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
    sh_clearbit(ptr, list, sh.bitmalloc);
    sh_add_to_list(&sh.freelist[list], ptr);

    /* Try to coalesce two adjacent free areas. */
    while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
        OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
        OPENSSL_assert(ptr != NULL);
        OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
        sh_clearbit(ptr, list, sh.bittable);
        sh_remove_from_list(ptr);
        OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
        sh_clearbit(buddy, list, sh.bittable);
        sh_remove_from_list(buddy);

        list--;

        /* Zero the higher addressed block's free list pointers */
        memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST));
        if (ptr > buddy)
            ptr = buddy;

        OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
        sh_setbit(ptr, list, sh.bittable);
        sh_add_to_list(&sh.freelist[list], ptr);
        OPENSSL_assert(sh.freelist[list] == ptr);
    }
}

static size_t sh_actual_size(char *ptr)
{
    int list;

    OPENSSL_assert(WITHIN_ARENA(ptr));
    if (!WITHIN_ARENA(ptr))
        return 0;
    list = sh_getlist(ptr);
    OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
    return sh.arena_size / (ONE << list);
}
#endif /* OPENSSL_SECURE_MEMORY */