ghashp8-ppc.pl 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
#! /usr/bin/env perl
# Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for for PowerISA v2.07.
#
# July 2014
#
# Accurate performance measurements are problematic, because it's
# always virtualized setup with possibly throttled processor.
# Relative comparison is therefore more informative. This initial
# version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x
# faster than "4-bit" integer-only compiler-generated 64-bit code.
# "Initial version" means that there is room for further improvement.

# May 2016
#
# 2x aggregated reduction improves performance by 50% (resulting
# performance on POWER8 is 1 cycle per processed byte), and 4x
# aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb).
# POWER9 delivers 0.51 cpb.

$flavour=shift;
$output =shift;

if ($flavour =~ /64/) {
	$SIZE_T=8;
	$LRSAVE=2*$SIZE_T;
	$STU="stdu";
	$POP="ld";
	$PUSH="std";
	$UCMP="cmpld";
	$SHRI="srdi";
} elsif ($flavour =~ /32/) {
	$SIZE_T=4;
	$LRSAVE=$SIZE_T;
	$STU="stwu";
	$POP="lwz";
	$PUSH="stw";
	$UCMP="cmplw";
	$SHRI="srwi";
} else { die "nonsense $flavour"; }

$sp="r1";
$FRAME=6*$SIZE_T+13*16;	# 13*16 is for v20-v31 offload

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
die "can't locate ppc-xlate.pl";

open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!";

my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6));	# argument block

my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3));
my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12));
my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19));
my $vrsave="r12";

$code=<<___;
.machine	"any"

.text

.globl	.gcm_init_p8
.align	5
.gcm_init_p8:
	li		r0,-4096
	li		r8,0x10
	mfspr		$vrsave,256
	li		r9,0x20
	mtspr		256,r0
	li		r10,0x30
	lvx_u		$H,0,r4			# load H

	vspltisb	$xC2,-16		# 0xf0
	vspltisb	$t0,1			# one
	vaddubm		$xC2,$xC2,$xC2		# 0xe0
	vxor		$zero,$zero,$zero
	vor		$xC2,$xC2,$t0		# 0xe1
	vsldoi		$xC2,$xC2,$zero,15	# 0xe1...
	vsldoi		$t1,$zero,$t0,1		# ...1
	vaddubm		$xC2,$xC2,$xC2		# 0xc2...
	vspltisb	$t2,7
	vor		$xC2,$xC2,$t1		# 0xc2....01
	vspltb		$t1,$H,0		# most significant byte
	vsl		$H,$H,$t0		# H<<=1
	vsrab		$t1,$t1,$t2		# broadcast carry bit
	vand		$t1,$t1,$xC2
	vxor		$IN,$H,$t1		# twisted H

	vsldoi		$H,$IN,$IN,8		# twist even more ...
	vsldoi		$xC2,$zero,$xC2,8	# 0xc2.0
	vsldoi		$Hl,$zero,$H,8		# ... and split
	vsldoi		$Hh,$H,$zero,8

	stvx_u		$xC2,0,r3		# save pre-computed table
	stvx_u		$Hl,r8,r3
	li		r8,0x40
	stvx_u		$H, r9,r3
	li		r9,0x50
	stvx_u		$Hh,r10,r3
	li		r10,0x60

	vpmsumd		$Xl,$IN,$Hl		# H.lo·H.lo
	vpmsumd		$Xm,$IN,$H		# H.hi·H.lo+H.lo·H.hi
	vpmsumd		$Xh,$IN,$Hh		# H.hi·H.hi

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1

	vsldoi		$Xl,$Xl,$Xl,8
	vxor		$Xl,$Xl,$t2

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	vpmsumd		$Xl,$Xl,$xC2
	vxor		$t1,$t1,$Xh
	vxor		$IN1,$Xl,$t1

	vsldoi		$H2,$IN1,$IN1,8
	vsldoi		$H2l,$zero,$H2,8
	vsldoi		$H2h,$H2,$zero,8

	stvx_u		$H2l,r8,r3		# save H^2
	li		r8,0x70
	stvx_u		$H2,r9,r3
	li		r9,0x80
	stvx_u		$H2h,r10,r3
	li		r10,0x90
___
{
my ($t4,$t5,$t6) = ($Hl,$H,$Hh);
$code.=<<___;
	vpmsumd		$Xl,$IN,$H2l		# H.lo·H^2.lo
	 vpmsumd	$Xl1,$IN1,$H2l		# H^2.lo·H^2.lo
	vpmsumd		$Xm,$IN,$H2		# H.hi·H^2.lo+H.lo·H^2.hi
	 vpmsumd	$Xm1,$IN1,$H2		# H^2.hi·H^2.lo+H^2.lo·H^2.hi
	vpmsumd		$Xh,$IN,$H2h		# H.hi·H^2.hi
	 vpmsumd	$Xh1,$IN1,$H2h		# H^2.hi·H^2.hi

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
	 vpmsumd	$t6,$Xl1,$xC2		# 1st reduction phase

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	 vsldoi		$t4,$Xm1,$zero,8
	 vsldoi		$t5,$zero,$Xm1,8
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1
	 vxor		$Xl1,$Xl1,$t4
	 vxor		$Xh1,$Xh1,$t5

	vsldoi		$Xl,$Xl,$Xl,8
	 vsldoi		$Xl1,$Xl1,$Xl1,8
	vxor		$Xl,$Xl,$t2
	 vxor		$Xl1,$Xl1,$t6

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	 vsldoi		$t5,$Xl1,$Xl1,8		# 2nd reduction phase
	vpmsumd		$Xl,$Xl,$xC2
	 vpmsumd	$Xl1,$Xl1,$xC2
	vxor		$t1,$t1,$Xh
	 vxor		$t5,$t5,$Xh1
	vxor		$Xl,$Xl,$t1
	 vxor		$Xl1,$Xl1,$t5

	vsldoi		$H,$Xl,$Xl,8
	 vsldoi		$H2,$Xl1,$Xl1,8
	vsldoi		$Hl,$zero,$H,8
	vsldoi		$Hh,$H,$zero,8
	 vsldoi		$H2l,$zero,$H2,8
	 vsldoi		$H2h,$H2,$zero,8

	stvx_u		$Hl,r8,r3		# save H^3
	li		r8,0xa0
	stvx_u		$H,r9,r3
	li		r9,0xb0
	stvx_u		$Hh,r10,r3
	li		r10,0xc0
	 stvx_u		$H2l,r8,r3		# save H^4
	 stvx_u		$H2,r9,r3
	 stvx_u		$H2h,r10,r3

	mtspr		256,$vrsave
	blr
	.long		0
	.byte		0,12,0x14,0,0,0,2,0
	.long		0
.size	.gcm_init_p8,.-.gcm_init_p8
___
}
$code.=<<___;
.globl	.gcm_gmult_p8
.align	5
.gcm_gmult_p8:
	lis		r0,0xfff8
	li		r8,0x10
	mfspr		$vrsave,256
	li		r9,0x20
	mtspr		256,r0
	li		r10,0x30
	lvx_u		$IN,0,$Xip		# load Xi

	lvx_u		$Hl,r8,$Htbl		# load pre-computed table
	 le?lvsl	$lemask,r0,r0
	lvx_u		$H, r9,$Htbl
	 le?vspltisb	$t0,0x07
	lvx_u		$Hh,r10,$Htbl
	 le?vxor	$lemask,$lemask,$t0
	lvx_u		$xC2,0,$Htbl
	 le?vperm	$IN,$IN,$IN,$lemask
	vxor		$zero,$zero,$zero

	vpmsumd		$Xl,$IN,$Hl		# H.lo·Xi.lo
	vpmsumd		$Xm,$IN,$H		# H.hi·Xi.lo+H.lo·Xi.hi
	vpmsumd		$Xh,$IN,$Hh		# H.hi·Xi.hi

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1

	vsldoi		$Xl,$Xl,$Xl,8
	vxor		$Xl,$Xl,$t2

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	vpmsumd		$Xl,$Xl,$xC2
	vxor		$t1,$t1,$Xh
	vxor		$Xl,$Xl,$t1

	le?vperm	$Xl,$Xl,$Xl,$lemask
	stvx_u		$Xl,0,$Xip		# write out Xi

	mtspr		256,$vrsave
	blr
	.long		0
	.byte		0,12,0x14,0,0,0,2,0
	.long		0
.size	.gcm_gmult_p8,.-.gcm_gmult_p8

.globl	.gcm_ghash_p8
.align	5
.gcm_ghash_p8:
	li		r0,-4096
	li		r8,0x10
	mfspr		$vrsave,256
	li		r9,0x20
	mtspr		256,r0
	li		r10,0x30
	lvx_u		$Xl,0,$Xip		# load Xi

	lvx_u		$Hl,r8,$Htbl		# load pre-computed table
	li		r8,0x40
	 le?lvsl	$lemask,r0,r0
	lvx_u		$H, r9,$Htbl
	li		r9,0x50
	 le?vspltisb	$t0,0x07
	lvx_u		$Hh,r10,$Htbl
	li		r10,0x60
	 le?vxor	$lemask,$lemask,$t0
	lvx_u		$xC2,0,$Htbl
	 le?vperm	$Xl,$Xl,$Xl,$lemask
	vxor		$zero,$zero,$zero

	${UCMP}i	$len,64
	bge		Lgcm_ghash_p8_4x

	lvx_u		$IN,0,$inp
	addi		$inp,$inp,16
	subic.		$len,$len,16
	 le?vperm	$IN,$IN,$IN,$lemask
	vxor		$IN,$IN,$Xl
	beq		Lshort

	lvx_u		$H2l,r8,$Htbl		# load H^2
	li		r8,16
	lvx_u		$H2, r9,$Htbl
	add		r9,$inp,$len		# end of input
	lvx_u		$H2h,r10,$Htbl
	be?b		Loop_2x

.align	5
Loop_2x:
	lvx_u		$IN1,0,$inp
	le?vperm	$IN1,$IN1,$IN1,$lemask

	 subic		$len,$len,32
	vpmsumd		$Xl,$IN,$H2l		# H^2.lo·Xi.lo
	 vpmsumd	$Xl1,$IN1,$Hl		# H.lo·Xi+1.lo
	 subfe		r0,r0,r0		# borrow?-1:0
	vpmsumd		$Xm,$IN,$H2		# H^2.hi·Xi.lo+H^2.lo·Xi.hi
	 vpmsumd	$Xm1,$IN1,$H		# H.hi·Xi+1.lo+H.lo·Xi+1.hi
	 and		r0,r0,$len
	vpmsumd		$Xh,$IN,$H2h		# H^2.hi·Xi.hi
	 vpmsumd	$Xh1,$IN1,$Hh		# H.hi·Xi+1.hi
	 add		$inp,$inp,r0

	vxor		$Xl,$Xl,$Xl1
	vxor		$Xm,$Xm,$Xm1

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	 vxor		$Xh,$Xh,$Xh1
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1

	vsldoi		$Xl,$Xl,$Xl,8
	vxor		$Xl,$Xl,$t2
	 lvx_u		$IN,r8,$inp
	 addi		$inp,$inp,32

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	vpmsumd		$Xl,$Xl,$xC2
	 le?vperm	$IN,$IN,$IN,$lemask
	vxor		$t1,$t1,$Xh
	vxor		$IN,$IN,$t1
	vxor		$IN,$IN,$Xl
	$UCMP		r9,$inp
	bgt		Loop_2x			# done yet?

	cmplwi		$len,0
	bne		Leven

Lshort:
	vpmsumd		$Xl,$IN,$Hl		# H.lo·Xi.lo
	vpmsumd		$Xm,$IN,$H		# H.hi·Xi.lo+H.lo·Xi.hi
	vpmsumd		$Xh,$IN,$Hh		# H.hi·Xi.hi

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1

	vsldoi		$Xl,$Xl,$Xl,8
	vxor		$Xl,$Xl,$t2

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	vpmsumd		$Xl,$Xl,$xC2
	vxor		$t1,$t1,$Xh

Leven:
	vxor		$Xl,$Xl,$t1
	le?vperm	$Xl,$Xl,$Xl,$lemask
	stvx_u		$Xl,0,$Xip		# write out Xi

	mtspr		256,$vrsave
	blr
	.long		0
	.byte		0,12,0x14,0,0,0,4,0
	.long		0
___
{
my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h,
    $Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31));
my $IN0=$IN;
my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h);

$code.=<<___;
.align	5
.gcm_ghash_p8_4x:
Lgcm_ghash_p8_4x:
	$STU		$sp,-$FRAME($sp)
	li		r10,`15+6*$SIZE_T`
	li		r11,`31+6*$SIZE_T`
	stvx		v20,r10,$sp
	addi		r10,r10,32
	stvx		v21,r11,$sp
	addi		r11,r11,32
	stvx		v22,r10,$sp
	addi		r10,r10,32
	stvx		v23,r11,$sp
	addi		r11,r11,32
	stvx		v24,r10,$sp
	addi		r10,r10,32
	stvx		v25,r11,$sp
	addi		r11,r11,32
	stvx		v26,r10,$sp
	addi		r10,r10,32
	stvx		v27,r11,$sp
	addi		r11,r11,32
	stvx		v28,r10,$sp
	addi		r10,r10,32
	stvx		v29,r11,$sp
	addi		r11,r11,32
	stvx		v30,r10,$sp
	li		r10,0x60
	stvx		v31,r11,$sp
	li		r0,-1
	stw		$vrsave,`$FRAME-4`($sp)	# save vrsave
	mtspr		256,r0			# preserve all AltiVec registers

	lvsl		$t0,0,r8		# 0x0001..0e0f
	#lvx_u		$H2l,r8,$Htbl		# load H^2
	li		r8,0x70
	lvx_u		$H2, r9,$Htbl
	li		r9,0x80
	vspltisb	$t1,8			# 0x0808..0808
	#lvx_u		$H2h,r10,$Htbl
	li		r10,0x90
	lvx_u		$H3l,r8,$Htbl		# load H^3
	li		r8,0xa0
	lvx_u		$H3, r9,$Htbl
	li		r9,0xb0
	lvx_u		$H3h,r10,$Htbl
	li		r10,0xc0
	lvx_u		$H4l,r8,$Htbl		# load H^4
	li		r8,0x10
	lvx_u		$H4, r9,$Htbl
	li		r9,0x20
	lvx_u		$H4h,r10,$Htbl
	li		r10,0x30

	vsldoi		$t2,$zero,$t1,8		# 0x0000..0808
	vaddubm		$hiperm,$t0,$t2		# 0x0001..1617
	vaddubm		$loperm,$t1,$hiperm	# 0x0809..1e1f

	$SHRI		$len,$len,4		# this allows to use sign bit
						# as carry
	lvx_u		$IN0,0,$inp		# load input
	lvx_u		$IN1,r8,$inp
	subic.		$len,$len,8
	lvx_u		$IN2,r9,$inp
	lvx_u		$IN3,r10,$inp
	addi		$inp,$inp,0x40
	le?vperm	$IN0,$IN0,$IN0,$lemask
	le?vperm	$IN1,$IN1,$IN1,$lemask
	le?vperm	$IN2,$IN2,$IN2,$lemask
	le?vperm	$IN3,$IN3,$IN3,$lemask

	vxor		$Xh,$IN0,$Xl

	 vpmsumd	$Xl1,$IN1,$H3l
	 vpmsumd	$Xm1,$IN1,$H3
	 vpmsumd	$Xh1,$IN1,$H3h

	 vperm		$H21l,$H2,$H,$hiperm
	 vperm		$t0,$IN2,$IN3,$loperm
	 vperm		$H21h,$H2,$H,$loperm
	 vperm		$t1,$IN2,$IN3,$hiperm
	 vpmsumd	$Xm2,$IN2,$H2		# H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo
	 vpmsumd	$Xl3,$t0,$H21l		# H^2.lo·Xi+2.lo+H.lo·Xi+3.lo
	 vpmsumd	$Xm3,$IN3,$H		# H.hi·Xi+3.lo  +H.lo·Xi+3.hi
	 vpmsumd	$Xh3,$t1,$H21h		# H^2.hi·Xi+2.hi+H.hi·Xi+3.hi

	 vxor		$Xm2,$Xm2,$Xm1
	 vxor		$Xl3,$Xl3,$Xl1
	 vxor		$Xm3,$Xm3,$Xm2
	 vxor		$Xh3,$Xh3,$Xh1

	blt		Ltail_4x

Loop_4x:
	lvx_u		$IN0,0,$inp
	lvx_u		$IN1,r8,$inp
	subic.		$len,$len,4
	lvx_u		$IN2,r9,$inp
	lvx_u		$IN3,r10,$inp
	addi		$inp,$inp,0x40
	le?vperm	$IN1,$IN1,$IN1,$lemask
	le?vperm	$IN2,$IN2,$IN2,$lemask
	le?vperm	$IN3,$IN3,$IN3,$lemask
	le?vperm	$IN0,$IN0,$IN0,$lemask

	vpmsumd		$Xl,$Xh,$H4l		# H^4.lo·Xi.lo
	vpmsumd		$Xm,$Xh,$H4		# H^4.hi·Xi.lo+H^4.lo·Xi.hi
	vpmsumd		$Xh,$Xh,$H4h		# H^4.hi·Xi.hi
	 vpmsumd	$Xl1,$IN1,$H3l
	 vpmsumd	$Xm1,$IN1,$H3
	 vpmsumd	$Xh1,$IN1,$H3h

	vxor		$Xl,$Xl,$Xl3
	vxor		$Xm,$Xm,$Xm3
	vxor		$Xh,$Xh,$Xh3
	 vperm		$t0,$IN2,$IN3,$loperm
	 vperm		$t1,$IN2,$IN3,$hiperm

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
	 vpmsumd	$Xl3,$t0,$H21l		# H.lo·Xi+3.lo  +H^2.lo·Xi+2.lo
	 vpmsumd	$Xh3,$t1,$H21h		# H.hi·Xi+3.hi  +H^2.hi·Xi+2.hi

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1

	vsldoi		$Xl,$Xl,$Xl,8
	vxor		$Xl,$Xl,$t2

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	 vpmsumd	$Xm2,$IN2,$H2		# H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi
	 vpmsumd	$Xm3,$IN3,$H		# H.hi·Xi+3.lo  +H.lo·Xi+3.hi
	vpmsumd		$Xl,$Xl,$xC2

	 vxor		$Xl3,$Xl3,$Xl1
	 vxor		$Xh3,$Xh3,$Xh1
	vxor		$Xh,$Xh,$IN0
	 vxor		$Xm2,$Xm2,$Xm1
	vxor		$Xh,$Xh,$t1
	 vxor		$Xm3,$Xm3,$Xm2
	vxor		$Xh,$Xh,$Xl
	bge		Loop_4x

Ltail_4x:
	vpmsumd		$Xl,$Xh,$H4l		# H^4.lo·Xi.lo
	vpmsumd		$Xm,$Xh,$H4		# H^4.hi·Xi.lo+H^4.lo·Xi.hi
	vpmsumd		$Xh,$Xh,$H4h		# H^4.hi·Xi.hi

	vxor		$Xl,$Xl,$Xl3
	vxor		$Xm,$Xm,$Xm3

	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase

	vsldoi		$t0,$Xm,$zero,8
	vsldoi		$t1,$zero,$Xm,8
	 vxor		$Xh,$Xh,$Xh3
	vxor		$Xl,$Xl,$t0
	vxor		$Xh,$Xh,$t1

	vsldoi		$Xl,$Xl,$Xl,8
	vxor		$Xl,$Xl,$t2

	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
	vpmsumd		$Xl,$Xl,$xC2
	vxor		$t1,$t1,$Xh
	vxor		$Xl,$Xl,$t1

	addic.		$len,$len,4
	beq		Ldone_4x

	lvx_u		$IN0,0,$inp
	${UCMP}i	$len,2
	li		$len,-4
	blt		Lone
	lvx_u		$IN1,r8,$inp
	beq		Ltwo

Lthree:
	lvx_u		$IN2,r9,$inp
	le?vperm	$IN0,$IN0,$IN0,$lemask
	le?vperm	$IN1,$IN1,$IN1,$lemask
	le?vperm	$IN2,$IN2,$IN2,$lemask

	vxor		$Xh,$IN0,$Xl
	vmr		$H4l,$H3l
	vmr		$H4, $H3
	vmr		$H4h,$H3h

	vperm		$t0,$IN1,$IN2,$loperm
	vperm		$t1,$IN1,$IN2,$hiperm
	vpmsumd		$Xm2,$IN1,$H2		# H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo
	vpmsumd		$Xm3,$IN2,$H		# H.hi·Xi+2.lo  +H.lo·Xi+2.hi
	vpmsumd		$Xl3,$t0,$H21l		# H^2.lo·Xi+1.lo+H.lo·Xi+2.lo
	vpmsumd		$Xh3,$t1,$H21h		# H^2.hi·Xi+1.hi+H.hi·Xi+2.hi

	vxor		$Xm3,$Xm3,$Xm2
	b		Ltail_4x

.align	4
Ltwo:
	le?vperm	$IN0,$IN0,$IN0,$lemask
	le?vperm	$IN1,$IN1,$IN1,$lemask

	vxor		$Xh,$IN0,$Xl
	vperm		$t0,$zero,$IN1,$loperm
	vperm		$t1,$zero,$IN1,$hiperm

	vsldoi		$H4l,$zero,$H2,8
	vmr		$H4, $H2
	vsldoi		$H4h,$H2,$zero,8

	vpmsumd		$Xl3,$t0, $H21l		# H.lo·Xi+1.lo
	vpmsumd		$Xm3,$IN1,$H		# H.hi·Xi+1.lo+H.lo·Xi+2.hi
	vpmsumd		$Xh3,$t1, $H21h		# H.hi·Xi+1.hi

	b		Ltail_4x

.align	4
Lone:
	le?vperm	$IN0,$IN0,$IN0,$lemask

	vsldoi		$H4l,$zero,$H,8
	vmr		$H4, $H
	vsldoi		$H4h,$H,$zero,8

	vxor		$Xh,$IN0,$Xl
	vxor		$Xl3,$Xl3,$Xl3
	vxor		$Xm3,$Xm3,$Xm3
	vxor		$Xh3,$Xh3,$Xh3

	b		Ltail_4x

Ldone_4x:
	le?vperm	$Xl,$Xl,$Xl,$lemask
	stvx_u		$Xl,0,$Xip		# write out Xi

	li		r10,`15+6*$SIZE_T`
	li		r11,`31+6*$SIZE_T`
	mtspr		256,$vrsave
	lvx		v20,r10,$sp
	addi		r10,r10,32
	lvx		v21,r11,$sp
	addi		r11,r11,32
	lvx		v22,r10,$sp
	addi		r10,r10,32
	lvx		v23,r11,$sp
	addi		r11,r11,32
	lvx		v24,r10,$sp
	addi		r10,r10,32
	lvx		v25,r11,$sp
	addi		r11,r11,32
	lvx		v26,r10,$sp
	addi		r10,r10,32
	lvx		v27,r11,$sp
	addi		r11,r11,32
	lvx		v28,r10,$sp
	addi		r10,r10,32
	lvx		v29,r11,$sp
	addi		r11,r11,32
	lvx		v30,r10,$sp
	lvx		v31,r11,$sp
	addi		$sp,$sp,$FRAME
	blr
	.long		0
	.byte		0,12,0x04,0,0x80,0,4,0
	.long		0
___
}
$code.=<<___;
.size	.gcm_ghash_p8,.-.gcm_ghash_p8

.asciz  "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
___

foreach (split("\n",$code)) {
	s/\`([^\`]*)\`/eval $1/geo;

	if ($flavour =~ /le$/o) {	# little-endian
	    s/le\?//o		or
	    s/be\?/#be#/o;
	} else {
	    s/le\?/#le#/o	or
	    s/be\?//o;
	}
	print $_,"\n";
}

close STDOUT; # enforce flush