ctr128.c
5.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
* Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/crypto.h>
#include "modes_lcl.h"
#include <string.h>
/*
* NOTE: the IV/counter CTR mode is big-endian. The code itself is
* endian-neutral.
*/
/* increment counter (128-bit int) by 1 */
static void ctr128_inc(unsigned char *counter)
{
u32 n = 16, c = 1;
do {
--n;
c += counter[n];
counter[n] = (u8)c;
c >>= 8;
} while (n);
}
#if !defined(OPENSSL_SMALL_FOOTPRINT)
static void ctr128_inc_aligned(unsigned char *counter)
{
size_t *data, c, d, n;
const union {
long one;
char little;
} is_endian = {
1
};
if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) {
ctr128_inc(counter);
return;
}
data = (size_t *)counter;
c = 1;
n = 16 / sizeof(size_t);
do {
--n;
d = data[n] += c;
/* did addition carry? */
c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1);
} while (n);
}
#endif
/*
* The input encrypted as though 128bit counter mode is being used. The
* extra state information to record how much of the 128bit block we have
* used is contained in *num, and the encrypted counter is kept in
* ecount_buf. Both *num and ecount_buf must be initialised with zeros
* before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes
* that the counter is in the x lower bits of the IV (ivec), and that the
* application has full control over overflow and the rest of the IV. This
* implementation takes NO responsibility for checking that the counter
* doesn't overflow into the rest of the IV when incremented.
*/
void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const void *key,
unsigned char ivec[16],
unsigned char ecount_buf[16], unsigned int *num,
block128_f block)
{
unsigned int n;
size_t l = 0;
n = *num;
#if !defined(OPENSSL_SMALL_FOOTPRINT)
if (16 % sizeof(size_t) == 0) { /* always true actually */
do {
while (n && len) {
*(out++) = *(in++) ^ ecount_buf[n];
--len;
n = (n + 1) % 16;
}
# if defined(STRICT_ALIGNMENT)
if (((size_t)in | (size_t)out | (size_t)ecount_buf)
% sizeof(size_t) != 0)
break;
# endif
while (len >= 16) {
(*block) (ivec, ecount_buf, key);
ctr128_inc_aligned(ivec);
for (n = 0; n < 16; n += sizeof(size_t))
*(size_t *)(out + n) =
*(size_t *)(in + n) ^ *(size_t *)(ecount_buf + n);
len -= 16;
out += 16;
in += 16;
n = 0;
}
if (len) {
(*block) (ivec, ecount_buf, key);
ctr128_inc_aligned(ivec);
while (len--) {
out[n] = in[n] ^ ecount_buf[n];
++n;
}
}
*num = n;
return;
} while (0);
}
/* the rest would be commonly eliminated by x86* compiler */
#endif
while (l < len) {
if (n == 0) {
(*block) (ivec, ecount_buf, key);
ctr128_inc(ivec);
}
out[l] = in[l] ^ ecount_buf[n];
++l;
n = (n + 1) % 16;
}
*num = n;
}
/* increment upper 96 bits of 128-bit counter by 1 */
static void ctr96_inc(unsigned char *counter)
{
u32 n = 12, c = 1;
do {
--n;
c += counter[n];
counter[n] = (u8)c;
c >>= 8;
} while (n);
}
void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out,
size_t len, const void *key,
unsigned char ivec[16],
unsigned char ecount_buf[16],
unsigned int *num, ctr128_f func)
{
unsigned int n, ctr32;
n = *num;
while (n && len) {
*(out++) = *(in++) ^ ecount_buf[n];
--len;
n = (n + 1) % 16;
}
ctr32 = GETU32(ivec + 12);
while (len >= 16) {
size_t blocks = len / 16;
/*
* 1<<28 is just a not-so-small yet not-so-large number...
* Below condition is practically never met, but it has to
* be checked for code correctness.
*/
if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28))
blocks = (1U << 28);
/*
* As (*func) operates on 32-bit counter, caller
* has to handle overflow. 'if' below detects the
* overflow, which is then handled by limiting the
* amount of blocks to the exact overflow point...
*/
ctr32 += (u32)blocks;
if (ctr32 < blocks) {
blocks -= ctr32;
ctr32 = 0;
}
(*func) (in, out, blocks, key, ivec);
/* (*ctr) does not update ivec, caller does: */
PUTU32(ivec + 12, ctr32);
/* ... overflow was detected, propagate carry. */
if (ctr32 == 0)
ctr96_inc(ivec);
blocks *= 16;
len -= blocks;
out += blocks;
in += blocks;
}
if (len) {
memset(ecount_buf, 0, 16);
(*func) (ecount_buf, ecount_buf, 1, key, ivec);
++ctr32;
PUTU32(ivec + 12, ctr32);
if (ctr32 == 0)
ctr96_inc(ivec);
while (len--) {
out[n] = in[n] ^ ecount_buf[n];
++n;
}
}
*num = n;
}