poly1305.c 15.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>

#include "internal/poly1305.h"
#include "poly1305_local.h"

size_t Poly1305_ctx_size(void)
{
    return sizeof(struct poly1305_context);
}

/* pick 32-bit unsigned integer in little endian order */
static unsigned int U8TOU32(const unsigned char *p)
{
    return (((unsigned int)(p[0] & 0xff)) |
            ((unsigned int)(p[1] & 0xff) << 8) |
            ((unsigned int)(p[2] & 0xff) << 16) |
            ((unsigned int)(p[3] & 0xff) << 24));
}

/*
 * Implementations can be classified by amount of significant bits in
 * words making up the multi-precision value, or in other words radix
 * or base of numerical representation, e.g. base 2^64, base 2^32,
 * base 2^26. Complementary characteristic is how wide is the result of
 * multiplication of pair of digits, e.g. it would take 128 bits to
 * accommodate multiplication result in base 2^64 case. These are used
 * interchangeably. To describe implementation that is. But interface
 * is designed to isolate this so that low-level primitives implemented
 * in assembly can be self-contained/self-coherent.
 */
#ifndef POLY1305_ASM
/*
 * Even though there is __int128 reference implementation targeting
 * 64-bit platforms provided below, it's not obvious that it's optimal
 * choice for every one of them. Depending on instruction set overall
 * amount of instructions can be comparable to one in __int64
 * implementation. Amount of multiplication instructions would be lower,
 * but not necessarily overall. And in out-of-order execution context,
 * it is the latter that can be crucial...
 *
 * On related note. Poly1305 author, D. J. Bernstein, discusses and
 * provides floating-point implementations of the algorithm in question.
 * It made a lot of sense by the time of introduction, because most
 * then-modern processors didn't have pipelined integer multiplier.
 * [Not to mention that some had non-constant timing for integer
 * multiplications.] Floating-point instructions on the other hand could
 * be issued every cycle, which allowed to achieve better performance.
 * Nowadays, with SIMD and/or out-or-order execution, shared or
 * even emulated FPU, it's more complicated, and floating-point
 * implementation is not necessarily optimal choice in every situation,
 * rather contrary...
 *
 *                                              <appro@openssl.org>
 */

typedef unsigned int u32;

/*
 * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
 * of |inp| no longer than |len|. Behaviour for |len| not divisible by
 * block size is unspecified in general case, even though in reference
 * implementation the trailing chunk is simply ignored. Per algorithm
 * specification, every input block, complete or last partial, is to be
 * padded with a bit past most significant byte. The latter kind is then
 * padded with zeros till block size. This last partial block padding
 * is caller(*)'s responsibility, and because of this the last partial
 * block is always processed with separate call with |len| set to
 * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
 * should be set to 1 to perform implicit padding with 128th bit.
 * poly1305_blocks does not actually check for this constraint though,
 * it's caller(*)'s responsibility to comply.
 *
 * (*)  In the context "caller" is not application code, but higher
 *      level Poly1305_* from this very module, so that quirks are
 *      handled locally.
 */
static void
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);

/*
 * Type-agnostic "rip-off" from constant_time_locl.h
 */
# define CONSTANT_TIME_CARRY(a,b) ( \
         (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
         )

# if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \
     (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8)

typedef unsigned long u64;
typedef __uint128_t u128;

typedef struct {
    u64 h[3];
    u64 r[2];
} poly1305_internal;

/* pick 32-bit unsigned integer in little endian order */
static u64 U8TOU64(const unsigned char *p)
{
    return (((u64)(p[0] & 0xff)) |
            ((u64)(p[1] & 0xff) << 8) |
            ((u64)(p[2] & 0xff) << 16) |
            ((u64)(p[3] & 0xff) << 24) |
            ((u64)(p[4] & 0xff) << 32) |
            ((u64)(p[5] & 0xff) << 40) |
            ((u64)(p[6] & 0xff) << 48) |
            ((u64)(p[7] & 0xff) << 56));
}

/* store a 32-bit unsigned integer in little endian */
static void U64TO8(unsigned char *p, u64 v)
{
    p[0] = (unsigned char)((v) & 0xff);
    p[1] = (unsigned char)((v >> 8) & 0xff);
    p[2] = (unsigned char)((v >> 16) & 0xff);
    p[3] = (unsigned char)((v >> 24) & 0xff);
    p[4] = (unsigned char)((v >> 32) & 0xff);
    p[5] = (unsigned char)((v >> 40) & 0xff);
    p[6] = (unsigned char)((v >> 48) & 0xff);
    p[7] = (unsigned char)((v >> 56) & 0xff);
}

static void poly1305_init(void *ctx, const unsigned char key[16])
{
    poly1305_internal *st = (poly1305_internal *) ctx;

    /* h = 0 */
    st->h[0] = 0;
    st->h[1] = 0;
    st->h[2] = 0;

    /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
    st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
    st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
}

static void
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
{
    poly1305_internal *st = (poly1305_internal *)ctx;
    u64 r0, r1;
    u64 s1;
    u64 h0, h1, h2, c;
    u128 d0, d1;

    r0 = st->r[0];
    r1 = st->r[1];

    s1 = r1 + (r1 >> 2);

    h0 = st->h[0];
    h1 = st->h[1];
    h2 = st->h[2];

    while (len >= POLY1305_BLOCK_SIZE) {
        /* h += m[i] */
        h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
        h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
        /*
         * padbit can be zero only when original len was
         * POLY1306_BLOCK_SIZE, but we don't check
         */
        h2 += (u64)(d1 >> 64) + padbit;

        /* h *= r "%" p, where "%" stands for "partial remainder" */
        d0 = ((u128)h0 * r0) +
             ((u128)h1 * s1);
        d1 = ((u128)h0 * r1) +
             ((u128)h1 * r0) +
             (h2 * s1);
        h2 = (h2 * r0);

        /* last reduction step: */
        /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
        h0 = (u64)d0;
        h1 = (u64)(d1 += d0 >> 64);
        h2 += (u64)(d1 >> 64);
        /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
        c = (h2 >> 2) + (h2 & ~3UL);
        h2 &= 3;
        h0 += c;
        h1 += (c = CONSTANT_TIME_CARRY(h0,c));
        h2 += CONSTANT_TIME_CARRY(h1,c);
        /*
         * Occasional overflows to 3rd bit of h2 are taken care of
         * "naturally". If after this point we end up at the top of
         * this loop, then the overflow bit will be accounted for
         * in next iteration. If we end up in poly1305_emit, then
         * comparison to modulus below will still count as "carry
         * into 131st bit", so that properly reduced value will be
         * picked in conditional move.
         */

        inp += POLY1305_BLOCK_SIZE;
        len -= POLY1305_BLOCK_SIZE;
    }

    st->h[0] = h0;
    st->h[1] = h1;
    st->h[2] = h2;
}

static void poly1305_emit(void *ctx, unsigned char mac[16],
                          const u32 nonce[4])
{
    poly1305_internal *st = (poly1305_internal *) ctx;
    u64 h0, h1, h2;
    u64 g0, g1, g2;
    u128 t;
    u64 mask;

    h0 = st->h[0];
    h1 = st->h[1];
    h2 = st->h[2];

    /* compare to modulus by computing h + -p */
    g0 = (u64)(t = (u128)h0 + 5);
    g1 = (u64)(t = (u128)h1 + (t >> 64));
    g2 = h2 + (u64)(t >> 64);

    /* if there was carry into 131st bit, h1:h0 = g1:g0 */
    mask = 0 - (g2 >> 2);
    g0 &= mask;
    g1 &= mask;
    mask = ~mask;
    h0 = (h0 & mask) | g0;
    h1 = (h1 & mask) | g1;

    /* mac = (h + nonce) % (2^128) */
    h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
    h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));

    U64TO8(mac + 0, h0);
    U64TO8(mac + 8, h1);
}

# else

#  if defined(_WIN32) && !defined(__MINGW32__)
typedef unsigned __int64 u64;
#  elif defined(__arch64__)
typedef unsigned long u64;
#  else
typedef unsigned long long u64;
#  endif

typedef struct {
    u32 h[5];
    u32 r[4];
} poly1305_internal;

/* store a 32-bit unsigned integer in little endian */
static void U32TO8(unsigned char *p, unsigned int v)
{
    p[0] = (unsigned char)((v) & 0xff);
    p[1] = (unsigned char)((v >> 8) & 0xff);
    p[2] = (unsigned char)((v >> 16) & 0xff);
    p[3] = (unsigned char)((v >> 24) & 0xff);
}

static void poly1305_init(void *ctx, const unsigned char key[16])
{
    poly1305_internal *st = (poly1305_internal *) ctx;

    /* h = 0 */
    st->h[0] = 0;
    st->h[1] = 0;
    st->h[2] = 0;
    st->h[3] = 0;
    st->h[4] = 0;

    /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
    st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
    st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
    st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
    st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
}

static void
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
{
    poly1305_internal *st = (poly1305_internal *)ctx;
    u32 r0, r1, r2, r3;
    u32 s1, s2, s3;
    u32 h0, h1, h2, h3, h4, c;
    u64 d0, d1, d2, d3;

    r0 = st->r[0];
    r1 = st->r[1];
    r2 = st->r[2];
    r3 = st->r[3];

    s1 = r1 + (r1 >> 2);
    s2 = r2 + (r2 >> 2);
    s3 = r3 + (r3 >> 2);

    h0 = st->h[0];
    h1 = st->h[1];
    h2 = st->h[2];
    h3 = st->h[3];
    h4 = st->h[4];

    while (len >= POLY1305_BLOCK_SIZE) {
        /* h += m[i] */
        h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
        h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
        h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
        h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
        h4 += (u32)(d3 >> 32) + padbit;

        /* h *= r "%" p, where "%" stands for "partial remainder" */
        d0 = ((u64)h0 * r0) +
             ((u64)h1 * s3) +
             ((u64)h2 * s2) +
             ((u64)h3 * s1);
        d1 = ((u64)h0 * r1) +
             ((u64)h1 * r0) +
             ((u64)h2 * s3) +
             ((u64)h3 * s2) +
             (h4 * s1);
        d2 = ((u64)h0 * r2) +
             ((u64)h1 * r1) +
             ((u64)h2 * r0) +
             ((u64)h3 * s3) +
             (h4 * s2);
        d3 = ((u64)h0 * r3) +
             ((u64)h1 * r2) +
             ((u64)h2 * r1) +
             ((u64)h3 * r0) +
             (h4 * s3);
        h4 = (h4 * r0);

        /* last reduction step: */
        /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
        h0 = (u32)d0;
        h1 = (u32)(d1 += d0 >> 32);
        h2 = (u32)(d2 += d1 >> 32);
        h3 = (u32)(d3 += d2 >> 32);
        h4 += (u32)(d3 >> 32);
        /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
        c = (h4 >> 2) + (h4 & ~3U);
        h4 &= 3;
        h0 += c;
        h1 += (c = CONSTANT_TIME_CARRY(h0,c));
        h2 += (c = CONSTANT_TIME_CARRY(h1,c));
        h3 += (c = CONSTANT_TIME_CARRY(h2,c));
        h4 += CONSTANT_TIME_CARRY(h3,c);
        /*
         * Occasional overflows to 3rd bit of h4 are taken care of
         * "naturally". If after this point we end up at the top of
         * this loop, then the overflow bit will be accounted for
         * in next iteration. If we end up in poly1305_emit, then
         * comparison to modulus below will still count as "carry
         * into 131st bit", so that properly reduced value will be
         * picked in conditional move.
         */

        inp += POLY1305_BLOCK_SIZE;
        len -= POLY1305_BLOCK_SIZE;
    }

    st->h[0] = h0;
    st->h[1] = h1;
    st->h[2] = h2;
    st->h[3] = h3;
    st->h[4] = h4;
}

static void poly1305_emit(void *ctx, unsigned char mac[16],
                          const u32 nonce[4])
{
    poly1305_internal *st = (poly1305_internal *) ctx;
    u32 h0, h1, h2, h3, h4;
    u32 g0, g1, g2, g3, g4;
    u64 t;
    u32 mask;

    h0 = st->h[0];
    h1 = st->h[1];
    h2 = st->h[2];
    h3 = st->h[3];
    h4 = st->h[4];

    /* compare to modulus by computing h + -p */
    g0 = (u32)(t = (u64)h0 + 5);
    g1 = (u32)(t = (u64)h1 + (t >> 32));
    g2 = (u32)(t = (u64)h2 + (t >> 32));
    g3 = (u32)(t = (u64)h3 + (t >> 32));
    g4 = h4 + (u32)(t >> 32);

    /* if there was carry into 131st bit, h3:h0 = g3:g0 */
    mask = 0 - (g4 >> 2);
    g0 &= mask;
    g1 &= mask;
    g2 &= mask;
    g3 &= mask;
    mask = ~mask;
    h0 = (h0 & mask) | g0;
    h1 = (h1 & mask) | g1;
    h2 = (h2 & mask) | g2;
    h3 = (h3 & mask) | g3;

    /* mac = (h + nonce) % (2^128) */
    h0 = (u32)(t = (u64)h0 + nonce[0]);
    h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
    h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
    h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);

    U32TO8(mac + 0, h0);
    U32TO8(mac + 4, h1);
    U32TO8(mac + 8, h2);
    U32TO8(mac + 12, h3);
}
# endif
#else
int poly1305_init(void *ctx, const unsigned char key[16], void *func);
void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
                     unsigned int padbit);
void poly1305_emit(void *ctx, unsigned char mac[16],
                   const unsigned int nonce[4]);
#endif

void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
{
    ctx->nonce[0] = U8TOU32(&key[16]);
    ctx->nonce[1] = U8TOU32(&key[20]);
    ctx->nonce[2] = U8TOU32(&key[24]);
    ctx->nonce[3] = U8TOU32(&key[28]);

#ifndef POLY1305_ASM
    poly1305_init(ctx->opaque, key);
#else
    /*
     * Unlike reference poly1305_init assembly counterpart is expected
     * to return a value: non-zero if it initializes ctx->func, and zero
     * otherwise. Latter is to simplify assembly in cases when there no
     * multiple code paths to switch between.
     */
    if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
        ctx->func.blocks = poly1305_blocks;
        ctx->func.emit = poly1305_emit;
    }
#endif

    ctx->num = 0;

}

#ifdef POLY1305_ASM
/*
 * This "eclipses" poly1305_blocks and poly1305_emit, but it's
 * conscious choice imposed by -Wshadow compiler warnings.
 */
# define poly1305_blocks (*poly1305_blocks_p)
# define poly1305_emit   (*poly1305_emit_p)
#endif

void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
{
#ifdef POLY1305_ASM
    /*
     * As documented, poly1305_blocks is never called with input
     * longer than single block and padbit argument set to 0. This
     * property is fluently used in assembly modules to optimize
     * padbit handling on loop boundary.
     */
    poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
#endif
    size_t rem, num;

    if ((num = ctx->num)) {
        rem = POLY1305_BLOCK_SIZE - num;
        if (len >= rem) {
            memcpy(ctx->data + num, inp, rem);
            poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
            inp += rem;
            len -= rem;
        } else {
            /* Still not enough data to process a block. */
            memcpy(ctx->data + num, inp, len);
            ctx->num = num + len;
            return;
        }
    }

    rem = len % POLY1305_BLOCK_SIZE;
    len -= rem;

    if (len >= POLY1305_BLOCK_SIZE) {
        poly1305_blocks(ctx->opaque, inp, len, 1);
        inp += len;
    }

    if (rem)
        memcpy(ctx->data, inp, rem);

    ctx->num = rem;
}

void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
{
#ifdef POLY1305_ASM
    poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
    poly1305_emit_f poly1305_emit_p = ctx->func.emit;
#endif
    size_t num;

    if ((num = ctx->num)) {
        ctx->data[num++] = 1;   /* pad bit */
        while (num < POLY1305_BLOCK_SIZE)
            ctx->data[num++] = 0;
        poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
    }

    poly1305_emit(ctx->opaque, mac, ctx->nonce);

    /* zero out the state */
    OPENSSL_cleanse(ctx, sizeof(*ctx));
}