poly1305.c
15.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/*
* Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include "internal/poly1305.h"
#include "poly1305_local.h"
size_t Poly1305_ctx_size(void)
{
return sizeof(struct poly1305_context);
}
/* pick 32-bit unsigned integer in little endian order */
static unsigned int U8TOU32(const unsigned char *p)
{
return (((unsigned int)(p[0] & 0xff)) |
((unsigned int)(p[1] & 0xff) << 8) |
((unsigned int)(p[2] & 0xff) << 16) |
((unsigned int)(p[3] & 0xff) << 24));
}
/*
* Implementations can be classified by amount of significant bits in
* words making up the multi-precision value, or in other words radix
* or base of numerical representation, e.g. base 2^64, base 2^32,
* base 2^26. Complementary characteristic is how wide is the result of
* multiplication of pair of digits, e.g. it would take 128 bits to
* accommodate multiplication result in base 2^64 case. These are used
* interchangeably. To describe implementation that is. But interface
* is designed to isolate this so that low-level primitives implemented
* in assembly can be self-contained/self-coherent.
*/
#ifndef POLY1305_ASM
/*
* Even though there is __int128 reference implementation targeting
* 64-bit platforms provided below, it's not obvious that it's optimal
* choice for every one of them. Depending on instruction set overall
* amount of instructions can be comparable to one in __int64
* implementation. Amount of multiplication instructions would be lower,
* but not necessarily overall. And in out-of-order execution context,
* it is the latter that can be crucial...
*
* On related note. Poly1305 author, D. J. Bernstein, discusses and
* provides floating-point implementations of the algorithm in question.
* It made a lot of sense by the time of introduction, because most
* then-modern processors didn't have pipelined integer multiplier.
* [Not to mention that some had non-constant timing for integer
* multiplications.] Floating-point instructions on the other hand could
* be issued every cycle, which allowed to achieve better performance.
* Nowadays, with SIMD and/or out-or-order execution, shared or
* even emulated FPU, it's more complicated, and floating-point
* implementation is not necessarily optimal choice in every situation,
* rather contrary...
*
* <appro@openssl.org>
*/
typedef unsigned int u32;
/*
* poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
* of |inp| no longer than |len|. Behaviour for |len| not divisible by
* block size is unspecified in general case, even though in reference
* implementation the trailing chunk is simply ignored. Per algorithm
* specification, every input block, complete or last partial, is to be
* padded with a bit past most significant byte. The latter kind is then
* padded with zeros till block size. This last partial block padding
* is caller(*)'s responsibility, and because of this the last partial
* block is always processed with separate call with |len| set to
* POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
* should be set to 1 to perform implicit padding with 128th bit.
* poly1305_blocks does not actually check for this constraint though,
* it's caller(*)'s responsibility to comply.
*
* (*) In the context "caller" is not application code, but higher
* level Poly1305_* from this very module, so that quirks are
* handled locally.
*/
static void
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
/*
* Type-agnostic "rip-off" from constant_time_locl.h
*/
# define CONSTANT_TIME_CARRY(a,b) ( \
(a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
)
# if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \
(defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8)
typedef unsigned long u64;
typedef __uint128_t u128;
typedef struct {
u64 h[3];
u64 r[2];
} poly1305_internal;
/* pick 32-bit unsigned integer in little endian order */
static u64 U8TOU64(const unsigned char *p)
{
return (((u64)(p[0] & 0xff)) |
((u64)(p[1] & 0xff) << 8) |
((u64)(p[2] & 0xff) << 16) |
((u64)(p[3] & 0xff) << 24) |
((u64)(p[4] & 0xff) << 32) |
((u64)(p[5] & 0xff) << 40) |
((u64)(p[6] & 0xff) << 48) |
((u64)(p[7] & 0xff) << 56));
}
/* store a 32-bit unsigned integer in little endian */
static void U64TO8(unsigned char *p, u64 v)
{
p[0] = (unsigned char)((v) & 0xff);
p[1] = (unsigned char)((v >> 8) & 0xff);
p[2] = (unsigned char)((v >> 16) & 0xff);
p[3] = (unsigned char)((v >> 24) & 0xff);
p[4] = (unsigned char)((v >> 32) & 0xff);
p[5] = (unsigned char)((v >> 40) & 0xff);
p[6] = (unsigned char)((v >> 48) & 0xff);
p[7] = (unsigned char)((v >> 56) & 0xff);
}
static void poly1305_init(void *ctx, const unsigned char key[16])
{
poly1305_internal *st = (poly1305_internal *) ctx;
/* h = 0 */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
}
static void
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
{
poly1305_internal *st = (poly1305_internal *)ctx;
u64 r0, r1;
u64 s1;
u64 h0, h1, h2, c;
u128 d0, d1;
r0 = st->r[0];
r1 = st->r[1];
s1 = r1 + (r1 >> 2);
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
while (len >= POLY1305_BLOCK_SIZE) {
/* h += m[i] */
h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
/*
* padbit can be zero only when original len was
* POLY1306_BLOCK_SIZE, but we don't check
*/
h2 += (u64)(d1 >> 64) + padbit;
/* h *= r "%" p, where "%" stands for "partial remainder" */
d0 = ((u128)h0 * r0) +
((u128)h1 * s1);
d1 = ((u128)h0 * r1) +
((u128)h1 * r0) +
(h2 * s1);
h2 = (h2 * r0);
/* last reduction step: */
/* a) h2:h0 = h2<<128 + d1<<64 + d0 */
h0 = (u64)d0;
h1 = (u64)(d1 += d0 >> 64);
h2 += (u64)(d1 >> 64);
/* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
c = (h2 >> 2) + (h2 & ~3UL);
h2 &= 3;
h0 += c;
h1 += (c = CONSTANT_TIME_CARRY(h0,c));
h2 += CONSTANT_TIME_CARRY(h1,c);
/*
* Occasional overflows to 3rd bit of h2 are taken care of
* "naturally". If after this point we end up at the top of
* this loop, then the overflow bit will be accounted for
* in next iteration. If we end up in poly1305_emit, then
* comparison to modulus below will still count as "carry
* into 131st bit", so that properly reduced value will be
* picked in conditional move.
*/
inp += POLY1305_BLOCK_SIZE;
len -= POLY1305_BLOCK_SIZE;
}
st->h[0] = h0;
st->h[1] = h1;
st->h[2] = h2;
}
static void poly1305_emit(void *ctx, unsigned char mac[16],
const u32 nonce[4])
{
poly1305_internal *st = (poly1305_internal *) ctx;
u64 h0, h1, h2;
u64 g0, g1, g2;
u128 t;
u64 mask;
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
/* compare to modulus by computing h + -p */
g0 = (u64)(t = (u128)h0 + 5);
g1 = (u64)(t = (u128)h1 + (t >> 64));
g2 = h2 + (u64)(t >> 64);
/* if there was carry into 131st bit, h1:h0 = g1:g0 */
mask = 0 - (g2 >> 2);
g0 &= mask;
g1 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
/* mac = (h + nonce) % (2^128) */
h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
U64TO8(mac + 0, h0);
U64TO8(mac + 8, h1);
}
# else
# if defined(_WIN32) && !defined(__MINGW32__)
typedef unsigned __int64 u64;
# elif defined(__arch64__)
typedef unsigned long u64;
# else
typedef unsigned long long u64;
# endif
typedef struct {
u32 h[5];
u32 r[4];
} poly1305_internal;
/* store a 32-bit unsigned integer in little endian */
static void U32TO8(unsigned char *p, unsigned int v)
{
p[0] = (unsigned char)((v) & 0xff);
p[1] = (unsigned char)((v >> 8) & 0xff);
p[2] = (unsigned char)((v >> 16) & 0xff);
p[3] = (unsigned char)((v >> 24) & 0xff);
}
static void poly1305_init(void *ctx, const unsigned char key[16])
{
poly1305_internal *st = (poly1305_internal *) ctx;
/* h = 0 */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
st->h[3] = 0;
st->h[4] = 0;
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
}
static void
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
{
poly1305_internal *st = (poly1305_internal *)ctx;
u32 r0, r1, r2, r3;
u32 s1, s2, s3;
u32 h0, h1, h2, h3, h4, c;
u64 d0, d1, d2, d3;
r0 = st->r[0];
r1 = st->r[1];
r2 = st->r[2];
r3 = st->r[3];
s1 = r1 + (r1 >> 2);
s2 = r2 + (r2 >> 2);
s3 = r3 + (r3 >> 2);
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
h3 = st->h[3];
h4 = st->h[4];
while (len >= POLY1305_BLOCK_SIZE) {
/* h += m[i] */
h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
h4 += (u32)(d3 >> 32) + padbit;
/* h *= r "%" p, where "%" stands for "partial remainder" */
d0 = ((u64)h0 * r0) +
((u64)h1 * s3) +
((u64)h2 * s2) +
((u64)h3 * s1);
d1 = ((u64)h0 * r1) +
((u64)h1 * r0) +
((u64)h2 * s3) +
((u64)h3 * s2) +
(h4 * s1);
d2 = ((u64)h0 * r2) +
((u64)h1 * r1) +
((u64)h2 * r0) +
((u64)h3 * s3) +
(h4 * s2);
d3 = ((u64)h0 * r3) +
((u64)h1 * r2) +
((u64)h2 * r1) +
((u64)h3 * r0) +
(h4 * s3);
h4 = (h4 * r0);
/* last reduction step: */
/* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
h0 = (u32)d0;
h1 = (u32)(d1 += d0 >> 32);
h2 = (u32)(d2 += d1 >> 32);
h3 = (u32)(d3 += d2 >> 32);
h4 += (u32)(d3 >> 32);
/* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
c = (h4 >> 2) + (h4 & ~3U);
h4 &= 3;
h0 += c;
h1 += (c = CONSTANT_TIME_CARRY(h0,c));
h2 += (c = CONSTANT_TIME_CARRY(h1,c));
h3 += (c = CONSTANT_TIME_CARRY(h2,c));
h4 += CONSTANT_TIME_CARRY(h3,c);
/*
* Occasional overflows to 3rd bit of h4 are taken care of
* "naturally". If after this point we end up at the top of
* this loop, then the overflow bit will be accounted for
* in next iteration. If we end up in poly1305_emit, then
* comparison to modulus below will still count as "carry
* into 131st bit", so that properly reduced value will be
* picked in conditional move.
*/
inp += POLY1305_BLOCK_SIZE;
len -= POLY1305_BLOCK_SIZE;
}
st->h[0] = h0;
st->h[1] = h1;
st->h[2] = h2;
st->h[3] = h3;
st->h[4] = h4;
}
static void poly1305_emit(void *ctx, unsigned char mac[16],
const u32 nonce[4])
{
poly1305_internal *st = (poly1305_internal *) ctx;
u32 h0, h1, h2, h3, h4;
u32 g0, g1, g2, g3, g4;
u64 t;
u32 mask;
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
h3 = st->h[3];
h4 = st->h[4];
/* compare to modulus by computing h + -p */
g0 = (u32)(t = (u64)h0 + 5);
g1 = (u32)(t = (u64)h1 + (t >> 32));
g2 = (u32)(t = (u64)h2 + (t >> 32));
g3 = (u32)(t = (u64)h3 + (t >> 32));
g4 = h4 + (u32)(t >> 32);
/* if there was carry into 131st bit, h3:h0 = g3:g0 */
mask = 0 - (g4 >> 2);
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
h2 = (h2 & mask) | g2;
h3 = (h3 & mask) | g3;
/* mac = (h + nonce) % (2^128) */
h0 = (u32)(t = (u64)h0 + nonce[0]);
h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
U32TO8(mac + 0, h0);
U32TO8(mac + 4, h1);
U32TO8(mac + 8, h2);
U32TO8(mac + 12, h3);
}
# endif
#else
int poly1305_init(void *ctx, const unsigned char key[16], void *func);
void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
unsigned int padbit);
void poly1305_emit(void *ctx, unsigned char mac[16],
const unsigned int nonce[4]);
#endif
void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
{
ctx->nonce[0] = U8TOU32(&key[16]);
ctx->nonce[1] = U8TOU32(&key[20]);
ctx->nonce[2] = U8TOU32(&key[24]);
ctx->nonce[3] = U8TOU32(&key[28]);
#ifndef POLY1305_ASM
poly1305_init(ctx->opaque, key);
#else
/*
* Unlike reference poly1305_init assembly counterpart is expected
* to return a value: non-zero if it initializes ctx->func, and zero
* otherwise. Latter is to simplify assembly in cases when there no
* multiple code paths to switch between.
*/
if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
ctx->func.blocks = poly1305_blocks;
ctx->func.emit = poly1305_emit;
}
#endif
ctx->num = 0;
}
#ifdef POLY1305_ASM
/*
* This "eclipses" poly1305_blocks and poly1305_emit, but it's
* conscious choice imposed by -Wshadow compiler warnings.
*/
# define poly1305_blocks (*poly1305_blocks_p)
# define poly1305_emit (*poly1305_emit_p)
#endif
void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
{
#ifdef POLY1305_ASM
/*
* As documented, poly1305_blocks is never called with input
* longer than single block and padbit argument set to 0. This
* property is fluently used in assembly modules to optimize
* padbit handling on loop boundary.
*/
poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
#endif
size_t rem, num;
if ((num = ctx->num)) {
rem = POLY1305_BLOCK_SIZE - num;
if (len >= rem) {
memcpy(ctx->data + num, inp, rem);
poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
inp += rem;
len -= rem;
} else {
/* Still not enough data to process a block. */
memcpy(ctx->data + num, inp, len);
ctx->num = num + len;
return;
}
}
rem = len % POLY1305_BLOCK_SIZE;
len -= rem;
if (len >= POLY1305_BLOCK_SIZE) {
poly1305_blocks(ctx->opaque, inp, len, 1);
inp += len;
}
if (rem)
memcpy(ctx->data, inp, rem);
ctx->num = rem;
}
void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
{
#ifdef POLY1305_ASM
poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
poly1305_emit_f poly1305_emit_p = ctx->func.emit;
#endif
size_t num;
if ((num = ctx->num)) {
ctx->data[num++] = 1; /* pad bit */
while (num < POLY1305_BLOCK_SIZE)
ctx->data[num++] = 0;
poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
}
poly1305_emit(ctx->opaque, mac, ctx->nonce);
/* zero out the state */
OPENSSL_cleanse(ctx, sizeof(*ctx));
}