rc4-x86_64.pl
15.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
#! /usr/bin/env perl
# Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# July 2004
#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
# line results in ~40% improvement (yes, even for C implementation).
# Presumably it has everything to do with AMD cache architecture and
# RAW or whatever penalties. Once again! The module *requires* config
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
# I simply 'inc %r8b'. Even though optimization manual discourages
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
# November 2004
#
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
# Latter means that if you want to *estimate* what to expect from
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
# November 2004
#
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 was to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
# compose blended code, which would perform even within 30% marginal
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
# April 2005
#
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
# those with add/sub results in 50% performance improvement of folded
# loop...
# May 2005
#
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
# performance by >30% [unlike P4 32-bit case that is]. But this is
# provided that loads are reordered even more aggressively! Both code
# paths, AMD64 and EM64T, reorder loads in essentially same manner
# as my IA-64 implementation. On Opteron this resulted in modest 5%
# improvement [I had to test it], while final Intel P4 performance
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
# RC4_INT code-path. While if executed on Opteron, it's only 25%
# slower than the RC4_INT one [meaning that if CPU µ-arch detection
# is not implemented, then this final RC4_CHAR code-path should be
# preferred, as it provides better *all-round* performance].
# March 2007
#
# Intel Core2 was observed to perform poorly on both code paths:-( It
# apparently suffers from some kind of partial register stall, which
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
# cloop1 boosts its performance by 80%! This loop appears to be optimal
# fit for Core2 and therefore the code was modified to skip cloop8 on
# this CPU.
# May 2010
#
# Intel Westmere was observed to perform suboptimally. Adding yet
# another movzb to cloop1 improved performance by almost 50%! Core2
# performance is improved too, but nominally...
# May 2011
#
# The only code path that was not modified is P4-specific one. Non-P4
# Intel code path optimization is heavily based on submission by Maxim
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
# some of the ideas even in attempt to optimize the original RC4_INT
# code path... Current performance in cycles per processed byte (less
# is better) and improvement coefficients relative to previous
# version of this module are:
#
# Opteron 5.3/+0%(*)
# P4 6.5
# Core2 6.2/+15%(**)
# Westmere 4.2/+60%
# Sandy Bridge 4.2/+120%
# Atom 9.3/+80%
# VIA Nano 6.4/+4%
# Ivy Bridge 4.1/+30%
# Bulldozer 4.5/+30%(*)
#
# (*) But corresponding loop has less instructions, which should have
# positive effect on upcoming Bulldozer, which has one less ALU.
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
# (**) Note that Core2 result is ~15% lower than corresponding result
# for 32-bit code, meaning that it's possible to improve it,
# but more than likely at the cost of the others (see rc4-586.pl
# to get the idea)...
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
$dat="%rdi"; # arg1
$len="%rsi"; # arg2
$inp="%rdx"; # arg3
$out="%rcx"; # arg4
{
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl RC4
.type RC4,\@function,4
.align 16
RC4: or $len,$len
jne .Lentry
ret
.Lentry:
.cfi_startproc
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
.Lprologue:
mov $len,%r11
mov $inp,%r12
mov $out,%r13
___
my $len="%r11"; # reassign input arguments
my $inp="%r12";
my $out="%r13";
my @XX=("%r10","%rsi");
my @TX=("%rax","%rbx");
my $YY="%rcx";
my $TY="%rdx";
$code.=<<___;
xor $XX[0],$XX[0]
xor $YY,$YY
lea 8($dat),$dat
mov -8($dat),$XX[0]#b
mov -4($dat),$YY#b
cmpl \$-1,256($dat)
je .LRC4_CHAR
mov OPENSSL_ia32cap_P(%rip),%r8d
xor $TX[1],$TX[1]
inc $XX[0]#b
sub $XX[0],$TX[1]
sub $inp,$out
movl ($dat,$XX[0],4),$TX[0]#d
test \$-16,$len
jz .Lloop1
bt \$30,%r8d # Intel CPU?
jc .Lintel
and \$7,$TX[1]
lea 1($XX[0]),$XX[1]
jz .Loop8
sub $TX[1],$len
.Loop8_warmup:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $TX[1]
jnz .Loop8_warmup
lea 1($XX[0]),$XX[1]
jmp .Loop8
.align 16
.Loop8:
___
for ($i=0;$i<8;$i++) {
$code.=<<___ if ($i==7);
add \$8,$XX[1]#b
___
$code.=<<___;
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
ror \$8,%r8 # ror is redundant when $i=0
movl $TY#d,4*$i($dat,$XX[0],4)
add $TX[0]#b,$TY#b
movb ($dat,$TY,4),%r8b
___
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
add \$8,$XX[0]#b
ror \$8,%r8
sub \$8,$len
xor ($inp),%r8
mov %r8,($out,$inp)
lea 8($inp),$inp
test \$-8,$len
jnz .Loop8
cmp \$0,$len
jne .Lloop1
jmp .Lexit
.align 16
.Lintel:
test \$-32,$len
jz .Lloop1
and \$15,$TX[1]
jz .Loop16_is_hot
sub $TX[1],$len
.Loop16_warmup:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $TX[1]
jnz .Loop16_warmup
mov $YY,$TX[1]
xor $YY,$YY
mov $TX[1]#b,$YY#b
.Loop16_is_hot:
lea ($dat,$XX[0],4),$XX[1]
___
sub RC4_loop {
my $i=shift;
my $j=$i<0?0:$i;
my $xmm="%xmm".($j&1);
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
$code.=" movl ($dat,$YY,4),$TY#d\n";
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
$code.=" psllq \$8,%xmm1\n" if ($i==0);
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
$code.=" add $TY#b,$TX[0]#b\n";
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
$code.=" movz $TX[0]#b,$TX[0]#d\n";
$code.=" movl $TY#d,4*$j($XX[1])\n";
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
$code.=" lea 16($inp),$inp\n" if ($i==0);
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
}
RC4_loop(-1);
$code.=<<___;
jmp .Loop16_enter
.align 16
.Loop16:
___
for ($i=0;$i<16;$i++) {
$code.=".Loop16_enter:\n" if ($i==1);
RC4_loop($i);
push(@TX,shift(@TX)); # "rotate" registers
}
$code.=<<___;
mov $YY,$TX[1]
xor $YY,$YY # keyword to partial register
sub \$16,$len
mov $TX[1]#b,$YY#b
test \$-16,$len
jnz .Loop16
psllq \$8,%xmm1
pxor %xmm0,%xmm2
pxor %xmm1,%xmm2
movdqu %xmm2,($out,$inp)
lea 16($inp),$inp
cmp \$0,$len
jne .Lloop1
jmp .Lexit
.align 16
.Lloop1:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $len
jnz .Lloop1
jmp .Lexit
.align 16
.LRC4_CHAR:
add \$1,$XX[0]#b
movzb ($dat,$XX[0]),$TX[0]#d
test \$-8,$len
jz .Lcloop1
jmp .Lcloop8
.align 16
.Lcloop8:
mov ($inp),%r8d
mov 4($inp),%r9d
___
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
for ($i=0;$i<4;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%r8b
ror \$8,%r8d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
for ($i=4;$i<8;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%r9b
ror \$8,%r9d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
lea -8($len),$len
mov %r8d,($out)
lea 8($inp),$inp
mov %r9d,4($out)
lea 8($out),$out
test \$-8,$len
jnz .Lcloop8
cmp \$0,$len
jne .Lcloop1
jmp .Lexit
___
$code.=<<___;
.align 16
.Lcloop1:
add $TX[0]#b,$YY#b
movzb $YY#b,$YY#d
movzb ($dat,$YY),$TY#d
movb $TX[0]#b,($dat,$YY)
movb $TY#b,($dat,$XX[0])
add $TX[0]#b,$TY#b
add \$1,$XX[0]#b
movzb $TY#b,$TY#d
movzb $XX[0]#b,$XX[0]#d
movzb ($dat,$TY),$TY#d
movzb ($dat,$XX[0]),$TX[0]#d
xorb ($inp),$TY#b
lea 1($inp),$inp
movb $TY#b,($out)
lea 1($out),$out
sub \$1,$len
jnz .Lcloop1
jmp .Lexit
.align 16
.Lexit:
sub \$1,$XX[0]#b
movl $XX[0]#d,-8($dat)
movl $YY#d,-4($dat)
mov (%rsp),%r13
.cfi_restore %r13
mov 8(%rsp),%r12
.cfi_restore %r12
mov 16(%rsp),%rbx
.cfi_restore %rbx
add \$24,%rsp
.cfi_adjust_cfa_offset -24
.Lepilogue:
ret
.cfi_endproc
.size RC4,.-RC4
___
}
$idx="%r8";
$ido="%r9";
$code.=<<___;
.globl RC4_set_key
.type RC4_set_key,\@function,3
.align 16
RC4_set_key:
lea 8($dat),$dat
lea ($inp,$len),$inp
neg $len
mov $len,%rcx
xor %eax,%eax
xor $ido,$ido
xor %r10,%r10
xor %r11,%r11
mov OPENSSL_ia32cap_P(%rip),$idx#d
bt \$20,$idx#d # RC4_CHAR?
jc .Lc1stloop
jmp .Lw1stloop
.align 16
.Lw1stloop:
mov %eax,($dat,%rax,4)
add \$1,%al
jnc .Lw1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lw2ndloop:
mov ($dat,$ido,4),%r10d
add ($inp,$len,1),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx,4),%r11d
cmovz %rcx,$len
mov %r10d,($dat,$idx,4)
mov %r11d,($dat,$ido,4)
add \$1,$ido#b
jnc .Lw2ndloop
jmp .Lexit_key
.align 16
.Lc1stloop:
mov %al,($dat,%rax)
add \$1,%al
jnc .Lc1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lc2ndloop:
mov ($dat,$ido),%r10b
add ($inp,$len),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx),%r11b
jnz .Lcnowrap
mov %rcx,$len
.Lcnowrap:
mov %r10b,($dat,$idx)
mov %r11b,($dat,$ido)
add \$1,$ido#b
jnc .Lc2ndloop
movl \$-1,256($dat)
.align 16
.Lexit_key:
xor %eax,%eax
mov %eax,-8($dat)
mov %eax,-4($dat)
ret
.size RC4_set_key,.-RC4_set_key
.globl RC4_options
.type RC4_options,\@abi-omnipotent
.align 16
RC4_options:
lea .Lopts(%rip),%rax
mov OPENSSL_ia32cap_P(%rip),%edx
bt \$20,%edx
jc .L8xchar
bt \$30,%edx
jnc .Ldone
add \$25,%rax
ret
.L8xchar:
add \$12,%rax
.Ldone:
ret
.align 64
.Lopts:
.asciz "rc4(8x,int)"
.asciz "rc4(8x,char)"
.asciz "rc4(16x,int)"
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
.size RC4_options,.-RC4_options
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type stream_se_handler,\@abi-omnipotent
.align 16
stream_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lprologue(%rip),%r10
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
lea .Lepilogue(%rip),%r10
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
lea 24(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%r12
mov -24(%rax),%r13
mov %rbx,144($context) # restore context->Rbx
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
jmp .Lcommon_seh_exit
.size stream_se_handler,.-stream_se_handler
.type key_se_handler,\@abi-omnipotent
.align 16
key_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 152($context),%rax # pull context->Rsp
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
.Lcommon_seh_exit:
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size key_se_handler,.-key_se_handler
.section .pdata
.align 4
.rva .LSEH_begin_RC4
.rva .LSEH_end_RC4
.rva .LSEH_info_RC4
.rva .LSEH_begin_RC4_set_key
.rva .LSEH_end_RC4_set_key
.rva .LSEH_info_RC4_set_key
.section .xdata
.align 8
.LSEH_info_RC4:
.byte 9,0,0,0
.rva stream_se_handler
.LSEH_info_RC4_set_key:
.byte 9,0,0,0
.rva key_se_handler
___
}
sub reg_part {
my ($reg,$conv)=@_;
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
return $reg;
}
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;