keccak1600-avx2.pl 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
#!/usr/bin/env perl
# Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# Keccak-1600 for AVX2.
#
# July 2017.
#
# To paraphrase Gilles Van Assche, if you contemplate Fig. 2.3 on page
# 20 of The Keccak reference [or Fig. 5 of FIPS PUB 202], and load data
# other than A[0][0] in magic order into 6 [256-bit] registers, *each
# dedicated to one axis*, Pi permutation is reduced to intra-register
# shuffles...
#
# It makes other steps more intricate, but overall, is it a win? To be
# more specific index permutations organized by quadruples are:
#
#       [4][4] [3][3] [2][2] [1][1]<-+
#       [0][4] [0][3] [0][2] [0][1]<-+
#       [3][0] [1][0] [4][0] [2][0]  |
#       [4][3] [3][1] [2][4] [1][2]  |
#       [3][4] [1][3] [4][2] [2][1]  |
#       [2][3] [4][1] [1][4] [3][2]  |
#       [2][2] [4][4] [1][1] [3][3] -+
#
# This however is highly impractical for Theta and Chi. What would help
# Theta is if x indices were aligned column-wise, or in other words:
#
#       [0][4] [0][3] [0][2] [0][1]
#       [3][0] [1][0] [4][0] [2][0]
#vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
#       [2][4] [4][3] [1][2] [3][1]
#vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
#       [3][4] [1][3] [4][2] [2][1]
#vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
#       [1][4] [2][3] [3][2] [4][1]
#vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
#       [4][4] [3][3] [2][2] [1][1]
#
# So here we have it, lines not marked with vpermq() represent the magic
# order in which data is to be loaded and maintained. [And lines marked
# with vpermq() represent Pi circular permutation in chosen layout. Note
# that first step is permutation-free.] A[0][0] is loaded to register of
# its own, to all lanes. [A[0][0] is not part of Pi permutation or Rho.]
# Digits in variables' names denote right-most coordinates:

my ($A00,	# [0][0] [0][0] [0][0] [0][0]		# %ymm0
    $A01,	# [0][4] [0][3] [0][2] [0][1]		# %ymm1
    $A20,	# [3][0] [1][0] [4][0] [2][0]		# %ymm2
    $A31,	# [2][4] [4][3] [1][2] [3][1]		# %ymm3
    $A21,	# [3][4] [1][3] [4][2] [2][1]		# %ymm4
    $A41,	# [1][4] [2][3] [3][2] [4][1]		# %ymm5
    $A11) =	# [4][4] [3][3] [2][2] [1][1]		# %ymm6
    map("%ymm$_",(0..6));

# We also need to map the magic order into offsets within structure:

my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3],	# [0][0..4]
		[2,2], [6,0], [3,1], [4,2], [5,3],	# [1][0..4]
		[2,0], [4,0], [6,1], [5,2], [3,3],	# [2][0..4]
		[2,3], [3,0], [5,1], [6,2], [4,3],	# [3][0..4]
		[2,1], [5,0], [4,1], [3,2], [6,3]);	# [4][0..4]
   @A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged);	# ... and now linear

# But on the other hand Chi is much better off if y indices were aligned
# column-wise, not x. For this reason we have to shuffle data prior
# Chi and revert it afterwards. Prior shuffle is naturally merged with
# Pi itself:
#
#       [0][4] [0][3] [0][2] [0][1]
#       [3][0] [1][0] [4][0] [2][0]
#vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
#vpermq([2][4] [4][3] [1][2] [3][1], 0b00011011) = 0b10001101
#       [3][1] [1][2] [4][3] [2][4]
#vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
#vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = 0b10001101
#       [3][4] [1][3] [4][2] [2][1]
#vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
#vpermq([1][4] [2][3] [3][2] [4][1], 0b01110010) = 0b00011011
#       [3][2] [1][4] [4][1] [2][3]
#vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
#vpermq([4][4] [3][3] [2][2] [1][1], 0b10001101) = 0b01110010
#       [3][3] [1][1] [4][4] [2][2]
#
# And reverse post-Chi permutation:
#
#       [0][4] [0][3] [0][2] [0][1]
#       [3][0] [1][0] [4][0] [2][0]
#vpermq([3][1] [1][2] [4][3] [2][4], 0b00011011)
#       [2][4] [4][3] [1][2] [3][1]
#vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = nop :-)
#       [3][4] [1][3] [4][2] [2][1]
#vpermq([3][2] [1][4] [4][1] [2][3], 0b10001101)
#       [1][4] [2][3] [3][2] [4][1]
#vpermq([3][3] [1][1] [4][4] [2][2], 0b01110010)
#       [4][4] [3][3] [2][2] [1][1]
#
########################################################################
# Numbers are cycles per processed byte out of large message.
#
#			r=1088(*)
#
# Haswell		8.7/+10%
# Skylake		7.8/+20%
# Ryzen			17(**)
#
# (*)	Corresponds to SHA3-256. Percentage after slash is improvement
#	coefficient in comparison to scalar keccak1600-x86_64.pl.
# (**)	It's expected that Ryzen performs poorly, because instruction
#	issue rate is limited to two AVX2 instructions per cycle and
#	in addition vpblendd is reportedly bound to specific port.
#	Obviously this code path should not be executed on Ryzen.

my @T = map("%ymm$_",(7..15));
my ($C14,$C00,$D00,$D14) = @T[5..8];

$code.=<<___;
.text

.type	__KeccakF1600,\@function
.align	32
__KeccakF1600:
	lea		rhotates_left+96(%rip),%r8
	lea		rhotates_right+96(%rip),%r9
	lea		iotas(%rip),%r10
	mov		\$24,%eax
	jmp		.Loop_avx2

.align	32
.Loop_avx2:
	######################################### Theta
	vpshufd		\$0b01001110,$A20,$C00
	vpxor		$A31,$A41,$C14
	vpxor		$A11,$A21,@T[2]
	vpxor		$A01,$C14,$C14
	vpxor		@T[2],$C14,$C14		# C[1..4]

	vpermq		\$0b10010011,$C14,@T[4]
	vpxor		$A20,$C00,$C00
	vpermq		\$0b01001110,$C00,@T[0]

	vpsrlq		\$63,$C14,@T[1]
	vpaddq		$C14,$C14,@T[2]
	vpor		@T[2],@T[1],@T[1]	# ROL64(C[1..4],1)

	vpermq		\$0b00111001,@T[1],$D14
	vpxor		@T[4],@T[1],$D00
	vpermq		\$0b00000000,$D00,$D00	# D[0..0] = ROL64(C[1],1) ^ C[4]

	vpxor		$A00,$C00,$C00
	vpxor		@T[0],$C00,$C00		# C[0..0]

	vpsrlq		\$63,$C00,@T[0]
	vpaddq		$C00,$C00,@T[1]
	vpor		@T[0],@T[1],@T[1]	# ROL64(C[0..0],1)

	vpxor		$D00,$A20,$A20		# ^= D[0..0]
	vpxor		$D00,$A00,$A00		# ^= D[0..0]

	vpblendd	\$0b11000000,@T[1],$D14,$D14
	vpblendd	\$0b00000011,$C00,@T[4],@T[4]
	vpxor		@T[4],$D14,$D14		# D[1..4] = ROL64(C[2..4,0),1) ^ C[0..3]

	######################################### Rho + Pi + pre-Chi shuffle
	vpsllvq		0*32-96(%r8),$A20,@T[3]
	vpsrlvq		0*32-96(%r9),$A20,$A20
	vpor		@T[3],$A20,$A20

	 vpxor		$D14,$A31,$A31		# ^= D[1..4] from Theta
	vpsllvq		2*32-96(%r8),$A31,@T[4]
	vpsrlvq		2*32-96(%r9),$A31,$A31
	vpor		@T[4],$A31,$A31

	 vpxor		$D14,$A21,$A21		# ^= D[1..4] from Theta
	vpsllvq		3*32-96(%r8),$A21,@T[5]
	vpsrlvq		3*32-96(%r9),$A21,$A21
	vpor		@T[5],$A21,$A21

	 vpxor		$D14,$A41,$A41		# ^= D[1..4] from Theta
	vpsllvq		4*32-96(%r8),$A41,@T[6]
	vpsrlvq		4*32-96(%r9),$A41,$A41
	vpor		@T[6],$A41,$A41

	 vpxor		$D14,$A11,$A11		# ^= D[1..4] from Theta
	 vpermq		\$0b10001101,$A20,@T[3]	# $A20 -> future $A31
	 vpermq		\$0b10001101,$A31,@T[4]	# $A31 -> future $A21
	vpsllvq		5*32-96(%r8),$A11,@T[7]
	vpsrlvq		5*32-96(%r9),$A11,@T[1]
	vpor		@T[7],@T[1],@T[1]	# $A11 -> future $A01

	 vpxor		$D14,$A01,$A01		# ^= D[1..4] from Theta
	 vpermq		\$0b00011011,$A21,@T[5]	# $A21 -> future $A41
	 vpermq		\$0b01110010,$A41,@T[6]	# $A41 -> future $A11
	vpsllvq		1*32-96(%r8),$A01,@T[8]
	vpsrlvq		1*32-96(%r9),$A01,@T[2]
	vpor		@T[8],@T[2],@T[2]	# $A01 -> future $A20

	######################################### Chi
	vpsrldq		\$8,@T[1],@T[7]
	vpandn		@T[7],@T[1],@T[0]	# tgting  [0][0] [0][0] [0][0] [0][0]

	vpblendd	\$0b00001100,@T[6],@T[2],$A31	#               [4][4] [2][0]
	vpblendd	\$0b00001100,@T[2],@T[4],@T[8]	#               [4][0] [2][1]
	 vpblendd	\$0b00001100,@T[4],@T[3],$A41	#               [4][2] [2][4]
	 vpblendd	\$0b00001100,@T[3],@T[2],@T[7]	#               [4][3] [2][0]
	vpblendd	\$0b00110000,@T[4],$A31,$A31	#        [1][3] [4][4] [2][0]
	vpblendd	\$0b00110000,@T[5],@T[8],@T[8]	#        [1][4] [4][0] [2][1]
	 vpblendd	\$0b00110000,@T[2],$A41,$A41	#        [1][0] [4][2] [2][4]
	 vpblendd	\$0b00110000,@T[6],@T[7],@T[7]	#        [1][1] [4][3] [2][0]
	vpblendd	\$0b11000000,@T[5],$A31,$A31	# [3][2] [1][3] [4][4] [2][0]
	vpblendd	\$0b11000000,@T[6],@T[8],@T[8]	# [3][3] [1][4] [4][0] [2][1]
	 vpblendd	\$0b11000000,@T[6],$A41,$A41	# [3][3] [1][0] [4][2] [2][4]
	 vpblendd	\$0b11000000,@T[4],@T[7],@T[7]	# [3][4] [1][1] [4][3] [2][0]
	vpandn		@T[8],$A31,$A31		# tgting  [3][1] [1][2] [4][3] [2][4]
	 vpandn		@T[7],$A41,$A41		# tgting  [3][2] [1][4] [4][1] [2][3]

	vpblendd	\$0b00001100,@T[2],@T[5],$A11	#               [4][0] [2][3]
	vpblendd	\$0b00001100,@T[5],@T[3],@T[8]	#               [4][1] [2][4]
	 vpxor		@T[3],$A31,$A31
	vpblendd	\$0b00110000,@T[3],$A11,$A11	#        [1][2] [4][0] [2][3]
	vpblendd	\$0b00110000,@T[4],@T[8],@T[8]	#        [1][3] [4][1] [2][4]
	 vpxor		@T[5],$A41,$A41
	vpblendd	\$0b11000000,@T[4],$A11,$A11	# [3][4] [1][2] [4][0] [2][3]
	vpblendd	\$0b11000000,@T[2],@T[8],@T[8]	# [3][0] [1][3] [4][1] [2][4]
	vpandn		@T[8],$A11,$A11		# tgting  [3][3] [1][1] [4][4] [2][2]
	vpxor		@T[6],$A11,$A11

	  vpermq	\$0b00011110,@T[1],$A21		# [0][1] [0][2] [0][4] [0][3]
	  vpblendd	\$0b00110000,$A00,$A21,@T[8]	# [0][1] [0][0] [0][4] [0][3]
	  vpermq	\$0b00111001,@T[1],$A01		# [0][1] [0][4] [0][3] [0][2]
	  vpblendd	\$0b11000000,$A00,$A01,$A01	# [0][0] [0][4] [0][3] [0][2]
	  vpandn	@T[8],$A01,$A01		# tgting  [0][4] [0][3] [0][2] [0][1]

	vpblendd	\$0b00001100,@T[5],@T[4],$A20	#               [4][1] [2][1]
	vpblendd	\$0b00001100,@T[4],@T[6],@T[7]	#               [4][2] [2][2]
	vpblendd	\$0b00110000,@T[6],$A20,$A20	#        [1][1] [4][1] [2][1]
	vpblendd	\$0b00110000,@T[3],@T[7],@T[7]	#        [1][2] [4][2] [2][2]
	vpblendd	\$0b11000000,@T[3],$A20,$A20	# [3][1] [1][1] [4][1] [2][1]
	vpblendd	\$0b11000000,@T[5],@T[7],@T[7]	# [3][2] [1][2] [4][2] [2][2]
	vpandn		@T[7],$A20,$A20		# tgting  [3][0] [1][0] [4][0] [2][0]
	vpxor		@T[2],$A20,$A20

	 vpermq		\$0b00000000,@T[0],@T[0]	# [0][0] [0][0] [0][0] [0][0]
	 vpermq		\$0b00011011,$A31,$A31	# post-Chi shuffle
	 vpermq		\$0b10001101,$A41,$A41
	 vpermq		\$0b01110010,$A11,$A11

	vpblendd	\$0b00001100,@T[3],@T[6],$A21	#               [4][3] [2][2]
	vpblendd	\$0b00001100,@T[6],@T[5],@T[7]	#               [4][4] [2][3]
	vpblendd	\$0b00110000,@T[5],$A21,$A21	#        [1][4] [4][3] [2][2]
	vpblendd	\$0b00110000,@T[2],@T[7],@T[7]	#        [1][0] [4][4] [2][3]
	vpblendd	\$0b11000000,@T[2],$A21,$A21	# [3][0] [1][4] [4][3] [2][2]
	vpblendd	\$0b11000000,@T[3],@T[7],@T[7]	# [3][1] [1][0] [4][4] [2][3]
	vpandn		@T[7],$A21,$A21		# tgting  [3][4] [1][3] [4][2] [2][1]

	vpxor		@T[0],$A00,$A00
	vpxor		@T[1],$A01,$A01
	vpxor		@T[4],$A21,$A21

	######################################### Iota
	vpxor		(%r10),$A00,$A00
	lea		32(%r10),%r10

	dec		%eax
	jnz		.Loop_avx2

	ret
.size	__KeccakF1600,.-__KeccakF1600
___
my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
my  $out = $inp;	# in squeeze

$code.=<<___;
.globl	SHA3_absorb
.type	SHA3_absorb,\@function
.align	32
SHA3_absorb:
	mov	%rsp,%r11

	lea	-240(%rsp),%rsp
	and	\$-32,%rsp

	lea	96($A_flat),$A_flat
	lea	96($inp),$inp
	lea	96(%rsp),%r10

	vzeroupper

	vpbroadcastq	-96($A_flat),$A00	# load A[5][5]
	vmovdqu		8+32*0-96($A_flat),$A01
	vmovdqu		8+32*1-96($A_flat),$A20
	vmovdqu		8+32*2-96($A_flat),$A31
	vmovdqu		8+32*3-96($A_flat),$A21
	vmovdqu		8+32*4-96($A_flat),$A41
	vmovdqu		8+32*5-96($A_flat),$A11

	vpxor		@T[0],@T[0],@T[0]
	vmovdqa		@T[0],32*2-96(%r10)	# zero transfer area on stack
	vmovdqa		@T[0],32*3-96(%r10)
	vmovdqa		@T[0],32*4-96(%r10)
	vmovdqa		@T[0],32*5-96(%r10)
	vmovdqa		@T[0],32*6-96(%r10)

.Loop_absorb_avx2:
	mov		$bsz,%rax
	sub		$bsz,$len
	jc		.Ldone_absorb_avx2

	shr		\$3,%eax
	vpbroadcastq	0-96($inp),@T[0]
	vmovdqu		8-96($inp),@T[1]
	sub		\$4,%eax
___
for(my $i=5; $i<25; $i++) {
$code.=<<___
	dec	%eax
	jz	.Labsorved_avx2
	mov	8*$i-96($inp),%r8
	mov	%r8,$A_jagged[$i]-96(%r10)
___
}
$code.=<<___;
.Labsorved_avx2:
	lea	($inp,$bsz),$inp

	vpxor	@T[0],$A00,$A00
	vpxor	@T[1],$A01,$A01
	vpxor	32*2-96(%r10),$A20,$A20
	vpxor	32*3-96(%r10),$A31,$A31
	vpxor	32*4-96(%r10),$A21,$A21
	vpxor	32*5-96(%r10),$A41,$A41
	vpxor	32*6-96(%r10),$A11,$A11

	call	__KeccakF1600

	lea	96(%rsp),%r10
	jmp	.Loop_absorb_avx2

.Ldone_absorb_avx2:
	vmovq	%xmm0,-96($A_flat)
	vmovdqu	$A01,8+32*0-96($A_flat)
	vmovdqu	$A20,8+32*1-96($A_flat)
	vmovdqu	$A31,8+32*2-96($A_flat)
	vmovdqu	$A21,8+32*3-96($A_flat)
	vmovdqu	$A41,8+32*4-96($A_flat)
	vmovdqu	$A11,8+32*5-96($A_flat)

	vzeroupper

	lea	(%r11),%rsp
	lea	($len,$bsz),%rax		# return value
	ret
.size	SHA3_absorb,.-SHA3_absorb

.globl	SHA3_squeeze
.type	SHA3_squeeze,\@function
.align	32
SHA3_squeeze:
	mov	%rsp,%r11

	lea	96($A_flat),$A_flat
	shr	\$3,$bsz

	vzeroupper

	vpbroadcastq	-96($A_flat),$A00
	vpxor		@T[0],@T[0],@T[0]
	vmovdqu		8+32*0-96($A_flat),$A01
	vmovdqu		8+32*1-96($A_flat),$A20
	vmovdqu		8+32*2-96($A_flat),$A31
	vmovdqu		8+32*3-96($A_flat),$A21
	vmovdqu		8+32*4-96($A_flat),$A41
	vmovdqu		8+32*5-96($A_flat),$A11

	mov	$bsz,%rax

.Loop_squeeze_avx2:
	mov	@A_jagged[$i]-96($A_flat),%r8
___
for (my $i=0; $i<25; $i++) {
$code.=<<___;
	sub	\$8,$len
	jc	.Ltail_squeeze_avx2
	mov	%r8,($out)
	lea	8($out),$out
	je	.Ldone_squeeze_avx2
	dec	%eax
	je	.Lextend_output_avx2
	mov	@A_jagged[$i+1]-120($A_flat),%r8
___
}
$code.=<<___;
.Lextend_output_avx2:
	call	__KeccakF1600

	vmovq	%xmm0,-96($A_flat)
	vmovdqu	$A01,8+32*0-96($A_flat)
	vmovdqu	$A20,8+32*1-96($A_flat)
	vmovdqu	$A31,8+32*2-96($A_flat)
	vmovdqu	$A21,8+32*3-96($A_flat)
	vmovdqu	$A41,8+32*4-96($A_flat)
	vmovdqu	$A11,8+32*5-96($A_flat)

	mov	$bsz,%rax
	jmp	.Loop_squeeze_avx2


.Ltail_squeeze_avx2:
	add	\$8,$len
.Loop_tail_avx2:
	mov	%r8b,($out)
	lea	1($out),$out
	shr	\$8,%r8
	dec	$len
	jnz	.Loop_tail_avx2

.Ldone_squeeze_avx2:
	vzeroupper

	lea	(%r11),%rsp
	ret
.size	SHA3_squeeze,.-SHA3_squeeze

.align	64
rhotates_left:
	.quad	3,	18,	36,	41	# [2][0] [4][0] [1][0] [3][0]
	.quad	1,	62,	28,	27	# [0][1] [0][2] [0][3] [0][4]
	.quad	45,	6,	56,	39	# [3][1] [1][2] [4][3] [2][4]
	.quad	10,	61,	55,	8	# [2][1] [4][2] [1][3] [3][4]
	.quad	2,	15,	25,	20	# [4][1] [3][2] [2][3] [1][4]
	.quad	44,	43,	21,	14	# [1][1] [2][2] [3][3] [4][4]
rhotates_right:
	.quad	64-3,	64-18,	64-36,	64-41
	.quad	64-1,	64-62,	64-28,	64-27
	.quad	64-45,	64-6,	64-56,	64-39
	.quad	64-10,	64-61,	64-55,	64-8
	.quad	64-2,	64-15,	64-25,	64-20
	.quad	64-44,	64-43,	64-21,	64-14
iotas:
	.quad	0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001
	.quad	0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082
	.quad	0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a
	.quad	0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000
	.quad	0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b
	.quad	0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
	.quad	0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
	.quad	0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009
	.quad	0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a
	.quad	0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088
	.quad	0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009
	.quad	0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a
	.quad	0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b
	.quad	0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b
	.quad	0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089
	.quad	0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003
	.quad	0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002
	.quad	0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080
	.quad	0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a
	.quad	0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a
	.quad	0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
	.quad	0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080
	.quad	0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
	.quad	0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008

.asciz	"Keccak-1600 absorb and squeeze for AVX2, CRYPTOGAMS by <appro\@openssl.org>"
___

$output=pop;
open STDOUT,">$output";
print $code;
close STDOUT;