sha1-sparcv9a.pl 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
#! /usr/bin/env perl
# Copyright 2009-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# January 2009
#
# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
# Graphic Unit would make it possible to achieve higher instruction-
# level parallelism, ILP, and thus higher performance. It should be
# explicitly noted that ILP is the keyword, and it means that this
# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
# not really novel, Sun had VIS-powered implementation for a while.
# Unlike Sun's implementation this one can process multiple unaligned
# input blocks, and as such works as drop-in replacement for OpenSSL
# sha1_block_data_order. Performance improvement was measured to be
# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
# UltraSPARC-III. See below for discussion...
#
# The module does not present direct interest for OpenSSL, because
# it doesn't provide better performance on contemporary SPARCv9 CPUs,
# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
# absolutely must score on UltraSPARC-I-IV can simply replace
# crypto/sha/asm/sha1-sparcv9.pl with this module.
#
# (*)	"Pipe-lined" means that even if it takes several cycles to
#	complete, next instruction using same functional unit [but not
#	depending on the result of the current instruction] can start
#	execution without having to wait for the unit. "Pairable"
#	means that two [or more] independent instructions can be
#	issued at the very same time.

$bits=32;
for (@ARGV)	{ $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
if ($bits==64)	{ $bias=2047; $frame=192; }
else		{ $bias=0;    $frame=112; }

$output=shift;
open STDOUT,">$output";

$ctx="%i0";
$inp="%i1";
$len="%i2";
$tmp0="%i3";
$tmp1="%i4";
$tmp2="%i5";
$tmp3="%g5";

$base="%g1";
$align="%g4";
$Xfer="%o5";
$nXfer=$tmp3;
$Xi="%o7";

$A="%l0";
$B="%l1";
$C="%l2";
$D="%l3";
$E="%l4";
@V=($A,$B,$C,$D,$E);

$Actx="%o0";
$Bctx="%o1";
$Cctx="%o2";
$Dctx="%o3";
$Ectx="%o4";

$fmul="%f32";
$VK_00_19="%f34";
$VK_20_39="%f36";
$VK_40_59="%f38";
$VK_60_79="%f40";
@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
    "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");

# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
# covers even K_NN_MM addition...
sub Xupdate {
my ($i)=@_;
my $K=@VK[($i+16)/20];
my $j=($i+16)%16;

#	[ provided that GSR.alignaddr_offset is 5, $mul contains
#	  0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
#	  chosen registers... ]
$code.=<<___;
	fxors		@X[($j+13)%16],@X[$j],@X[$j]	!-1/-1/-1:X[0]^=X[13]
	fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
	fpadd32		@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
	fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	![fxors		%f15,%f2,%f2]
	for		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	![fxors		%f0,%f3,%f3]			!10/17/12:X[0] dependency
	fpadd32		$K,@X[$j],%f20
	std		%f20,[$Xfer+`4*$j`]
___
# The numbers delimited with slash are the earliest possible dispatch
# cycles for given instruction assuming 1 cycle latency for simple VIS
# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
# round. As [long as] FPU/VIS instructions are perfectly pairable with
# IALU ones, the round timing is defined by the maximum between VIS
# and IALU timings. The latter varies from round to round and averages
# out at 6.25 ticks. This means that USI&II should operate at IALU
# rate, while USIII&IV - at VIS rate. This explains why performance
# improvement varies among processors. Well, given that pure IALU
# sha1-sparcv9.pl module exhibits virtually uniform performance of
# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
# lower limits. Real-life performance was measured to be 6.6 cycles
# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
# half-round VIS timing, because there are 16 Xupdate-free rounds,
# which "push down" average theoretical timing to 8 cycles...

# (*)	SPARC64-V[II] was originally believed to have 2 cycles VIS
#	latency. Well, it might have, but it doesn't have dedicated
#	VIS-unit. Instead, VIS instructions are executed by other
#	functional units, ones used here - by IALU. This doesn't
#	improve effective ILP...
}

# The reference Xupdate procedure is then "strained" over *pairs* of
# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
# plenty of room to amortize for read-after-write hazard, as well as
# to fetch and align input for the next spin. The VIS instructions are
# scheduled for latency of 2 cycles, because there are not enough IALU
# instructions to schedule for latency of 3, while scheduling for 1
# would give no gain on USI&II anyway.

sub BODY_00_19 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16;	# ahead reference
my $l=($j+16-2)%16;	# behind reference
my $K=@VK[($j+16-2)/20];

$j=($j+16)%16;

$code.=<<___ if (!($i&1));
	sll		$a,5,$tmp0			!! $i
	and		$c,$b,$tmp3
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	sll		$b,30,$tmp2
	add		$tmp1,$e,$e
	andn		$d,$b,$tmp1
	add		$Xi,$e,$e
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	srl		$b,2,$b
	or		$tmp1,$tmp3,$tmp1
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
___
$code.=<<___ if ($i&1);
	sll		$a,5,$tmp0			!! $i
	and		$c,$b,$tmp3
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	sll		$b,30,$tmp2
	add		$tmp1,$e,$e
	 fpadd32	$K,@X[$l],%f20			!
	andn		$d,$b,$tmp1
	add		$Xi,$e,$e
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
	srl		$b,2,$b
	or		$tmp1,$tmp3,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
___
$code.=<<___ if ($i&1 && $i>=2);
	 std		%f20,[$Xfer+`4*$l`]		!
___
}

sub BODY_20_39 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16;	# ahead reference
my $l=($j+16-2)%16;	# behind reference
my $K=@VK[($j+16-2)/20];

$j=($j+16)%16;

$code.=<<___ if (!($i&1) && $i<64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
___
$code.=<<___ if ($i&1 && $i<64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	 fpadd32	$K,@X[$l],%f20			!
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
	srl		$b,2,$b
	add		$tmp1,$e,$e
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
	 std		%f20,[$Xfer+`4*$l`]		!
___
$code.=<<___ if ($i==64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fpadd32	$K,@X[$l],%f20
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	 std		%f20,[$Xfer+`4*$l`]
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
$code.=<<___ if ($i>64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
}

sub BODY_40_59 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16;	# ahead reference
my $l=($j+16-2)%16;	# behind reference
my $K=@VK[($j+16-2)/20];

$j=($j+16)%16;

$code.=<<___ if (!($i&1));
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	and		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	or		$c,$b,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	srl		$b,2,$b
	and		$d,$tmp1,$tmp1
	add		$Xi,$e,$e
	or		$tmp1,$tmp0,$tmp1
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
___
$code.=<<___ if ($i&1);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	and		$c,$b,$tmp0
	add		$tmp1,$e,$e
	 fpadd32	$K,@X[$l],%f20			!
	sll		$b,30,$tmp2
	or		$c,$b,$tmp1
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
	srl		$b,2,$b
	and		$d,$tmp1,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	add		$Xi,$e,$e
	or		$tmp1,$tmp0,$tmp1
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
	 std		%f20,[$Xfer+`4*$l`]		!
___
}

# If there is more data to process, then we pre-fetch the data for
# next iteration in last ten rounds...
sub BODY_70_79 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $m=($i%8)*2;

$j=($j+16)%16;

$code.=<<___ if ($i==70);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 ldd		[$inp+64],@X[0]
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e

	and		$inp,-64,$nXfer
	inc		64,$inp
	and		$nXfer,255,$nXfer
	alignaddr	%g0,$align,%g0
	add		$base,$nXfer,$nXfer
___
$code.=<<___ if ($i==71);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
$code.=<<___ if ($i>=72);
	 faligndata	@X[$m],@X[$m+2],@X[$m]
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	 fpadd32	$VK_00_19,@X[$m],%f20
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
$code.=<<___ if ($i<77);
	 ldd		[$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
___
$code.=<<___ if ($i==77);	# redundant if $inp was aligned
	 add		$align,63,$tmp0
	 and		$tmp0,-8,$tmp0
	 ldd		[$inp+$tmp0],@X[16]
___
$code.=<<___ if ($i>=72);
	 std		%f20,[$nXfer+`4*$m`]
___
}

$code.=<<___;
.section	".text",#alloc,#execinstr

.align	64
vis_const:
.long	0x5a827999,0x5a827999	! K_00_19
.long	0x6ed9eba1,0x6ed9eba1	! K_20_39
.long	0x8f1bbcdc,0x8f1bbcdc	! K_40_59
.long	0xca62c1d6,0xca62c1d6	! K_60_79
.long	0x00000100,0x00000100
.align	64
.type	vis_const,#object
.size	vis_const,(.-vis_const)

.globl	sha1_block_data_order
sha1_block_data_order:
	save	%sp,-$frame,%sp
	add	%fp,$bias-256,$base

1:	call	.+8
	add	%o7,vis_const-1b,$tmp0

	ldd	[$tmp0+0],$VK_00_19
	ldd	[$tmp0+8],$VK_20_39
	ldd	[$tmp0+16],$VK_40_59
	ldd	[$tmp0+24],$VK_60_79
	ldd	[$tmp0+32],$fmul

	ld	[$ctx+0],$Actx
	and	$base,-256,$base
	ld	[$ctx+4],$Bctx
	sub	$base,$bias+$frame,%sp
	ld	[$ctx+8],$Cctx
	and	$inp,7,$align
	ld	[$ctx+12],$Dctx
	and	$inp,-8,$inp
	ld	[$ctx+16],$Ectx

	! X[16] is maintained in FP register bank
	alignaddr	%g0,$align,%g0
	ldd		[$inp+0],@X[0]
	sub		$inp,-64,$Xfer
	ldd		[$inp+8],@X[2]
	and		$Xfer,-64,$Xfer
	ldd		[$inp+16],@X[4]
	and		$Xfer,255,$Xfer
	ldd		[$inp+24],@X[6]
	add		$base,$Xfer,$Xfer
	ldd		[$inp+32],@X[8]
	ldd		[$inp+40],@X[10]
	ldd		[$inp+48],@X[12]
	brz,pt		$align,.Laligned
	ldd		[$inp+56],@X[14]

	ldd		[$inp+64],@X[16]
	faligndata	@X[0],@X[2],@X[0]
	faligndata	@X[2],@X[4],@X[2]
	faligndata	@X[4],@X[6],@X[4]
	faligndata	@X[6],@X[8],@X[6]
	faligndata	@X[8],@X[10],@X[8]
	faligndata	@X[10],@X[12],@X[10]
	faligndata	@X[12],@X[14],@X[12]
	faligndata	@X[14],@X[16],@X[14]

.Laligned:
	mov		5,$tmp0
	dec		1,$len
	alignaddr	%g0,$tmp0,%g0
	fpadd32		$VK_00_19,@X[0],%f16
	fpadd32		$VK_00_19,@X[2],%f18
	fpadd32		$VK_00_19,@X[4],%f20
	fpadd32		$VK_00_19,@X[6],%f22
	fpadd32		$VK_00_19,@X[8],%f24
	fpadd32		$VK_00_19,@X[10],%f26
	fpadd32		$VK_00_19,@X[12],%f28
	fpadd32		$VK_00_19,@X[14],%f30
	std		%f16,[$Xfer+0]
	mov		$Actx,$A
	std		%f18,[$Xfer+8]
	mov		$Bctx,$B
	std		%f20,[$Xfer+16]
	mov		$Cctx,$C
	std		%f22,[$Xfer+24]
	mov		$Dctx,$D
	std		%f24,[$Xfer+32]
	mov		$Ectx,$E
	std		%f26,[$Xfer+40]
	fxors		@X[13],@X[0],@X[0]
	std		%f28,[$Xfer+48]
	ba		.Loop
	std		%f30,[$Xfer+56]
.align	32
.Loop:
___
for ($i=0;$i<20;$i++)	{ &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
for (;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for (;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for (;$i<70;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	tst		$len
	bz,pn		`$bits==32?"%icc":"%xcc"`,.Ltail
	nop
___
for (;$i<80;$i++)	{ &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	add		$A,$Actx,$Actx
	add		$B,$Bctx,$Bctx
	add		$C,$Cctx,$Cctx
	add		$D,$Dctx,$Dctx
	add		$E,$Ectx,$Ectx
	mov		5,$tmp0
	fxors		@X[13],@X[0],@X[0]
	mov		$Actx,$A
	mov		$Bctx,$B
	mov		$Cctx,$C
	mov		$Dctx,$D
	mov		$Ectx,$E
	alignaddr	%g0,$tmp0,%g0
	dec		1,$len
	ba		.Loop
	mov		$nXfer,$Xfer

.align	32
.Ltail:
___
for($i=70;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	add	$A,$Actx,$Actx
	add	$B,$Bctx,$Bctx
	add	$C,$Cctx,$Cctx
	add	$D,$Dctx,$Dctx
	add	$E,$Ectx,$Ectx

	st	$Actx,[$ctx+0]
	st	$Bctx,[$ctx+4]
	st	$Cctx,[$ctx+8]
	st	$Dctx,[$ctx+12]
	st	$Ectx,[$ctx+16]

	ret
	restore
.type	sha1_block_data_order,#function
.size	sha1_block_data_order,(.-sha1_block_data_order)
.asciz	"SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
.align	4
___

# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my ($ref,$opf);
my %visopf = (	"fmul8ulx16"	=> 0x037,
		"faligndata"	=> 0x048,
		"fpadd32"	=> 0x052,
		"fxor"		=> 0x06c,
		"fxors"		=> 0x06d	);

    $ref = "$mnemonic\t$rs1,$rs2,$rd";

    if ($opf=$visopf{$mnemonic}) {
	foreach ($rs1,$rs2,$rd) {
	    return $ref if (!/%f([0-9]{1,2})/);
	    $_=$1;
	    if ($1>=32) {
		return $ref if ($1&1);
		# re-encode for upper double register addressing
		$_=($1|$1>>5)&31;
	    }
	}

	return	sprintf ".word\t0x%08x !%s",
			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
			$ref;
    } else {
	return $ref;
    }
}
sub unalignaddr {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my $ref="$mnemonic\t$rs1,$rs2,$rd";

    foreach ($rs1,$rs2,$rd) {
	if (/%([goli])([0-7])/)	{ $_=$bias{$1}+$2; }
	else			{ return $ref; }
    }
    return  sprintf ".word\t0x%08x !%s",
		    0x81b00300|$rd<<25|$rs1<<14|$rs2,
		    $ref;
}

$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
		&unvis($1,$2,$3,$4)
	  /gem;
$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
		&unalignaddr($1,$2,$3,$4)
	  /gem;
print $code;
close STDOUT;